UNITARY REPRESENTATIONS OF
SOME LINEAR GROUPS II

SE1ZO 1TO

§ 0. Introudction. In his preceding paper [2], the author determined the
types of irreducible unitary representations and cyclic unitary representations
of the group of all euclidean motions in 2-space E®.. The purpose of the pre-
sent paper is to determine the types of irreducible unitary representations and
cyclic ones of the group of all euclidean motions in n-space E” for n=3."%
In this paper, we shall make use of the results of the preceding paper [2],
but notations are independent of those in [2].

§ 1. Preliminaries and main theorems. Let G be the group of all euclid-
ean motions in z-space E”. Then G has a compact subgroup K= SO(n) and
a normal subgroup V isomorphic to the vector group R”, and

{ G=V.K, VNK={e} (e=the identity of G)

(1.1) G/V=K.

Let X be the character group of V, and X, be the identity of X; then X=R".
Hereafter g, &', . .. denote elements of G, especially a, b, ¢, . . .—— of K, x,
Y, ...—of V; and X, 7', ...—— elements of X. (/, x) denotes the value
of character 7 at x€V. We denote by M, the orthogonal matrix which realize
the element ¢ =K and by M7 its conjugate matrix, and define that M.x means
to operate M. to x as a vector in R” while ax and xe mean the multiplica-
tions as elements of the group G. We shall denote briefly /a instead of Mgj Z.

Then, if
X1 ai « . . Qin
x=| - 1, A=W,..., Xn) and Ma={ ....... |,
Xn QAni e » « Cun

Received August 12, 1952,

1 The author wrote in [2] that it seemed to be difficult to solve such problem for #x3.
But he could solve this problem after he finished the proof-reading of the paper [2].

3 Prof. G. W. Mackey kindly informed to the author that the result of [2] was inculuded
in the result of his paper [3] which the author had overlooked. Recently more general
cases have been treated in [4] and [5]. However, the results of the papers [3], [4] and
[5] seem to be not so explicit as the result of our present paper.
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we have
(7, Max) = (Ya, x) =exp(N — 1 Dijaij Li xj).

X=X-{X) is the product space of the unit sphere S=S""" in R” and
T={0<t< o} as topological spaces; we denote /€X by Z=<s, t> (sES,
teT). Then Ya=<sa, t) by the above definitions.

S may be considered as the factor space K/K’ of right K'-cosets where
K =~ SO(n—-1). Hereafter a’, ¥, ¢/, ... denote elements of K. We shall
denote by s» the image of b€ K under the natural mapping of K cnto S. For
every s€S, we fix an inverse image c¢s of s under the natural mapping, where
we do not demand the B-measurability etc. of the mapping s—>c¢s. Every 6K
is uniquely expressible in the form b =b'cs, ¥ EK’, as far as the system {cs} is
fixed. We shall consider the Haar measures db on K and db' on K’ and the
measure ds on S invariant under K such that

(1.2) ds « db' = db.”

Let {TOa') =|#b,(a)) (p, g=1,..., #()); 2=1,2,...) be a system
of irreducible unitary representaticns of the compact group K’ constructed by
selecting a unitary representation from each class of mutually equivalent irre-
ducible representations of K’, and {U%a) =luj(a)l (4, j=1,..., nla));
a=1,2,...}) be a system of irreducible unitary representations of the com-
pact group K constructed by the same method as above. Then U%(d'), d €K/,
may be considered as a unitary representation of K’ and hence, by the com-
plete reducibility, we may assume that U®(a’) is of the form:

U~”°"”(a’) O
(1.3) Ua') = ' .
0 greme) (a1)

We fix such systems {U%(a)} and {T*(a’)}. We denote the number #(i(a, 1))
+...+%Aa, m—1)) by Nm(a) or simply by Nm (m=1, ..., ms). Here-

after 4, j, k run over {1, . .., n(a)} while p, ¢, r——{1, ..., #i(A(a, m))} for

« and m being considered. Then, if x = A(a, m), we have

(1- 4) u?vm-bﬁ,j(b,a) = Eﬁ;q(b’)uglmw‘-q,j(a) (by (1. 3)).
q

We put for any A and p

{ =1 n(a), and {a, m runs over
@)‘= uf',,, b J LR ] ’ ’ }
p= +2.5(8) all couples such that A(a, m) =2
and
9} = LLESH]

» For the precise meaning of this equality, see [6], pp. 42-45.

https://doi.org/10.1017/5S0027763000015464 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015464

UNITARY REPRESENTATIONS OF SOME LINEAR GROUPS II 81

where Q[E] denotes the closed linear subspace of L*(K) spanned by &. Then
@2 is a complete orthogonal basis in 95, and

- w AN
(1.5) LK) =D © 9.

A=1p=1
Making use of these notions, we state here the main theorems.

