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Abstract

We give a diagrammatic presentation for the category of Soergel bimodules for the

dihedral group W . The (two-colored) Temperley–Lieb category is embedded inside

this category as the degree 0 morphisms between color-alternating objects. The

indecomposable Soergel bimodules are the images of Jones–Wenzl projectors. When

W is infinite, the parameter q of the Temperley–Lieb algebra may be generic, yielding a

quantum version of the geometric Satake equivalence for sl2. When W is finite, q must

be specialized to an appropriate root of unity, and the negligible Jones–Wenzl projector

yields the Soergel bimodule for the longest element of W .

1. Introduction

1.1 Overview

Let (W,S) be any Coxeter group, and let H = HW be its associated Hecke algebra. Kazhdan

and Lusztig [KL79] introduced a particular basis of H, now known as the Kazhdan–Lusztig

(KL) basis. This basis was conjectured to have certain positivity properties. One way to prove

this positivity would be to construct an additive monoidal category whose Grothendieck ring

is isomorphic to H, and whose indecomposable objects descend to the KL basis. When W is a

Weyl group, Kazhdan and Lusztig [KL80] constructed such a categorification using geometric

techniques, by considering perverse sheaves on the flag variety. Similar methods can be used for

other crystallographic Coxeter groups [Här99], but for a general Coxeter group there are as yet

no geometric tools available.

In the early 1990s, Soergel constructed an algebraic categorification of the Hecke algebra,

using certain bimodules over the coordinate ring R of the reflection representation of W . These

bimodules, now called Soergel bimodules, can be defined for any Coxeter group, and can be

studied using combinatorial and algebraic methods. When W is a Weyl group, the category of

Soergel bimodules agrees with the (equivariant) hypercohomology of the perverse sheaves used in

the categorification of Kazhdan and Lusztig, and thus geometric techniques can be used to study

Soergel bimodules as well. Soergel conjectured that the indecomposable Soergel bimodules should

descend to the KL basis, when defined over a field of characteristic zero, though in the absence of

geometric tools there is no a priori reason this should be true. This conjecture was recently proven

by the author and Williamson in [EW14]. We refer the reader to [Soe07] for a purely algebraic

account of Soergel bimodules, and to numerous other papers [Soe90, Soe92, Soe97, Soe00] for

the complete story.
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In this paper we study Soergel bimodules for dihedral groups in great detail, and present
several new results. An arbitrary Coxeter group is in some sense built out of dihedral groups,
so this is an appropriate place to begin. The Kazhdan–Lusztig theory of dihedral groups is well
understood: Soergel himself proved that the indecomposable Soergel bimodules descend to the
KL basis (under certain assumptions). Perhaps because of the simplicity of dihedral groups, there
are few resources available for their study. Our priority in this paper is to provide a thorough
discussion and understanding of dihedral groups. This paper will be a springboard for future
works, including several in progress by the author and Williamson.

1.2 Soergel bimodules and Bott–Samelson bimodules
To ease the introduction, we postpone some of the subtleties to the next subsection. For now,
let us define h to be the reflection representation of W over R, as defined, say, in [Hum90]. Soon
we will allow other similar representations, called realizations, to take the place of h.

Let R be the symmetric algebra of h, graded with linear terms in degree 2. It is equipped
with an action of W , and therefore an action of each simple reflection s ∈ S. Let Rs denote the
subring of s-invariants. We define a graded R bimodule by

Bs
def
= R⊗Rs R(1)

where (1) denotes a grading shift. Tensor products of the bimodules Bs for various s ∈ S
are known as Bott–Samelson bimodules, and they form a monoidal category BSBim. By
definition, a Soergel bimodule is an element of the graded, additive, Karoubian category SBim
generated by the Bott–Samelson bimodules. Concretely, an indecomposable Soergel bimodule is
an indecomposable summand of a Bott–Samelson bimodule.

Soergel has proven that there is an indecomposable bimodule Bw for w ∈W , appearing as a
direct summand (with multiplicity one) inside

Bw
⊕
⊂ Bs1 ⊗ · · · ⊗Bsd

when s1 · · · sd is a reduced expression for w. Up to grading shift, these indecomposable bimodules
{Bw}w∈W form a complete list of non-isomorphic indecomposable objects. The Grothendieck
group of SBim is isomorphic to the Hecke algebra of W . Soergel also gave a formula for the
graded dimensions of morphism spaces between Soergel bimodules. These results are collectively
packaged as the Soergel categorification theorem (SCT). In fact, Soergel proved the SCT for
representations h which are ‘reflection faithful’, a class of representations which need not include
the reflection representation. Libedinsky [Lib08] showed that the SCT holds for the reflection
representation regardless. Remember that the SCT does not entail the stronger statement known
as the Soergel conjecture, saying that the indecomposable bimodules descend in the Grothendieck
group to the KL basis.

The primary result of this paper is a presentation of the morphisms in the category BSBim
by generators and relations, in the case when W is a dihedral group. That is, we define a
monoidal category D by generators and relations, whose morphisms are linear combinations of
planar diagrams. We construct a monoidal functor D → BSBim, and prove that the functor
is an equivalence. We also give an explicit description of the idempotents which pick out each
indecomposable Bw, thus implying the SCT and the Soergel conjecture.

Let S = {s, t} be the set of simple reflections, and m = ms,t be the order of st. The same
presentation has been given before by Libedinsky [Lib10] for the right-angled cases m = 2,∞. His
work is complementary, as he does not discuss idempotents or connections to the Temperley–Lieb
algebra (see below), and his proofs are entirely different.
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A morphism in D will be represented by a graph with boundary, properly embedded in the
planar strip R×[0, 1]. The edges of this graph are labeled by elements of S, which we call ‘colors’.
The only vertices appearing are univalent vertices, trivalent vertices joining three edges of the
same color, and, if m is finite, vertices of valence 2m whose edge labels alternate between the
two colors. We call these Soergel graphs. A number of relations are placed on Soergel graphs,
which (after some abstraction) can be represented in a way independent of m (when m is finite).

A more significant goal would be to find a diagrammatic presentation for BSBim in the
case of an arbitrary Coxeter group. For type A, the presentation was found by the author and
Khovanov in [EK10]. The general case is accomplished in forthcoming work by the author and
Williamson [EW13], which relies heavily on this paper. The form of the presentation is revealing.
There is one generating object for each s ∈ S, or more verbosely, for each rank-1 finitary parabolic
subgroup. The generating morphisms are associated to finitary subgroups of rank 1 (univalent
and trivalent vertices) and rank 2 (2m-valent vertices), and the relations are associated to finitary
subgroups of rank less than or equal to 3. This paper tackles the generators and relations of rank
up to 2.

Having a diagrammatic presentation in type A has led the author to numerous other results,
such as:

– categorifications of induced trivial modules [Eli10a];

– a ‘thick calculus’ for partial idempotent completions [Eli10a];

– a categorification of the Temperley–Lieb quotient of H [Eli10b];

– a conjectural presentation of the 2-category of singular Soergel bimodules, jointly with
Williamson.

The dihedral analogs of these results will be proven in this paper as well. The exposition of these
results will be self-contained, so the reader will not need to consult these other works. The final
result, a presentation of singular Soergel bimodules, is essential to this work, and is described
in full detail. The remaining proofs are only sketched, but the details are easy to fill in after
consulting the other papers.

1.3 Diagrams are better than bimodules
A realization of a Coxeter group W is a certain kind of representation h of W over some
commutative base ring k, equipped with a choice of simple roots and coroots. For example,
the reflection representation yields a faithful realization over R. However, k can be an arbitrary
commutative ring, and the realization need not be faithful. One of our goals in this paper is to
extend ‘the study of Soergel bimodules’ to arbitrary realizations (caveat: satisfying very minor
assumptions).