THEOREM 1.1. Fix an arbitrary element t€ T and natural numbers X and
P (1=p<n(R)), and define unitary operators Ui(g), gEG, in the Hilbert spa-e
9p by

(1.6) Ui(g)f(b) = Ui(xa)f(b) = ({ss, £, x)f(ba) (fEHITLHK))

for g=xa® Then {9}, Ui(g)} is an irreducible unitary representation of G;
and, for any sequence of complex numbers: {&3"/j=1,..., n(a); Aa, m) =21}

such that > 21283"1°=1, the function

Aa,m)=X 3

0(g) = 0(xa)

L7 fsonn| 3 S

(@, m)=AB, =X sk

X 23 Usmer, i(Cs)ufi(@) Usyer, k(Cs)} ds®
r:

is a normal elementary® p. d.” function on G corresponding to the above irre-
ducible unitary representation.

1.2. For any fixed t and A, the unitary representations {9p, U:(g)} (defired
in 1.1). p=1,..., #R), are mutually unitary equivalent; while {9, Ui(g)}
and {9y, Ui @)} are not mutually unitary equivalent for any p and q if A= pu.

1.3. If tixts, then (D}, Ui(2)} and {9, Ur(g)} are not mutually unitary
equivalent for any A, 1 and p, q.

1.4, Put $i=Uuti(®)/ j=1, ..., n(a)}] for any fixed « and k (1£k<
n(a)), and define the unitary operator U(g) in OF by

(1.8) U@ f(b) = Ulxa)f(b) = Ua)f(b) = fba) (fEDRCL(K))
for g=xa. Then {9k, U(g)} is an irreducible unitary representation of G; and
(1.9) 0(g) = 0(xa) = BéiZjuijla), Blal=1,

J

is a corresponding normal elementary p. d. function on G.

4 Any element ge G is uniquely expressible in this form by virture of (1.1).

5) The function in { } in the right-hand side is a B-measurable function of s independent of
the special choice of the system {cs}; ——see Lemma 1 (§2).

6 See [1], §15.

“) p. d.=positive definite.
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1.5. (9%, U@ k=1, ..., nla), are mutually unitary equivalent for any
a; while, if axB, {9}, UG} and (D}, UQ)} are not mutually unitary equiva-
lent for any k and j.

1.6. Every irreducible unitary representation of G is unitary equivalent to
one of the above stated types. Consequently any normal elementary p. d. func-
tion on G is expressible in the form (1.7) or (1.9).

THEOREM 2. Let ¢ be the Haar measure on the compact group K and p be
a measure on T such that o(T)< oo, and define the unitary operator U(g).
SEG, in the Hilbert space I’=IL*KxT, ¢&p)® by

Ulg)fb, 1) = Ulxa)f(b, 1) = ({sn. £, x)/f(ba, 1) (fELY)
for g=xa.
2.1. Let &, v=1,...,NR) (£0); A=1,2,..., be subsets of T such
that p(4) >0, and D& be the totality of functions ¢(b, t) on KX 45 of the form:
eb, )= 2 Dlusnrs, (0)eT(t) (convergence in LF)

Ale, m)=x 7

where

3} S, 1€ OF dot) < o

Ma,m)=1 3
Then W is a closed linear subspace of L invariant under U(g), g€ G.

2.2, Let{fi'Mt)/j=1,...,na); Ma,m)=4; p=1,..., NQ); A=1,
2, ...} be a sequence of functions satisfying:

1°) EE DI RUL O dp(d) < o0,

v Me,mp=k g \_‘

2°) > Zlf“'”(t)!2>0for p—a. a. t€L,  (a. a.= almost all),

(¢, m)=2

3°) for any fixed A, there is no function ¢ (t) for v as follows:
F3HE) = g () Y)Y for all § and all {a, m) (Ma, m) =4) for p—a.
a. tEAvnA»' ’

and put
b, )= 20 D et (B) ) (convergence in L7).

Aa,mi=) 2

Put N = §¢ (definzd in Theorem 1.4) for v=1, ..., N(a) (£ ) and define
unitary operators U(g), EG, by (1.8) and let {&%;/j=1, ..., n(a); v=1, ..
N'a), a=1,2,...} be a sequence as follows:

4°) 2221,»,1 < oo,

8 4 Xp denotes the product measure of s and p.
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5°) Ej]?éfji2>0 for any a and v,
6°)  for any fixed a, there is no constant y. for vxv' such that &3;
=nwéuj for any j;
and put
Ry (b) = EE»,uu(b)

Let {A) and {a) be subsequences of the sequence {1, 2, . . .} and define the uni-
tary representation {9, U(g)} of G as the direct sum;

(L10) {5, U@} =[ BB, vl e[ DD, Ue)]

and put
(1.11) S= ZEfv +22m

QY v

Then {9, U(g), f°} is a cyclic unitary representation of G, the corresponding
p. d. function ¥(g) is expressible as follows:

¥(g) =¥(xa)
=S3f,d0f{ S Srr@nkn

Oy AMa, m)=x(3, V=X sk
(1.12) ) B
x (s, 7, x)zu.vm+r,i(Cs)i‘ij(a)uzv,+r,k(cs)ds
+ 2)22:3}53:%1'(0).
@Y vo4j

2.3. If we veplace u%,+,;(b) in the definition of T in 2.1 by u%,+p,5(b)
and DY in 2.2 by 9 where p may depend on v and 1=MNa, m), and k—on «
and v, then we obtain a cyclic unitary representation of G which is uniiary
equivalent to the original ona.

2.4. Every cyclic unitary representation of G is unitary equivalent to that
of above stated type, and any p. d. funciion on G is expressible in the form
(1.12).

TreoreM 3. (Generalization of Bochner’s theorem) Amny p. d. function
¥(g) on G is expressible by means of normal elementary p. d. functions in the
following form:

g =328 wwn@ﬂ+22fm@

x=1v=1 o Pyt

where 0)(g, ) and 0:(g) are normal elzmentary p. d. functions (cf. (1.7), (1.9)
and (1.12)), £LCT and &, 7920, Z‘J,‘;p(dC)< oo, Zn$< oo,

We shall prove these theorems in § 4 by making use of results of §§2 and 3.
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Remark. The argument in this paper may be applied to any Lie group G
of the following type: G has a closed normal subgroup V isomorphic to a vector
group and the factor group G/V is compact.

§2. Unitary representations of G in L*(K). We fix an element t,&T
and denote (s, %, ) by (s, x) briefly, and define unitary operators U(g), g
€6, in the Hilbert space L(K) as follows:

U(g)f(b) = Ulxa)f(b) = (s5, x)f(ba) (feL*(K)) for g=uxa.

We shall use notations defined in §1, but, in this paragraph, (.,.) and [l.}|!
denote respectively the inner product and the norm in L*(K).

The following lemma may be verified by making use of (1.4) and the
orthogonality-relation of the system {#p,(8')} in L*(K').

LemMA 1. For any a<K and any s€S, it holds that
{ #1000 U g WVl

[2ui\’r,,.w,j(cs)uifi(a)ui,.v,,.+r(cs_1)/ﬁ(/1(a, m))

l if Ma, m)=A3B, 1) and p=gq,
0

if not;

and consequently, for any a, the function of the form in the right-hand side of
above equality is a B-measurable function of s independent of the special choice
of the system {cs} (see §1).

Next, if we put 9= {U(g)f / €9}, gEG}], then we have

LEMMA 2. If Axu or pxq, then Dy and O are mutually orthogonal in
L(K).

Proof. 1t is sufficient to prove that (U(g)¢, ¢) =0 for any ¢E9s, D%
and any geG. ¢, ¢ and g are expressible in the form:

aqlll o 8l 3
¢= 2 238 "uSeni, o= 2 Dktiqr, &= xa.
Aa,m)=r AB, = k

Hence we have

(Ug)e, ¢) = (55, 2)¢(ba)pB)ab

=S (s, x)dsS ,¢(Vesa)(Bes)db =0
S K

by (1.2) and Lemma 1, q.e.d.

COROLLARY. 9} =9} consequently 9 is a subspace of L*(K) invariant
under Ulg), gEG.
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This fact is proved from (1.5) and Lemma 2.

LemMma 3. For any given A end p, we fix a couple {a, m> such that i(a,
m) =2 and put k= Nnla)+p. If ¢ED; and if the p. d. function (U(g)¢, ¢)*
on G is a minorant'® of the p. d. function (U\g)uix, uir), then ¢ = fuip, & be-
ing a complex number.

Proof. By the assumption and by Corollary. of Lemma 2, there exists an
element ¢ €9, such that

(2.1) (U(g)¢, ¢)+ (U@, ¢) = (Ul ulk, uir).

especially, putting g=«¢ €K, we have

~

{ etbarg(Bias + { #(ba)ib)db = utn(a) /n(a).

Each term of the left-hand side is p. d. function of ¢(&K), while #i(a) is an
elementary . d. function on K. Hence we have'’

{ £(ba)¢(B)db = yuts(a)/na)
(2.2) 0<9p<1.

On the other hand, ¢ is expressible in the form:

23,3 .
¢ = >3 > UNy+5,7 -
2B, Li=h g

Hence it follows from the orthogonality-relation of {z}(d)} that

stﬁ(ba){n??)dh S e uii(a)/ n(B).