Here is a crucial example to keep in mind. Let W be the infinite dihedral group. In this case,
the additive category of Soergel bimodules for the reflection representation over R is equivalent
to some additive category of semisimple equivariant perverse sheaves on a Kac–Moody group,
and both categorify the Hecke algebra of W . Suppose that we work instead over a field of finite
characteristic. The appropriate geometric object of study is now the category of parity sheaves,
as defined in [JMW10], and it also categorifies the Hecke algebra of W . On the other hand,
the reflection representation itself now factors through a finite dihedral quotient W → Wm, and
the algebraically-defined Soergel bimodule category only depends on the representation (not the
additional choices of roots and coroots). By Soergel’s results, one expects SBim to categorify
the Hecke algebra of Wm instead. To give a morphism-theoretic statement, there is an extra
morphism Bs ⊗ Bt ⊗ · · · → Bt ⊗ Bs ⊗ · · · between the Bott–Samelson bimodules for the two
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reduced expressions of the longest element of Wm; there is no corresponding morphism between

parity sheaves. The category SBim is no longer the correct object of study for W ; in general,

the SCT could not possibly hold for a realization of W which factors through a (non-trivial)

quotient Coxeter group.

However, the category D (which depends on the realization, not just the representation) is a

more natural object of study for degenerate realizations where BSBim does not behave well. For

crystallographic Coxeter groups, D will be equivalent to the corresponding category of parity

sheaves. The appropriate analog of the SCT will hold for D even when it fails for BSBim. This

is proven in [EW13], and is an important motivation for the diagrammatic approach. In less

degenerate realizations where the categories D and BSBim are equivalent, and both satisfy the

SCT, it can still be the case that the indecomposable Soergel bimodules do not descend to

the KL basis. For instance, this occurs even for Weyl groups when the realization is defined over

a field of positive characteristic. The diagrammatic approach will allow one to study algebraically

which indecomposables have the wrong size, which idempotents are missing, and so forth (see

[Wil13]).

On a different note, the author has also constructed a quantum version of the geometric

Satake equivalence in type Ã, coming from a realization defined over Z[q±1]. The case Ã1 is

discussed in this paper.

By pairing the simple roots and coroots, one obtains the Cartan matrix of a realization (which

need not have integer coefficients). Most familiar Cartan matrices over Z have the property that

whenever mst is odd for two simple reflections s, t ∈ S, the corresponding Cartan entries ast and

ats are equal and negative (so that the angle between simple roots is obtuse). To define D in

the utmost generality, one should also consider more degenerate, ‘unbalanced’ realizations. The

author’s quantum Satake equivalence will require an unbalanced Cartan matrix over Z[q±1] in

order to study Ãn for n > 2 (although the case n = 1 is balanced). Using unbalanced Cartan

matrices adds a great deal of bookkeeping and complexity; as such, we develop this theory in

the Appendix. In the main body of the paper, we will only work with symmetric, balanced

realizations.

For a dihedral group with a balanced symmetric Cartan matrix, we write the off-diagonal

entry as −δ, living in an algebra k over the polynomial ring Z[δ] = Z[q+q−1]. The representation

will factor through the finite dihedral group Wm of size 2m precisely when the mth quantum

number, a polynomial in δ, vanishes. This is essentially the statement that q is a 2mth root of

unity, with q 6= ±1. It will be a faithful representation of Wm when q is a primitive 2mth root

of unity.

We devote a great deal of energy to defining D and discussing SBim for arbitrary realizations

of dihedral groups, and working in this natural level of generality. For this reason, this paper

is not the easiest introduction to Soergel theory in general, or to the diagrammatic style of the

results we present. The novice should perhaps begin by reading about Soergel bimodules in type

A in [EK10].

The literature about Soergel bimodules cares mostly about the reflection representation (or

similar representations), and the interesting choice in this context is what field to define the

representation over. That is, the literature phrases its results in terms of assumptions about

the base ring k, such as its characteristic. The situation in this paper is different. The properties

of D we discuss here will depend on conditions intrinsic to the realization as a whole, and not

intrinsic to the choice of base ring k. For example, one assumption we will make is that the

realization satisfies what we call Demazure surjectivity, which is to say that pairing against
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each coroot (respectively, root) is a surjective map from h∗ (respectively, h) to k. Demazure
surjectivity can always be achieved by enlarging h and h∗ without changing the Cartan matrix;
this is independent of the choice of base ring k or its characteristic.

We never assume that k has a given characteristic, or even that it is a domain. We do not
assume that the realization is faithful. However, we expect many readers to prefer domains or
faithful realizations, so we make various comments about the simplifications that occur under
these assumptions, but they are not essential. We will need to assume that the realization is
even-balanced, a technical condition discussed in the Appendix. When we go beyond the results
discussed in this introduction to define the 2-category Dm for a finite dihedral group, we will need
to assume faithfulness of the realization, though this is not required for the monoidal category D.
Whenever we discuss results which connect diagrammatic categories like D to algebraic categories
like SBim, we will need to make further assumptions on the realization in order that the algebraic
setting (e.g. SBim) is well behaved.

Let us briefly mention the division of labor and ideas between this paper and its sequel
[EW13]. This paper is based on the author’s PhD thesis [Eli11], which was mostly concerned with
faithful realizations where the Soergel conjecture holds. However, many of the technical results
necessary to study more general realizations were already present in [Eli11], needing only some
reformatting and new terminology to become more generally relevant. Thus we have reformatted
the paper, borrowing a lot of terminology from [EW13], and expanding the background section
slightly so that it contains all the results needed eventually by [EW13]. The notion of a realization
and the proper approach to studying general realizations owe a great deal to the wisdom of
Williamson. As in the original thesis, the approach taken here (to proving the SCT and the
Soergel conjecture for dihedral groups) will work only for some faithful realizations. In [EW13],
additional technology is developed to prove the SCT in the correct generality.

It is also worth mentioning that, while this paper tackles the algebraic theory of realizations,
this is not the end of the story. For example, one cannot distinguish algebraically between q+q−1

and u+u−1 for two primitive 2mth roots of unity. In a realization over R, however, the positivity
properties of quantum numbers depend strongly on the choice of primitive root of unity. These
positivity properties will play a key role in [EW14], and are discussed further in that paper.

1.4 Connections with Temperley–Lieb theory
The Temperley–Lieb category T L is a monoidal category governing the representations of the
quantum group Uq(sl2). It first appeared in [TL71], and was used for the study of subfactors by
Jones in [Jon83]. Most useful is the diagrammatic description given by Kauffman [Kau87]. Let
δ be an indeterminate. In Kauffman’s description, the objects are n ∈ N, and the morphisms
from n to m are the Z[δ]-linear span of the set of (n,m)-crossingless matchings. There are no
morphisms unless n and m have the same parity. The endomorphism ring of an object n is known
as the Temperley–Lieb algebra TLn, and is a quotient of the Hecke algebra in type An−1. See
§ 4 for more details.

It is well known that, after base change to Q(q) under the map δ 7→ q+q−1, the category T L
is equivalent to the full subcategory of Uq(sl2)-representations whose objects are tensor powers
of the standard representation V . Any indecomposable representation Vn appears as a direct
summand (with multiplicity one) inside V ⊗n, so that there is a canonical idempotent

JWn ∈ EndT L(n)⊗Q(q) = EndUq(sl2)(V
⊗n)

which projects to this summand. This is called the Jones–Wenzl projector [Jon86, Wen87], and
it can be defined so long as the nth quantum number and certain other quantum binomial
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coefficients are invertible. In any Z[δ]-algebra k where all quantum numbers are invertible, the

Karoubi envelope of T L ⊗ k will be equivalent to (a k-form of) the category of representations

of Uq(sl2).

One can draw an immediate analogy: we study an interesting category (SBim or Uq(sl2)-

rep) by looking inside it at a subcategory (BSBim or T L) which admits a combinatorial and

diagrammatic description. We recover the original category by taking the Karoubi envelope. In

fact, this analogy is almost perfect.