AR =N iy

From this equality and (2.2), we get

A3 A

U=
S (232

877 = 9084301 (81 Kronecker's delta)
1

M3, =)
where ) means the summation for all ! such that A(8, I) =2 for fixed 8.
1

Hence ¢ may be expressible as follows:

Ala, 1)=2 Mu,L‘\:A .
12.3) ¢(b) = 2 &iulvp, (D), 2'.1 [ =
Similarly we get
9 See [11, §7.
19 See [1], § 11; — of couse, we do not mean the trivial one: the function identically egual

to zero.
i) See Theorem 7 in [1].
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AMe, =X AMa, =2

(2.3) o(b) = 2 not+p, k(D). 2"‘ lml* =1 — .
Consequently

Aa, =2 X
(2.4) > {lalP+ il =1,

1

If we put g=x€V in (2.1), we have (by (1.2))

Ss(s, x)dsSK,lwb'cs)de' + Ss(s, x)dsSK,w(b'cs)de'

— L ! 2 950
—Ss(s, x)dsSK,]ukk(b ¢s)|’db'.

Since ¢(b) and ¢(d) are continuous by (2.3) and (2.3'), and since x(&EV) is
arbitrary in the above equality, we obtain for any s€S

SK,Igo(b’cs)lzdb’ + SK,lgb(b'cs)lzdb' = SK,iuik(b’C)lzdb’.
Putting s =se (whence we may put ¢s=e) in this equality, we have
(2.5) {lenray +{ low)rae = lusu@)ay
= fipp(e)/7(R) % 0.
By (1.3) and by the assumption: k= Nu(a) + p,
un+p,k0') =0 on K' for Ixm.
Hence, from (2.3), (2,3') and (2.5), we get

I‘Smlz + [ﬂmlz =1.

From this and (2.4), we obtain &= =0 for /= m, and hence ¢ = &,u%,,+», ¢ by
(2.3), q.ed.

LEMMA 4. Let a, m and k be as in Lemma 3 for any given A and p. Then
{95, U(Q), uir) is a cyclic unitary representation of G.

Proof. For any B, [ and any 4, j (1=, j=n(B)) it holds that
Waiiep, i ELLT (@) tv0,7 | aSK(CTG)}]

by the irreducibility of U?(a) as a representation of K. By virtue of this fact
and Corollary of Lemma 2, it suffices to prove that A(j3, 1) =4 implies

(2.6) wnp €U Ui | =1, ..., nla); geG}].

Now, if A(B, 1) =2 = 2(a, m), then, by Lemma 1, the functions ¢;(s) (j:=1,
., #(a)) defined by
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¢i(s) =7 )S 5,1 (05) i, 5B
= 2 u?\'ﬁq, 1(Cs)u;, _'\'m+q(Cs_J)
q

are bounded B-measurable functions on S and it holds for any » (1<7<7%(1))
and any s&S that

DU, i(€)0i(8) = 222 Uk, i(€5) %], voprq(€5 ) Uy q,1(cs)
7 q 2

= Euf‘:'mr, Nm+f1(e)ug‘z+q.1(cs) = ug’wr, es).
q
Hence, by means of the relation: #%.p, x+q(0') = #pg(b') = USms, ¥msa(b'), We get
(for b=">b'cs)

u?v”p, 1(b) = Zug; +D, ;\'1+r(b')u.grl+r, I(Cs)

r

= Zuf\'m+f), Nm+r(b')u?\'m+r,j(cs)‘,pj(3) = %_.‘u%»,,.w,j(b)%(s).
r

On the other hand, there exist complex numbers &, and elements xj, of V (»
=1,..., N()) for any ¢>0 and every j such that

~

\q[ﬁf’j(s) ~ 23550 (s, x5)%ds <&/nla)?,
since ¢;(s), j=1, ..., n{a), are bounded and B-measurable on S. Therefore,
by simple calculation, we get

odleyip, 1 — g EnU(x7,)* timep, il <e.
J

This result shows (2.6), g.e.d.

ProposiTiON 1. {9}, U(@)} is an irreducible unitary representation of G
for any X and p (1=p=n(1)).

This proposition is clear by Corollary of Lemma 2, Lemmas 3 and 4, and
Theorem 7 in [1].

CorOLLARY. 1) If a unitary operator U in 9} is permutable with any U(g),
G, then U=£1, |2l =1; consequently i) If ©, ¢ €9} and (U(g)e, @) = (U(g)¢,
¢) for any g=G, then ¢ =8y, 2] =1.

These are immediate results of Proposition 1.

PROPOSITION 2. For any fixed 1, the unitary representations {95, U(2)}, p
=1, ..., %), are mutually unitary equivalent.

Proof. We fix a couple {a, m> such that A(a, m) =2. Then {93, Ulg),
Ukmipt)s D=1, ..., 7(2), are cyclic unitary representations of G (by Lemma
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4). Hence it is sufficient to prove that p. d. functions (U(@)#%+p,1, #Nm+p,1)s D
=1,..., 7%(2), are mutually ider*ical. For any g=2xa€G, we have by (1.2)
and Lemma 1

(U(Q) Ufr 5,15 Umrp,1) = gg( s, x)ds \.K'u}"ﬁ 2. 1(8C5@) Ui p,1(B'Cs) AV

= Sq(s, x) {E Wmra, (e ufi{@)ul, ‘\-,,,w(cs")/ﬁ(/l)}ds ;

this is independent of », g.e.d.