Proposition 1.1. Let W be the infinite dihedral group with simple reflections {s, t}, and let D
be defined as above for some realization over a Z[δ]-algebra k. We will define a faithful k-linear

(non-monoidal) functor Fs : T L→ BSBim. It sends the object n to BS (n̂+ 1 s), defined to be

the tensor product · · · ⊗Bs ⊗Bt ⊗Bs which alternates, ends with s, and has length n+ 1. This

functor will be defined diagrammatically. There is a separate functor Ft which reverses the roles

of s and t, sending n to BS (n̂+ 1 t). Moreover, the following facts hold for morphisms in D.

– The graded vector space Hom(BS (n̂ s),BS (k̂ s)) is concentrated in non-negative degrees (for

n, k > 1). When n and k share the same parity, every degree-zero morphism is in the image

of the functor from T L. When n and k have different parities, there are no degree-zero

maps.

– The same holds with s and t reversed.

– The graded vector space Hom(BS (n̂ s),BS (k̂ t)) is concentrated in strictly positive degrees

(for n, k > 1).

The moral is that every degree-zero morphism between color-alternating Bott–Samelson

bimodules comes from the Temperley–Lieb category, and in particular so does every idempotent.

Therefore, the Jones–Wenzl projectors (when they exist) yield idempotents inside D, whose

images are indecomposable. These images will be the Soergel bimodules Bw.

Proposition 1.1 is awkwardly stated, using a pair of non-monoidal functors. This is only

because we have avoided describing in this introduction the 2-categories which underlie both sides

of the story. In truth, we define a 2-functor F from a two-colored version of the Temperley–Lieb

category to the 2-category of singular Soergel bimodules (or its diagrammatic version D), which

is fully faithful onto degree zero 2-morphisms.

The 2-functor F is a (quantum) algebraic version of the geometric Satake equivalence. We

mean that certain singular Soergel bimodules for the infinite dihedral group correspond to a

(q-analog of a) 2-category of equivariant perverse sheaves on loop group of SL2 (or more precisely,

on the Kac–Moody group for affine SL2). Setting q = 1 or equivalently δ = 2, we recover the

geometric Satake equivalence. We will not discuss this quantum algebraic Satake equivalence any

further in this paper; see [Eli14] for more details, and for generalizations in type A. However, we

do study the 2-functor F in detail.

Now consider a base ring k containing a primitive 2mth root of unity q, and make k a

Z[δ]-algebra via δ 7→ q + q−1 ∈ k. The Karoubi envelope of T L ⊗ k is now equivalent to the

category of tilting modules over a form of Uq(sl2) at that root of unity. The mth quantum

number vanishes, and JWm is not well defined. More interestingly, JWm−1 is well defined, and

is negligible, that is, it is in the kernel of a certain invariant form on T L. In fact, it generates the

ideal of negligible morphisms. It is also common to study the (Karoubi envelope of the) category

T Lnegl obtained by killing all negligible maps. This category is semisimple, and is equivalent

to the fusion category attached to Uq(sl2) at a root of unity. Jones’s original application of the
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Temperley–Lieb category to subfactors [Jon83] also used the negligible quotient. For more on
killing negligible morphisms in general, see [BW99, Chapter 2] and [Tur92].

When q is a primitive 2mth root of unity, the negligible Jones–Wenzl projector JWm−1 is
actually rotation invariant. This fact, though fairly trivial, is crucial in this paper. Rotation in
the Temperley–Lieb algebra has been studied before (see [Jon01, GL98]), but typically in the
negligible quotient. Other Jones–Wenzl projectors JWk for k 6m−2, are not rotation invariant.

Proposition 1.2. Let Wm be the finite dihedral group of size 2m, and BSBim be its category
of Bott–Samelson bimodules defined over a Z[δ]-algebra k where δ 7→ q + q−1 for q a primitive
2mth root of unity. We can define a functor Fs : T L ⊗ k → BSBim as before. The facts stated
in Proposition 1.1 hold for alternating tensors BS (n̂ s) of length n 6 m− 1. However, there is a
new degree-zero morphism BS (m̂ s) → BS (m̂ t) in BSBim, and another in the reverse direction.
These are the 2m-valent vertices mentioned previously, and they descend to inverse isomorphisms
on the images of the respective Jones–Wenzl projectors JWm−1. These maps, in conjunction with
the images of Fs and Ft, generate all the morphisms of degree zero between alternating tensors
of length less than or equal to m, and there are no negative-degree morphisms.

There is a nice slogan for this proposition, though it is mathematically nonsensical: singular
Soergel bimodules for the finite dihedral group are obtained from the two-colored Temperley–Lieb
2-category by adjoining ‘square roots’ of the negligible Jones–Wenzl projectors.

There is another slogan, equally nonsensical but more intriguing: (an extension of the) non-
semisimplified representations of quantum sl2 at a 2mth root of unity are Satake-equivalent to
perverse sheaves on the flag variety of the finite dihedral group (though such a geometric object
does not exist for m /∈ {2, 3, 4, 6}).

There is a third slogan, which makes sense but is ill fated nonetheless. The category T Lnegl
maps fully faithfully (in degree zero) to the quotient of BSBim by the ideal of morphisms
which factor through Bw0 , where w0 ∈Wm is the longest element. This categorifies the quotient
of H by the KL basis element bw0 . The literature refers to this quotient as the generalized
Temperley–Lieb algebra associated to the finite dihedral group (whenm> 2) [Gra96, Gre98]. This
terminology is unfortunate for us, but leads to the slogan: the Temperley–Lieb algebra categorifies
the Temperley–Lieb algebra! More precisely, the (two-color) Temperley–Lieb algebra (in type A,
at a root of unity, modulo negligible morphisms) categorifies the (generalized) Temperley–Lieb
algebra (of the dihedral group).

1.5 Structure of the paper
This paper is intended to be an omnibus of all things dihedral: a dihedral cathedral. We
provide a reasonable level of detail, leaving some simple calculations to the reader. Slightly
more computational detail can be found in the author’s thesis [Eli11], which contains some
minor errors and uses slightly different conventions.

We assume little outside knowledge. An introduction to diagrammatics for 2-categories can
be found in [Lau10, § 4]. An introduction to Karoubi envelopes can be found in [BNM06]. We
draw upon [ESW14] heavily for general facts about Frobenius extensions, but that paper is quite
short. References to the author’s earlier work occur only when the computation is simple enough
to be left as an exercise.

Sections 2–4 are background material with a lot of elaboration. In § 2 we discuss presentations
of the Hecke algebra and the Hecke algebroid in terms of the Kazhdan–Lusztig generators, as
well as numerous other features. We also fix some basic notation. Notable is § 2.3 where we
discuss potential categorifications of the Hecke algebra, and some of the standard tricks played
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in categorification theory. In § 3 we begin by discussing the technicalities of realizations. Then
we describe the Soergel bimodules and the Frobenius hypercube structure on invariant subrings
of R. Section 4 contains an introduction to Jones–Wenzl idempotents and their analogs for the
two-colored Temperley–Lieb category. Counting colored regions in a Jones–Wenzl projector will
yield a polynomial which cuts out all the reflection lines in h.

In §§ 5.2 and 5.3 we provide diagrammatics for (singular) Bott–Samelson bimodules for the
case m = ∞. In §§ 6.1 and 6.2 we provide the additional generators and relations for the case
m < ∞. Sections 6.3 and 6.4 are simple consequences, giving respectively a diagrammatic
presentation for the so-called generalized Bott–Samelson bimodules, and a categorification of
the generalized Temperley–Lieb algebra of the dihedral group.

Finally, the Appendix explains how to modify the constructions above to handle non-
symmetric, unbalanced, and unfaithful realizations. We include enough detail to deal with this
situation for arbitrary Coxeter groups, not just dihedral groups. It is designed to be read in
parallel with the corresponding parts of §§ 3 and 4. Most of the work goes into defining the
Frobenius hypercube structure on invariant subrings, when it exists. Once this is accomplished,
the rest of the paper will apply almost verbatim.

2. The dihedral group and its Hecke algebra

We refer the reader to [Hum90, Lus03] for additional background information, and for the proofs
of any uncited statements in this section.

2.1 Notation for the dihedral group
The infinite dihedral group W∞ is the group freely generated by two involutions s and t. It has
a length function ` and a Bruhat order 6.

The words index and color refer to an element of the set of simple reflections S = {s, t}. An
expression is a finite sequence of indices. Our convention is that an expression will be denoted
by an underlined symbol w, and removing that underline indicates the corresponding element
w ∈W∞. We use shorthand for certain expressions of length k > 0:

sk̂ = sts . . .︸ ︷︷ ︸
k

, tk̂ = tst . . .︸ ︷︷ ︸
k

. (2.1)

Such an expression will be called alternating when k > 0. An expression beginning with s, such as

sk̂ for k > 0, will be called left-s-aligned. In similar fashion, we write k̂ s for the alternating length
k expression which is right-s-aligned. Without the underline, k̂s represents the corresponding
element in W . We write e = 0̂s = 0̂t for the identity of W .

For any integer m > 2, the finite dihedral group Wm is the quotient of W∞ by the relation

m̂s = m̂t. (2.2)

It is a finite group of size 2m, and the longest element m̂s = m̂t will also be denoted w0.
In this paper, the letter m will always be either ∞ or an integer in Z>2, and will refer to

(half) the size of the dihedral group W = Wm. Our conventions and notation will apply to infinite
and finite dihedral groups alike.

The Poincaré polynomial π̃(W ) of a Coxeter group W is
∑

w∈W v2`(w), an element of Z[[v]].

For finite Coxeter groups, the balanced Poincaré polynomial [W ] is π̃(W )/v`(w0), an element of
Z[v±] which is invariant under flipping v and v−1. A parabolic subset is a subset J ⊂ S, and it
is finitary when the corresponding parabolic subgroup WJ is finite. For J finitary, we write [J ]
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for the balanced Poincaré polynomial of WJ , and `(J) for the length of the longest element
wJ ∈WJ . Note that (v + v−1) is the balanced Poincaré polynomial of any singleton.

By convention, Poincaré polynomials like [J ] will always use the variable v. The quan-
tum numbers [n] for n > 0 in this section will also use the variable v. In subsequent sections,
quantum numbers [n] will always use the variable q. (The variable v is in the Grothendieck
group, that is, the Hecke algebra. The variable q is a scalar in the categorification.)

Any statement in this paper will hold with the ‘colors reversed’, that is, with s and t switched.

2.2 The Hecke algebra
2.2.1 Definitions. The Hecke algebra H = Hm is a Z[v±1]-algebra with several useful

presentations. The standard presentation has generators Ti for i ∈ {s, t}. For an expression
w = i1i2 . . . id we let Tw denote the product Ti1Ti2 · · ·Tid . The relations are

T 2
i = (v−2 − 1)Ti + v−21, (2.3a)

Tm̂ s
= Tm̂ t

. (2.3b)

This second relation is suppressed when m =∞. We define

Tw
def
= Tw

whenever w is a reduced expression, and note that this does not depend on the choice of reduced
expression. The identity of H is Te. These Tw, for w ∈W , form the standard basis of H as a free
Z[v±1]-module. (A related basis is Hw = v`(w)Tw, which we do not use in this paper, but use in
[EW13].)

A Z[v±1]-linear map µ : H → Z[v±1] satisfying µ(ab) = µ(ba) is called a trace. We also allow
traces to take values in Z((v)). One can show that the map ε given by ε(Tw) = δw,1 is a trace,
called the standard trace.

The Hecke algebra also has a KL basis {bw}, which is defined implicitly as the unique basis
satisfying certain criteria. For dihedral groups, the solution to these criteria is easy.

Claim 2.1. For all w ∈W , bw = vl(w)
∑

x6w Tx. This holds for m finite or infinite.

Clearly ε(bw) = v`(w). For i ∈ {s, t}, we call bi = v(Ti + 1) a KL generator. When W is finite,
we have

bw0 = vm
∑
w∈W

Tw.

Let ω be the v-antilinear anti-involution defined by ω(bi) = bi for i ∈ {s, t}. This allows one

to define the standard pairing on H via (x, y)
def
= ε(ω(x)y). Conversely, ε(x) = (1, x). Note that

(bix, y) = (x, biy) and (xbi, y) = (x, ybi), so that the KL generator bi is self-biadjoint with respect
to the standard pairing.

Remark 2.2. Arbitrary traces µ are in bijection with semilinear pairings for which bi is self-
biadjoint, by replacing ε with µ in the above formulas. Since a trace is determined by its values
at each bw, the corresponding semilinear pairing is determined by the values (1, bw).

For an expression w = i1 . . . id we write bw for the product bi1 · · · bid . Note that bw 6= bw in
general. We write ω(w) for the sequence in reverse, so that bω(w) = ω(bw). Clearly bw is biadjoint
to bω(w).

The KL generators do, in fact, generate H as a Z[v±1]-algebra, according to the KL
presentation. The quadratic relation, analogous to (2.3a), is

b2i = (v + v−1)bi. (2.4)
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When m = ∞ this relation suffices. In the finite case there is one more relation, analogous to
(2.3b). We shall give this relation below in (2.5).

2.2.2 Three related recursions. Remember that b
k̂s

denotes a KL basis element, while b
k̂ s

denotes a product of KL generators. The following formulas indicate how the KL generators act
on the KL basis. The product of b

k̂s
with bs is relatively boring.

Claim 2.3. For m > k > 1 we have b
k̂s
bs = (v + v−1)b

k̂s
. However, b 0̂sbs = bs.

The product of b
k̂s

with bt is more interesting.

Claim 2.4. For m > k > 2 we have b
k̂s
bt = b

k̂+1t
+ b

k̂−1t
. However, b 1̂sbt = b 2̂t .

From Claim 2.4 one could determine a recursive formula to express b
k̂ s

as a linear combination

of b n̂s
for n 6 k. This same recursion appears in several other places, and by no accident. Let

V = V1 denote the standard two-dimensional representation of sl2 (or its quantum analog), and
let Vn denote the (n+1)-dimensional irreducible (assuming, for this motivational digression, that
we are in the semisimple setting). The reader should compare Claim 2.4 with the following two
claims.

Claim 2.5. For n > 1 we have Vn ⊗ V ∼= Vn+1 ⊕ Vn−1. However, V0 ⊗ V ∼= V1.

Claim 2.6. For n > 2 we have [n][2] = [n+ 1] + [n− 1]. However, [1][2] = [2].

Therefore, the same combinatorics governs the decomposition of V ⊗k into irreducibles as
governs the decomposition of b

k̂+1
s

into KL basis elements. Tensoring with V is like multiplying

by either bs or bt, whichever is next in an alternating expression. The decomposition numbers
are easily encoded in ‘truncated Pascal triangles’.

Definition 2.7. Let the integer cnk be determined from the following table, which is populated
by letting each entry be the sum of the one or two entries diagonally below.

Then cnk is the entry in the kth row and nth column. By convention, cnk = 0 unless 0 < n 6 k
and k − n is even (i.e. each row only has every other column). For example, c11 = 1, c22 = 1,
c13 = c33 = 1, and c24 = 2. The column n = 2 consists of Catalan numbers.

Claim 2.8.

– For 1 6 k we have V ⊗(k−1) ∼= ⊕nV ⊕c
n
k

n−1 .

– For 1 6 k we have [2]k−1 =
∑

n c
n
k [n].

– For 1 6 k 6 m we have b
k̂ s

=
∑

n c
n
kb n̂s

.

Example 2.9. bsbtbsbtbsbt = bststst + 4bstst + 5bst when m > 6.

Together with its color-reversed version, this claim covers all alternating expressions, giving
two zigzag paths up the Bruhat chart. Note that this claim entirely ignores be = b 0̂s = b 0̂t , which
never appears in the decomposition of bw for w non-trivial.