PROPOSITION 3. If A% p, then the unitary represemtations (), Ulg)} and
{94, Ulg)} are not mutually unitarv equivalent for any p and q.

Proof. By Proposition 2, it suffices to prove this for p=¢g=1. We denote
the operator Ulg) considered in 9} and 9 by U.(g) and U:(g) respectively.
If {9}, Ui(@)} is unitary equivalent to {D¥, U:(g)}, then there exists a unitary
transformation U of 9] onto 9 such that Uxg)=U-Uig)U'. We fix a
couple <a, mY such that ila, m) = 4, and put k&= Nm(a)+1. Then ui:ED: and

f=U-ulrE9". The element f is expressible in the form: f= > 2&Yul17,
AB, =@ 2

and hence for any ¢ €K'
(Uaf, N = 3 Sefeluli(a)/n(B)
Beli=y g
=DNab(a@) D idls/n(B)  (by (1.3)).
124 AMB, b =p

On the other hand
(e, /)= (U-U(a) UY, 1)
= (U@ ke, uie) = #n(a’)/n(a).

This is a contradiction, because A % x implies that #h(a’) and #i(a’) are mutu-
ally orthogonal in L*K') for any p and g, q.e.d.

§ 3. Unitary representations of G in L'(Kx 7T, ¢®p). Let 4 be a subset
of T and Di}(4) be the totality of functions ¢(b, t)EL* = L(Kx 4, ¢ ®p) of the
form

e(b, 1) = 20 Dtknesi(D)ORN(E), EESAI¢ZS"(t)|2dp(t)<oo.

Ma,m)=XA 3
We may prove easily the following

LeEMMA 5. Any function ¢(b, ) ELXKXT, ¢ Qp) is uniquely expressible in
the form:

(3.1)  ¢(b, =221 D) D Uimeri(D)¢E(t)  (convergence in L*)

koD Ma,mi=p g
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where
(3.2) o) = | _¢(b, Yuip, i (BVaD;
and consequently

(3.3) 3B 5 S| e mla = e, Hltdwd),

nop Ma,m)=u 4

Prorosition 4. My(4) is a closed linear subspace of IX(Kx T, a & p) invari-
ant under Ulg), g€ G, defincd in Theorem 2.1.

It is clear from the definition of U1g) and by Lemma 2 that MH(4) is a
linear subspace of L(K X T, s& p) invariant under U(g), g&G. The closedness
of MH(4) may be proved by virtue of Lemma 4.

Thus {Mp(d), T(Q)}, p=1,..., #A); A=1,2, ..., may be considered
as unitary represen:ations of G.

LemMMA 6. If L€M), fLEWMY(L) and if p. d. functions (U(Q)f1, f1)
and (U(Q)fs, f») kave a common minorant,” then there exist a Borel set 4,C 4,
N4> such that p(4y)>0 and a B-measurable function o(t) defined on 4y such
that 0<|w(t)l < o and fi(b, t) =w(t)falb, t) for 6—a. a. bBEK for p—a. a. t
E dy; consequently 2 = p.

Froof. Let ¥(g) be a common minorant of (U(2)f1, f1) and (U(Q)fs, fo.
Then, by Theorem 5 in [1], ¥(g) is expressible as follows:

(3.4) Yig) = (U(g)¢y, ¢1) = (U(g)</12, ¢, ¢1egﬁ}\;(dl), ¢2E€IR§§(AZ);

furthermore there exist ¢, &M3(4;) and @, M4(4:) such that
o (Cobe 2, 9055, £, 0V/.(ba, 1V/(b, )dbdp(t)
(3.3) = [ Cso, 9, (s, £, 2)uba, D45, ) +

+ (sp, £, x)¢,(ba, )¢, (b, £)}dbdp(), v=1, 2,

for any », x€V and ¢€K (we put f(b, ) =0 on KX (T —4,) for any function
€Mp(4.)). For any Borel set 4C T, the characteristic function of the set K X
may be approximated in IX(KX T, ¢ & p) by means of linear combinations of
“characters” ({ss, ¢>. ¥). Hence (3.5) implies that

{ (<o, 9, 2)1.(ba, 01700, Db
(3.6) B
= [ (Koo, £, 200 (ba, D98, Db +

12) See the foot-note 10).
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+SK(<SI;, 5, 2o, (ba, )¢, (b, t)db, v=1, 2,

for any ¥x&€V, and a€K, for p—a. a. tE__T where V, and K, are dense subsets

of V and K respectively such that V,= ﬁo = &,; and hence, by Lebesgue’s con-
vergence theorem, (3.6) is true for any x€V and e€K for p—a. a. t&T.
Similar argument shows that (3.4) implies

SK«sb, >, £)¢u(ba, 1)gi(b, t)db

(3.7) o
= gK(<8b, Y. 2)a(ba, 1)da(b, t)db

for p—a. a. t€T. Each term in (3.6) and (3.7) expresses a p. d. function of
g=xa; especially the left-hand side of (3.6) expresses an elementary p. d.
function corresponding to the irreducible unitary representation {9}, U:(g)} or
{94, Ui(g)} stated in §2 if » =1 or » =2 respectively. Hence, by Theorem 7 in
[11, there exists a function wy(?) =0 such that

{ (s, 1, 2Vi(ba, DA, Db

=(¢)o(t)SK(<Sb, £, 2)f:(ba, t)f2(b, t)db
for any ¥ €V and a€ K for a. a. t€ T, and hence, by Proposition 3 and Corol-
lary of Proposition 1, we obtain that A = z# and that
f1(b, t) =w(t)f2(b, t) for o—a. a. b
for p—a. a. t for a certain w(#) (lw()[* = w,(¢)), which is B-measurable in ¢ by
Fubini’s theorem. If we put

do= {t/ (d9s(0, D= _lgu(o, P50} (see (3.7)),

then we may easily show that the set 4, and the function w(t), considered on
4y, have the properties stated in Lemma 6, g.e.d.

PRrOPOSITION 5. The unitary representations {My(4), Ulg)} and {M)(4),
U(g)} are mutually unitary equivalent for any p and q (1<, g=n(2)).

This fact is easily verified from the definition of M}(4) and by Propo-
sition 2.

PROPOSITION 6. If A3y, then, for any b, q, any 4i, 4, and any {LEMS(4,)
and €W (L), the p. d. functions (Ul(g)f1, f1) and (U(Q)fs, f2) arec mutually
disjoint®

%) See [17, §12.
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This proposition is evident by Lemma 6, Proposition 5 and the definition
of My(4).

PROPOSITION 7. Assume that LEWMy(4) and foEMp(4:). In order that the
b. d. functions (U()f1, f1) and (U(Q)f, f2) are not mutually disjoint, it is
necessary and sufficient that there exist a Borel set 4C 41\ 4> such that p(4)
>0 and a B-measurable function o(t) defined on 4 such that 0<|w(t)| < > and
that (b, 1) = w(t)fa(b, 1) for 6—a. a. bEK for p—a. a. tE 4.

Proof. The necessity is clear by Lemma 6.
To prove the sufficiency, we put w;(¢) =min{1, |w(¢)|} on 4 and define
{an(t)fl(b, t) on KX,

f(b, t) =
on KX (T-4).

Then we may prove that f&M(4) CTM(4,) NME(4,) and that p. d. function
(U(g)/, f) is a common minorant of (U(g)f1, 1) and (U(Q)fe, f2), q.e.d.

PrROPOSITION 8. In order for {My(4), U(g), f} (f=£(b, t)EMi(4)) to be
a cyclic unitary representation of G, it is necessary and sufficient that f(b, t)
#0 as an element of O CLX(K)) for p—a. a. tE 4.

Proof. The necessity is clear by the definition of U(g).
We shall prove the sufficiency. Put

W =LL{U(g)f /| g€G}]
and let ¢ be any element of MH(4)OV'. Then

SK ({sp, 9, x)f(ba, t)m?dbdp(t) =0 for any x and a.
XA

By the similar argument as in the proof of Lemma 6, it follows from the above
equality that

SK(<S[;, >, x)f(ba, )¢(b, t)db=0 for any x and a

for p--a. a. tE4. Since the unitary representation {9}, U:(£)} is irreducible
for any t (Proposition 1) and since f%0 in 9} for p—a. a. tE4 by the as-
sumption, we get ¢(b, t) =0 in 9, for p—a. a, tE 4, and hence ¢(b, t) =0 in
Mp(4). Thus we obtain M =Mp(4), g.e.d.

§4. Proof of Theorems. Throughout this paragraph, we notice that the
spaec M defined in Theorem 2 is identical with the space MM (4) in the no-
tation stated in §3 for any 4 and ».