We now give the inverse matrix.
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Definition 2.10. Let the integer dnk be determined from the following table (with the same
conventions as before), which is populated by letting dnk = dn−1k−1 − dnk−2.

Claim 2.11.

– For 1 6 k, in the Grothendieck group of sl2 representations, we have [Vk−1] =∑
n d

n
k [V ⊗(n−1)].

– For 1 6 k we have [j] =
∑

n d
n
j [2]n−1.

– For 1 6 k 6 m we have b
k̂s

=
∑

n d
n
kbn̂ s

.

2.2.3 The finite case. When m < ∞, we have m̂s = m̂t = w0 so that Claim 2.11 gives two
distinct formulas for bw0 in terms of the KL generators. This gives an algebraic relation on KL
generators, which is the replacement for the braid relation (2.3b):∑

n

dnmbn̂ s
= bw0 =

∑
n

dnmbn̂ t
. (2.5)

Example 2.12. When m = 3, bsbtbs − bs = btbsbt − bt.
We leave the reader to confirm that (2.4) and (2.5) give an alternate presentation for the

Hecke algebra. Finally, let us record two additional equalities:

bsbw0 = bw0bs = (v + v−1)bw0 , (2.6)

bw0bw0 = [W ]bw0 . (2.7)

2.3 Potential categorifications
In this subsection we introduce one of the key tricks of the trade, which allows us to use the
existence of objects categorifying the KL basis to deduce facts about the categorification. This
trick was used by Soergel for general Coxeter groups in [Soe07] and elsewhere. To see these proofs
in more detail (for an analogous case), see [Eli10b, § 3.3]. Let k be a commutative domain.

Definition 2.13. Let C be a k-linear graded additive monoidal category, whose morphism spaces
are of finite rank over k in each degree. Let (1) denote the grading shift. Suppose that it has
objects Bi for i = s, t, satisfying

Bi ⊗Bi ∼= Bi(1)⊕Bi(−1), (2.8)

and that C is contained in the Karoubi envelope of the subcategory monoidally generated by Bs
and Bt. Suppose that each Bi is self-biadjoint, that is, there are natural isomorphisms

HomC(Bi ⊗M,N) ∼= HomC(M,Bi ⊗N) and HomC(M ⊗Bi, N) ∼= HomC(M,N ⊗Bi).
Then we call C a potential categorification of H∞.

For a potential categorification, there is an obvious Z[v±1]-linear map from H∞ to the
Grothendieck ring [Kar(C)] of the Karoubi envelope, sending bi 7→ [Bi] and v to the grading
shift.
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We now specify what it means for a potential categorification of H∞ to factor through Hm

for m < ∞. Consider (2.5) as an equality of the two sides (ignoring bw0 in the middle). One
can transform this into an equality with only positive integer coefficients, by adding terms to
both sides. Then one can construct a ‘categorified version’ of this relation, replacing the product
bn̂ s

= · · · btbs with the corresponding tensor product · · · ⊗Bt ⊗Bs, and replacing the sum with
the direct sum.

Example 2.14. When m = 3, the categorified relation has the form (Bs ⊗ Bt ⊗ Bs) ⊕ Bt ∼=
(Bt ⊗Bs ⊗Bt)⊕Bs.
Definition 2.15. If C is a potential categorification of H∞ and satisfies the categorified version
of (2.5) for some m <∞, we call C a potential categorification of Hm instead.

For a potential categorification of Hm, the map H∞ → [Kar(C)] clearly factors through the
quotient Hm.

Let H be the relevant Hecke algebra, either H∞ or Hm, and let W be the corresponding
Coxeter group. For an expression w = i1i2 . . . , let BS (w) denote the corresponding tensor product
Bi1 ⊗Bi2 ⊗ · · · , so that BS (∅) is the monoidal identity.

Any potential categorification C induces a semilinear pairing on H, via

(bw, bx) 7→ grdrkkHomC(BS (w),BS (x)).

Here, grdrk denotes the graded rank. We do not assume that Hom spaces are free as k-modules,
though their graded rank is still well defined (say, as the maximal number of linearly independent
vectors over k). In similar fashion, we could define a semilinear pairing using the graded rank
over R, where R is any graded k-algebra for which composition in C is R-linear. The elements
bs and bt are self-biadjoint.

Definition 2.16. We say that a potential categorification C of W satisfies the Soergel
categorification theorem if the following properties hold for Kar(C).

– For a reduced expression w there is a unique summand Bw
⊕
⊂ BS (w) which does not appear

in BS (y) for any shorter expression y.

– For any two reduced expressions w and w′ for the same element, there is a canonical
morphism BS (w) → BS (w′) which induces an isomorphism ϕw,w′ : Bw → Bw′ . Moreover,
these isomorphisms are compatible in the sense that ϕw′,w′′ ◦ϕw,w′ = ϕw,w′′ . Therefore, there
is a single object Bw which is canonically isomorphic to each summand Bw, independent of
the reduced expression for w. We will never use the notation Bw again.

– The set {Bw}w∈W forms a complete list of non-isomorphic indecomposables in Kar(C), up
to grading shift.

– The map H → [Kar(C)] is an isomorphism, and it induces the standard pairing on H.

If, in addition, one has [Bw] = bw, we say that the (analog of the) Soergel conjecture is true
for C. (Of course, Soergel made his conjecture about a very specific potential categorification of
H, defined in characteristic zero; this terminology is not meant to imply any claims on Soergel’s
behalf.)

Lemma 2.17. Let C be a potential categorification of H. Let ε be any trace map on H. Make
the following suppositions.

– For each w ∈ W there is an object Bw in Kar(C) for which bw 7→ [Bw]. The biadjoint of
Bw is Bw−1 .
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– The categorified version of the relation in Claim 2.8 holds, decomposing BS (x) for a reduced

expression into direct sums of various Bw.

– The Hom spaces HomC(Be, Bw) are free k-modules for all w ∈W . (More generally, we may

assume that they are free graded R-modules, for R as above.)

– The graded rank of HomC(Be, Bw) over k (respectively, over R) is equal to ε(bw).

Then we may deduce that all Hom spaces between various objects Bw and BS (x) in C are

free as k-modules (respectively, as R-modules), and the semilinear pairing induced from the

categorification agrees with that induced by ε.

Proof. Using biadjointness and direct sum decompositions, we see that any Hom space between

various BS (x) or Bw is isomorphic to a direct sum of Hom spaces Hom(Be, Bw) for various Bw.

Therefore the freeness of Hom(Be, Bw) implies the freeness of all Hom spaces. The combinatorics

of biadjointness and decomposition in C are the same as the combinatorics of ω and the additive

relations in H when determining (x, y), so that the final statements are obvious. 2

Corollary 2.18. Suppose that C satisfies the conditions of Lemma 2.17 for the standard trace ε,

as the graded rank of Hom spaces over a graded ring R. We assume that R is concentrated in

non-negative degree, and consists of scalars k in degree zero, and that k is a local ring. Then

each object Bw is indecomposable and C is already Karoubian. The category C satisfies the SCT

and the Soergel conjecture is true.

Proof. Calculations with the bilinear form imply that

grdrkRHomC(Bw, Bx) = δw,x + vZ[v].

This is sufficient to imply that {Bw} form a list of pairwise non-isomorphic indecomposable

objects, up to shift. For instance, Bx is indecomposable because its endomorphism ring must be

local. Since every BS (x) splits into these indecomposables, our list must be complete. 2

Corollary 2.19. Suppose that C and D are two such categories as in Lemma 2.17, and are both

Karoubian. Suppose that F : C → D is an additive graded R-linear monoidal functor sending

Bi to Bi (which implies that Bw is sent to Bw). Suppose that F induces isomorphisms of Hom

spaces Hom(Be, Bw) for all w, or alternatively of Hom(Be,BS (w)) for every reduced expression

w. Then F is an equivalence.