Theorems 1.1 and 1.2 have been proved in §2——the formula (1.7) may
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be shown by calculating @#(g) = (U(g), 1), f= > kzéfmuf{-mm,j. Theorems
2

e, m)=

1.4 and 1.5 are evident from the fact G/V=K and by Peter-Weyl’s theory.
(Theorem 1.3 shall be proved after the proof of Theorems 2.1-—2.3,)

Next, let Mi and /2 (p=1,..., N(A); 1=1,2,...) be as stated in Theo-
rem 2. Theorem 2.1 have been proved in §3 (Proposition 4). By the con-
ditions 1°) and 2°), we have €M and Fi(b, )0 in HI(CL(K)) for p—a.
a. t€4). Hence the unitary representation {I., U(g), /i) is cyclic by Propo-
sition 8 for every A and ». The p. d. functions (U(g)f 2, /), v=1,2, ..., are
mutually disjoint from the condition 3°) and by Proposition 7. Hence, by Theo-
rem 8 in [1], the direct sum {G?SD?C, Ulg), 1, f‘zgf\f, is a cyclic unitary

representation of G. We may further show by Proposition 6 that the p. d. func-
tions (U(g)*, /) and (U(@)f*, f*) are mutually disjoint for A% Similar ar-
gument is possible for (N}, U@}, v=1,..., N a); a=1,2,... . There-
fore, by the same argument as in the proof of Theorem 2 in [2], we may
prove that the unitary representation {9, U(g), ;°} stated in Theorem 2.2 is
cyclic. The formula (1.12) may be verified by calculating #(g) = (U(g)f", /).
Theorem 2.2 is thus proved. Theorem 2.3 may be seen by Proposition 5.

We now prove Theorem 1.3. If {9}, Uy(&)} and {9}, Un(g)} (fix1) are
mutually unitary equivalent, there exist fi€ 9} and /€ 9; such that (U.,(g)f1,
1) = (Ui, @)f2, f2) for any g€G, and hence the direct sum {9,®H;, Ulg), fi
+ 12} (Ulg) = U (g) ® Us,(g)) is not cyclic by Theorem 8 in [1]. But we may
prove by means of Theorems 2.2 and 2.3 verified above tha: {9, D%, Ui g), fr
+/2} is a cyclic unitary representation of G. That is a contradiction.

In order to prove Theorems 1.6 and 2.4, we first modify Lemma 2 in [2]
to the following form:

LemMa 7. Let X, S, T and K be as stated in §1 and F(.1) (1CX=SxT)
bz a measure on X such that F(X)< «, and assumz tha! there exists a non-
negative function ula; ?) on Kx X, measurable in {a, 1) and summable on X
with respect to F for every aE K, such that

(4.1) F.1a) =§ wla; DAFX) (da={1a] 1€ 4})

for any ACX and any acK. Then there exist a nen-negative B-mezasurable
Junction w(s. t) on X=SxT and a measure o(d) on T, p\T) < oo, such that

(4.2) F(.1) =S wl(s, Hdsdp(t) for any ACK,
A

ds being the invariant measure on S defined in § 1.

Proof. We put B, ={£b, t)/<sp, t>EMCKXT (see §1) for any ACX
=Sx T. and define a measure F*(8) on Kx 7 by the formula:
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(4.3) SK ¢(b, DAF*(b, 1) = [ s, t)SK,sc(b'cs,t)db' (see §1)

for any continuous function ¢(b, t) on Kx T with compact carrier. Then we
have

(4.4) F¥(B,)=F(1) for any ACX,

and (4.1) implies

F*(Ba):-SBu*(a; b, YAF* (b, t) (Ba={<{ba, t>]<{b, t>EB)})

where #*(a; b. ) =ula; {sp, 1>) is non-negative, B-measurable in <a, b, t> and
summable (in <5, t>) on KX T with respect to F* for any a€K. Therefore,
by the same argument as the proof of Lemma 2 in [2], we may show that
there exist a non-negative B-measurable function w*(s, ) on Kx T and a meas-
ure p on T, p(T)< =, such that

F*(B) ={ o(b, Ddbdptt) for any BCKXT.

Hence we obtain from (4.4), (1.2) and by simple calculation that

K

FC.1) =S dsdp(t)S " (Wes, t)db'  for any ACXK,

and hence we get (4.2) by putting w(s, ¢) = Sl(,w*(b'&, tYdb, q.e.d.

Hereafter the indices j and 2 may run over all natural numbers, not fol-
lowing after the rule defined in §1.

Now let {9, Ulg), f°} be a cyclic unitary representation of G. Then, mak-
ing use of Lemma 7, we can achieve the same argument as in [2]——from the
beginning of §3 (p. 6) to L. 14 in p. 10—, and obtain the following result:

{9, Ulg); =4N, Ug)Y& M, Ulg)}; (N, Ulg)} is equivalent to a cyclic uni-
tary representation of the group K(=G, V), and {M, Ulg)} is given as follows:
there exists a unitary space 9o of all sequences of complex numbers: (&, ...,

=]
2.}, n< o, such that [&]°=>)122< « (§f n= %), and exists a matrix of func-
2=1

tions M(a; s, t) =luj(a; s, t) whose elements ujrla; s, t) (7, k=1,..., n)
are B-measurable in <a, s, t); and every &M is realized as a Hy-valued func-
tion £(s, #) ={/fi(s, t), . . ., fuls, 1)} defined on X=Sx T, and f~f£(s, H)* im-
plies that

'ééfi}2=SM£;f(s, D dsdp(t) (s, DIF=201£(s, 0P,
X 2

Ulx)f~ (s, t>, x)f(s, t) for any x€EYV,
Ule)f~M(a; s, t)f(sa, t) for any a€K;

) f~f(s, £) means that f is realized as f(s, ).
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o being a measure on T such that p(7T) < o (obtaind from Lemma 7).
Next, for any B-measurable function f(s, ) on SX T, we define a function
S¥(b, 1) on KxT by

b, t) = f(sp, t)
and put M*%(a; b, t) =lluk(a; b, D|l. Then, as is easily seen, the above result

concerning {M, U(g)} is translated into the following form: every fEM is real-
ized as a Dy-valued function £(b, ¢) defined on Kx T and f~f(d, #) implies that

IrlE = 3 |I£Cb, t)li*dbdo(t),
KxT
U(x)f~ (s, 2, x)(b, t) for any xEV,
Ula)f~M*(a;b, t)f(ba, t) for any a€EK;
moreover, if M*(a; b, t) = M>*(a; b, t) as operators in M, then Mi*(a; bc, ¢)
=M+ (a; bc, t) in the same sense for any c€ K——see p. 10 in [2].

Starting from this result, we can achieve the similar argument to that in
(2]——from p. 10, L. 15 to p. 11, L. 15.”® Thus M may be realized as a sub-
space of the direct sum of at most countable number of LZ(Kx T, ¢®p), and
F~{gu(0, )} ={¢u(d, t), ¢o(b, t), . . .} implies

|lf|!2=ﬁs ¢ (8, 8)’dbdp(t), n< oo,

v=1J KxT

U(x)f ~{(Kss, >, x)¢.(b, 1)} for any =x€EV,
Ula)f ~{¢.(ba, t)} for any a€EK.

@ A\
Since LK X T, ¢ ®p) =@6519R},(T) by Lemma 5 and Proposition 4 (§3), it fol-
LAY

lows that M may be expressible in the form:

N

o n()) a(,p)
M=DD D My (#(4 p)£ ), MCMHT) for any »,

p=1 v

and every Mi; is a closed linear subspace of M invariant under U(g), gEG6.
Put

=f+h fEM and heEDN,
and
F=225 0, e, (CTMHT)).
v v
Then {M, Ulg), f} is——and consequently every {Mis, U(Q), fis} is a cyclic
unitary representation of G. We put

") Such argument is impossible without extending functions on Sx 7" to those on Kx 7T as
stated above. The auathor owes to Mr. S. Murakami’s suggestion for this improvement.
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Ly={t / {720, D=0} ().

Then {5, U(), fis} is cyclic if and only if M)y =M}(4,) by Proposition 8.
We may consider by Proposition 5 that M, =MI(4) and fEMN(4)). Ex-
changing indices, we denote for any 2

4 and £, v=1...,NQ (=w)
instead of
45 and [y,
v=1..., 04 p) (x); p=1..., 741k (<x);

and put M) =Mi(L). Then we may consider that

N(

4.5) o, gy =B S, v, r=TS1,

A=1vy=1
and
ems), rib, )£0 in 9} for p—a. a te4d.
Hence

b, )= 2 Ag}u_“\‘v,,,ﬂ,j(b)fﬁ,""(t) (convergence in LXKxT, ¢®p))

Ma, m)=

for any 4 and » where the series of functions

{,,,,./i=1,...,nu);x<a,m>=x; }
Yl y=1,..., NQ); A=1,2,...

satisfies the conditions 1°) and 2°) in Theorem 2.2. Since {IM, U(g), f} is cy-
clic, it follows from (4.5) and by Theorem 8 in [1] that p. d. functions (U(g)f3,
N, v=1,..., NQA), A=1, 2,..., are mutually disjoint. IHence the series
{f"} satisfies the condition 3°) by Propositions 6 and 7. Therefore {It, U(g),
f} must be of form stated in Theorem 2.2. Similar argument may be achieved
for {M, U(g), h}. Consequenily we obtain (1.10), (1.11) and (1.12) by simple
calculations. Theorem 2.4 is thus proved.

Next, assume that the cyclic unitary representation {9, U(g), f°} is irre-
ducible. (Notice that any irreducible representation is cyclic.) Then only one
couple <1, »» or {a, »» may be appear in (1.10). In the case {9, U(g)}={M},
U(g)}, by the irreducibility, there exists a point t,& T such that p(T — {%}) = 0.
Hence {9, U(g)} must be of the form stated in Theorem 1.1 or 1.4. Thus we
obtain Theorem 1.6.

Finally, Theorem 3 is easily seen from Theorems 1 and 2.
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