Proof. Left to the reader. 2

2.4 The Hecke algebroid

2.4.1 Definitions. The Hecke algebroid is a general construction for Coxeter groups. See

[Wil11] for more details.

It will be useful to distinguish between the index s ∈ S and the parabolic subset {s} ⊂ S.

Later in this paper we will be assigning a color to each index, blue to s and red to t. We use

these colors to assign names to parabolic subsets of S: b = {s} is blue, r = {t} is red, p = {s, t}
is purple, and ∅ is white. Note that all parabolic subsets are finitary, with the exception of p in

the case m =∞. Given a parabolic subset J , we let bJ
def
= bwJ .

The Hecke algebroid H is a Z[v±1]-linear category with objects labeled by finitary parabolic

subsets. The Z[v±1]-module Hom(J,K) is the intersection in H of the left ideal HbJ with the
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right ideal bKH. Composition from Hom(J,K)×Hom(L, J) → Hom(L,K) is denoted by ?, and
is defined using renormalized multiplication:

x ? y =
xy

[J ]
.

This makes sense, because we can write x = x′bJ and y = bJy
′, so that xy = [J ]x′bJy

′.
It is clear that bJ is the identity element of End(J). It is also clear that End(∅) = H as an

algebra. Whenever J ⊂ K, bK is in both the right and left ideal of bJ , so there is an inclusion
of ideals yielding Hom(K,L) ⊂ Hom(J, L) ⊂ H. This inclusion is realized by precomposition
with bK ∈ Hom(J,K). A similar statement can be made about Hom(L,K) ⊂ Hom(L, J) and
postcomposition with bK ∈ Hom(K,J).

2.4.2 Presenting the Hecke algebroid as a quiver algebroid. Whenever J ⊂ K we may view
bK as an element of both Hom(J,K) and Hom(K,J). The collection of these morphisms for
various J ⊂ K will generate H. Moreover, whenever J ⊂ K ⊂ L it is clear that bL ? bK = bL,
as a composition Hom(K,L) × Hom(J,K) → Hom(J, L). Similarly, bK ? bL = bL ∈ Hom(L, J).
Therefore, H is generated by the morphisms bK when K\J is a single index. We take these
generators and view them as arrows in a path algebroid.

b

∅ p

r

→

→
→

→

→

→
→

→

When m = ∞ the parabolic subset p is not finitary, so there are only three vertices and two
doubled edges in this quiver.

We denote a path between parabolic subsets using an underline, analogous to our notation
for expressions. By b∅bprpb we mean the morphism which follows the path from b up to p and
eventually to ∅. For instance, br would be the identity morphism of r. In an abuse of notation,

let k̂ r denote the path · · · r∅b∅r, which passes through ∅ exactly k − 1 times, starting in r, and
ending in either r or b depending on parity.

Proposition 2.20. The following relations on paths define the Hecke algebroid H as a quiver
algebroid:

br∅r = (v + v−1)br, (2.9a)

bprp =
[W ]

v + v−1
bp, (2.9b)

b∅rp = b∅bp, (2.9c)

bpr∅ = bpb∅, (2.9d)

bipr =
∑
n

dnmbn̂ r
. (2.9e)

Only the first relation (together with its color switch) is needed for m =∞. In the final equation,
i is r if m is odd, and b if m is even.
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Proof. Relation (2.9a) follows from (2.4), and relation (2.9b) follows from (2.7). Relations (2.9c)
and (2.9d) are obvious, since both paths merely give bp. Relation (2.9e) follows from (2.5). Thus
all the relations do hold in H, and there is a map from this quiver algebroid to H. It is easy to
see that this map is surjective. Morphism spaces in H are free Z[v±1]-modules of known rank, so
it remains to find a spanning set for paths in the quiver having the appropriate size. This is a
simple exercise for the reader. 2

2.4.3 Traces on the Hecke algebroid. A trace on an algebroid (over Z[v±1]) is a Z[v±1]-
linear map εX : End(X) → Z[v±1] for each object X, such that εX(ab) = εY (ba) whenever
a ∈ Hom(Y,X) and b ∈ Hom(X,Y ).

Claim 2.21. Any trace on the Hecke algebroid is determined by ε∅.

Proof. Because of its defining property, the trace of an endomorphism (of any object) which can
be expressed as a path going through ∅ is determined by ε∅. The identity of every object in H is
given (up to a scalar) by a path through ∅, and so the same is true for any endomorphism. 2

It is not hard to show that the standard trace on H extends to a trace on H, also called the
standard trace.

One can construct a notion of a potential categorification of H, analogous to that found
in § 2.3. The endomorphism category of the ∅ object will be a potential categorification of
EndH(∅) = H. One can state properties analogous to the SCT and the Soergel conjecture. The
upshot of Claim 2.21 is that, in line with Corollary 2.19, a map of potential categorifications of
H is an equivalence if it induces an equivalence of potential categorifications of H. We will not
bother to formalize these arguments now; they will be put into practice in § 5.4.2.

2.4.4 Induced trivial representations. The (left) trivial representation TW of H is the free
rank-one Z[v±1]-module where bs and bt both act by the scalar (v+ v−1). When W is finite, this
can be embedded inside the regular representation as the left ideal of bp. Suppose that J is a
finitary parabolic subset, and let HJ ⊂ H be its Hecke algebra. Less obviously, the H-module
Ind(TJ) is embedded inside H as the left ideal of bJ . Inside H, this is precisely the Hom space
Hom(J,∅), as a module over End(∅) = H. Similar statements can be made about right modules
and Hom(∅, J).

3. Frobenius extensions and the Soergel categorification

3.1 Quantum numbers
Let [2]q = q+q−1 ∈ Z[q±1], and more generally, [m]q = (qm − q−m)/(q − q−1) for m ∈ Z>0. Thus
[1]q = 1 and [0]q = 0. We typically omit the subscript. When q = eiθ, we have [2]2q = 4 cos2 θ, a
familiar value from the usual theory of Cartan matrices.

We are interested in quantum numbers as algebraic integers, not in terms of their original
expression as polynomials in q. Let δ be an indeterminate, which will play the role of [2]. The
computations in this subsection take place within the ring Z[δ], which can be thought of as a
subring of Z[q±1] under the specialization δ 7→ [2]. Every quantum number can be expressed as
a polynomial in δ, as was demonstrated in Claim 2.11. A Z[δ]-algebra is an algebra k with a
distinguished element δ ∈ k, which we will also denote [2]. For such an algebra, the elements
[m] ∈ k are also well defined.

When n divides m, [n] divides [m] in Z[δ]. When m is odd, [m] is equal to some even
polynomial in [2]. When m is even, [m] is equal to some odd polynomial in [2]. For m > 3 there
is a minimal polynomial Qm ∈ Z[z] such that Qm([2]2) divides [m] but not [n] for any n < m.
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Example 3.1.
m = 3 : [3] = [2]2 − 1, Q3 = z − 1.

m = 4 : [4] = [2]3 − 2[2], Q4 = z − 2.

m = 5 : [5] = [2]4 − 3[2]2 + 1, Q5 = z2 − 3z + 1.

m = 6 : [6] = [2]5 − 4[2]3 + 3[2], Q6 = z − 3.

Let us discuss the algebraic conditions on Z[δ] which correspond to the specialization of q2

to a root of unity. We write ζn for an arbitrary primitive nth root of unity, viewed as an algebraic
integer. In other words, for any element x in an arbitrary ring, we say that x = ζn if x is a root
of the nth cyclotomic polynomial. For any Z[q±1]-algebra and m > 3 we have

q2 = ζm ⇐⇒ Qm([2]2q) = 0 ⇐⇒ [m]q = 0 and [k]q 6= 0 for 0 < k < m.

The case m = 2 is special, in that q2 = ζ2 ⇐⇒ [2] = 0, which is an equation in [2] not in
[2]2 (this will cause some issues in the Appendix). Once again, we are not interested in viewing
quantum numbers as polynomials in q, but this discussion should instead serve to justify why
one might wish to consider the algebraic conditions [m] = 0 and [k] 6= 0 for k < m.

We now discuss some of the algebraic implications of the fact that [m] = 0. It is easy to
deduce (say, using the same recursive formulas in reverse) that whenever [m] = 0, one has
[m− k] = [m− 1][k]. Therefore [m− 1]2 = 1. When m is odd, [2] divides [m− 1] and is therefore
also invertible. Similarly, one has [m + k] = [m + 1][k], so that [2m − 1] = −1 and [2m] = 0.
Unfortunately, the converse is less pretty.

Claim 3.2. Suppose that [2m] = 0 and [2m − 1] = −1. Then 2[m] = 0 and [2][m] = 0. If m is
odd then [m] = 0. However, allowing for 2-torsion, it is possible that [m] 6= 0 when m is even.

Proof. That 2[m] = 0 and [2][m] = 0 both follow from [2m − k] = −[k]. One can deduce from
[2m − k] = −[k] that [m − 1]2 = 1. If m is odd then [2] is invertible, so that [m] = 0. The ring
Z[δ]/(2δ, δ2) provides an example where [4] = 0 and [3] = −1 but [2] 6= 0. 2

We now see an essential difference between the even and odd cases. Suppose that [m] = 0
and [k] 6= 0 for k < m, and that k is a domain. When m is even, one can use the above claim
to deduce that [m − 1] = 1. However, when m is odd, both [m − 1] = 1 and [m − 1] = −1 are
possible. In fact, this investigation into the algebraic conditions on [m − 1] is also inspired by
roots of unity; now one considers the implications of setting q (rather than q2) to a root of unity.
It is easy to observe that [m − 1] = 1 when q = ζ2m and [m − 1] = −1 when q = ζm. When m
is even, q2 = ζm already implies q = ζ2m (also, ζ2m = −ζm and the two are indistinguishable in
characteristic 2), as one might expect from the above discussion. When m is odd there are two
distinct possibilities. Note also that when m is odd, there is a splitting Qm(δ2) = Pm(δ)Pm(−δ)
for some polynomial Pm ∈ Z[δ], with q = ζ2m ⇐⇒ Pm([2]q) = 0. This polynomial Pm determines
the value of [m− 1].

Now for one final aside. When m is odd and [m] = 0, all quantum numbers are actually
generated by [2]2 and the unit [m−1], since [2] = [m−1][m−2] and m−2 is an even polynomial
in [2]. When m is even and [m] = 0, there is no guarantee that [2] is invertible or that the ideal
of [2]2 contains [2].

3.2 Realizations
Fix a Coxeter system (W,S). As before, elements of S will be called indices or colors. The
following definitions are taken from joint work with Williamson.
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Definition 3.3. Let k be a commutative ring. A symmetric realization of (W,S) over k is a free,
finite-rank k-module h, together with subsets {α∨s | s ∈ S} ⊂ h and {αs | s ∈ S} ⊂ h∗ = Homk(h,k)
called simple coroots and simple roots. The Cartan matrix A = (as,t)s,t∈S of a realization is
defined by as,t = 〈α∨s , αt〉 ∈ k. This data must satisfy:

(i) as,s = 2 for all s ∈ S;

(ii) as,t = at,s for all s, t ∈ S;

(iii) for any s, t ∈ S with mst <∞, if k is given a Z[δ]-algebra structure by the map δ 7→ −as,t
(i.e. where [2] = −as,t), then [mst] = 0;

(iv) the assignment s(v)
def
= v − 〈v, αs〉α∨s for all v ∈ h yields a representation of W .

We will often refer to h as a realization; however, the choice of {α∨s } and {αs} is always implicit.

Example 3.4. Let k = R and let h be spanned by {α∨s } for s ∈ S. Let αs be defined by the
formula as,s = 2 and as,t = −2 cos(π/mst) for s 6= t, with the convention that as,t = −2 when
mst =∞. This is the reflection representation of (W,S), as defined in Humphreys [Hum90]. The
reader uninterested in general realizations is welcome to use this realization by default.

There is a contragredient action of W on h∗. It is given on the span of the simple roots by
the formula

s(αt) = αt − as,tαs.
Note that the Cartan matrix need not determine the realization, since we do not assume

that {α∨s } spans h. We also have not assumed that the simple roots or simple coroots are
linearly independent. There are many degenerate possibilities which this definition permits. In
characteristic 2 one might have that αs = 0, or that s acts trivially on h∗. When αs and αt are
collinear, one could have s = t when acting on h∗ (one would also require as,t = ±2). We will soon
make assumptions which eliminate some of these degenerate possibilities. Given a realization over
k and a homomorphism k → k′, we obtain a realization over k′ by base change; this can easily
change the kernel of the W -action on h∗.

Whenever a pair s, t ∈ S is understood, we give k the structure of a Z[δ]-algebra with
−[2] = as,t.

Let us discuss the relationship between conditions (3) and (4).

Claim 3.5. Suppose that αs and αt are not collinear. The action of s and t preserves the space
spanned by αs and αt in h∗. For any m > 2, the action of (st)m on this span is trivial if and only
if [2m] = 0 and [2m− 1] = −1.

Proof. It is not difficult to show inductively that (in the basis {αs, αt}) we have

(st)k =

(
[2k + 1] −[2k]

[2k] −[2k − 1]

)
. (3.1)

In order for this matrix to be the identity for k = m, one requires [2m] = 0 and [2m−1] = −1. 2

As discussed in Claim 3.2, the fact that [2m] = 0 and [2m − 1] = −1 follows from and is
usually equivalent to [m] = 0, but fails to imply [m] = 0 in certain cases. If k is a domain or m
is odd then [m] = 0.

Moreover, consider the action of (st) on the span of {αs, αt, αu}. A similar computation
shows that

(st)k(αu) = αu + ([k]2as,u + [k][k + 1]at,u)αs + ([k][k − 1]as,u + [k]2at,u)αt. (3.2)
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For (st)m to be trivial [m] = 0 clearly suffices. When [m] 6= 0, the condition that (st)m is trivial
is rather restrictive, implying that [m]at,u = [m]as,u = 2[m] = [2][m] = 0. However, extremely
degenerate possibilities do exist.

Thus, condition (3) implies that st has order dividing mst when acting on the span of the
roots. However, this does not imply condition (4), because h may be larger than this span. In the
other direction, if k is a domain, or mst is odd for each pair s, t, then (4) implies (3). However,
(3) and (4) are logically independent in general.

The definition of a non-symmetric realization will be postponed to the Appendix, though we
will still discuss them briefly in the main text. One allows for the possibility as,t 6= at,s. The only
subtlety will be altering the condition that [mst] = 0.

Definition 3.6. We call a realization faithful in rank 2 if, in the action on h or h∗, the order
of each s ∈ S is 2, and for each s, t ∈ S the order of st is mst. This is the only property of
realizations we will consider in this paper which is not preserved under base change.

Remember that when [m] = 0 one has [m−1]2 = 1. We call a symmetric realization balanced
symmetric if for each s, t ∈ S with mst <∞ one has [mst − 1] = 1. Refining this notion, we call
a symmetric realization even-unbalanced (respectively, odd-unbalanced) if there is some s, t ∈ S
with mst even (respectively, odd) and [mst − 1] 6= 1. We call it even-balanced (respectively,
odd-balanced) otherwise.

The definition of a balanced non-symmetric realization will be postponed to the Appendix.
Note that being symmetric, being balanced, and being faithful in rank 2 are all properties
determined by the action of dihedral subgroups. Being symmetric (respectively, balanced) is
preserved under base change of the ring k, though being faithful in rank 2 is not. For the rest of
this paper, we abusively write faithful to indicate faithful in rank 2.

Remark 3.7. We warn the reader now that the behaviors of even-balanced and odd-balanced
realizations are drastically different! This theme will recur in many of the computations below.
As an overarching principle, realizations that are odd-unbalanced are acceptable; one can work
with them (as we do in the Appendix), only they require more bookkeeping than completely
balanced realizations. However, realizations that are even-unbalanced are a nightmare, and we
typically rule them out. The most important difference will be addressed in § 4.2. Due to the
calculations of the previous subsection, the assumption that a realization is faithful and that it
is even-balanced are very similar, though logically independent.

Let us give some examples where h is spanned by α∨s and α∨t , so that the realization is
determined by a 2× 2 Cartan matrix.

Example 3.8. Suppose that k = Z, with as,t = −3 and at,s = −1. This is a faithful non-symmetric
realization of the dihedral group W6. It is balanced, because [5] = 1 when [2]2 = as,tat,s = 3. It
can also be viewed as a non-faithful realization of W6k for any k, or of W∞. It is balanced for
W6k precisely when k is odd, because [6k − 1] = (−1)k+1.

Example 3.9. Take the same Cartan matrix as the previous example, but change base to k = F2.
Now one has a symmetric balanced realization of W6 which is not faithful, factoring instead
through W3. In characteristic 2, any symmetric realization is balanced, because [mst − 1] = ±1.

Example 3.10. Now suppose that k = Z, with as,t = at,s = −1. This is a faithful symmetric
balanced realization of W3. It can also be viewed as a symmetric realization of W6 which, unlike
the previous example, is not balanced since [5] = −1.
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Example 3.11. Suppose that as,t = at,s = −(q+ q−1) in C, for q is a primitive mth root of unity
with m odd. Then [km] = 0 and [km − 1] = −1 for all k > 0, and h will not be a balanced
realization of Wmk for any k.

Given any realization and a choice of invertible scalars λs ∈ k for each s ∈ S, one obtains
a new realization by root rescaling : rescaling αs 7→ λsαs and α∨s 7→ λ−1s α∨s . This amounts to
conjugating A by a diagonal matrix. This procedure will not preserve symmetric realizations
unless λs = ±1.

In the main body of this paper, we will only consider balanced symmetric realizations.
Root rescaling will rarely preserve balanced symmetric realizations, and not all realizations
are balanceable or symmetrizable by root rescaling. For a treatment of non-symmetric or
non-balanced realizations, see the Appendix. When discussing Soergel bimodules, one will have
to make the additional assumption that the realization is faithful.

The universal balanced symmetric realization of the infinite dihedral group is defined with
k = Z[δ], letting h be the span of α∨s and α∨t , and setting as,t = −δ. The universal balanced
symmetric realization of the finite dihedral group is defined analogously with k = Z[δ]/([m] = 0,
[m− 1] = 1).

3.3 Assumptions on the realization
There is an unwritten assumption on the base ring k, arising from the fact that there exists a
(symmetric) realization defined over k. Namely, it must contain an algebraic integer [2] for which
[m] = 0, for any m = mst <∞. For instance, if mst = 5 then k must contain the golden ratio.

We will let ∂s denote the map h∗ → k given by evaluation at α∨s . We have ∂s(αt) = as,t.
One can see that f − s(f) = ∂s(f)αs is collinear with αs. Clearly ∂s(f) = 0 implies that f is
s-invariant. So long as αs 6= 0, f is s-invariant if and only if ∂s(f) = 0. However, it is possible in
characteristic 2 that αs = 0, in which case everything is s-invariant.

The most important assumption one can make about a realization is Demazure surjectivity.

Assumption 3.12 (Demazure surjectivity). The map αs : h → k is surjective, for all s ∈ S, and
the map ∂s : h∗ → k is surjective, for all s ∈ S.

This forbids the possibility that αs = 0. It guarantees the existence of some α ∈ h∗ with
∂s(α) = 1. Then for any f ∈ h∗ we see that f − ∂s(f)α is s-invariant. Moreover, α is not
s-invariant.

Demazure surjectivity will be essential to most of the arguments in this paper. It does not
hold for the universal realization of the infinite dihedral group, because 2 and [2] do not generate
the unit ideal in Z[δ]. It does hold for s and t whenever mst is odd, because [2] is invertible.
The easiest way to ensure that Demazure surjectivity holds is to invert 2. However, Assumption
3.12 can hold even when the Cartan matrix has zero columns (such as when mst = 2, 4 in
characteristic 2), because h need not be spanned by the simple roots. In fact, by enlarging h
and h∗ and adjusting αs and α∨s accordingly, one can always create a realization with the same
Cartan matrix for which Demazure surjectivity does hold.

Assumption 3.13 (Local non-degeneracy). Whenever mst <∞, 4− as,tat,s is invertible in k.

Note that local non-degeneracy implies Demazure surjectivity for both s and t, when mst is
finite.

Assumption 3.14 (Lesser invertibility). Choose any dihedral parabolic subset {s, t}. For all k <
mst, [k] is invertible in k. Moreover, the realization is faithful.
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The fact that [k] is invertible for k < mst implies faithfulness except in degenerate situations
(e.g. αs and αt are collinear).

All of these assumptions are preserved under base change.

3.4 Positive roots for dihedral groups
For the reflection representation there is a notion of positive roots (for any Coxeter group). When
dealing with a more general realization, one can still define an analogous multi-set of positive
roots, using the same formulas. Because the realization need not be faithful, these roots may
overlap.

Let fs,k = k̂t(αs) ∈ h∗, for k > 0. A formula for fs,k can be deduced from the proof of
Claim 3.5. Let Ls be the set consisting of fs,k for k > 0.

When m =∞ and the realization is faithful, every fs,l is distinct from every other, and from
every ft,k. Regardless, we let L be the multi-set union of Ls and Lt when m =∞.

When m = 2k is even, we have that fs,k−1 = fs,k and ft,k−1 = ft,k. Let L = {fs,l, ft,l}06l6k−1.
When m is odd, we have fs,m−1 = [m − 1]αt. For a balanced realization therefore we have

fs,m−1−l = ft,l for all 0 6 l 6 m− 1. Let L = {fs,l}06l6m−1.
Remark 3.15. For an odd-unbalanced realization there are ambiguities of scalar when defining
the positive roots, coming from the invertible factor [m− 1]. The choice of positive roots cannot
be made canonically from the simple roots. See the Appendix for more details.

3.5 Frobenius extensions
For more background on Frobenius extensions, see [ESW14].

Definition 3.16. A (commutative) Frobenius extension is an inclusion A ⊂ B of commutative
rings where B is a free finite-rank A-module, equipped with an A-linear trace map ∂BA : B → A
such that the pairing (f, g) 7→ ∂BA (fg) is perfect. In other words, there exist a basis {fi} and a
dual basis {f∗i } of B over A such that ∂BA (fif

∗
j ) = δi,j1A.

Whenever one has a Frobenius extension, one has four canonical bimodule maps: the inclusion
ιBA : A → B and the trace ∂BA : B → A of A-bimodules; and the multiplication µBA : B⊗AB → B
and comultiplication ∆B

A : B → B⊗AB of B-bimodules. The comultiplication satisfies ∆B
A(1) =∑

i fi ⊗ f∗i , and this sum is independent of the choice of dual bases. These four maps are the
units and counits for the biadjunction of IndBA with ResBA .

Let LBA = µBA∆B
A(1) =

∑
i fif

∗
i ∈ B. We may also use Sweedler notation, so that LBA =

∆B
A (1)∆

B
A (2). It is clear that ∂BA (LBA) = n1A, where n is the rank of B as an A-module.

A Frobenius extension can be graded, in the sense that A,B are graded rings, ∂BA has degree
−2`, and there exist homogeneous dual bases. We call ` the degree of the extension. In this case,
Ind is shifted-biadjoint to Res(`), in that the right and left adjoints of Ind are isomorphic to
Res(`) after shifting by ±`. After the appropriate grading shifts, ∂ and ι are maps of degree −`,
and µ and ∆ are degree +`.

Definition 3.17. If (A ⊂ B, ∂BA ) and (B ⊂ C, ∂CB ) are Frobenius extensions, then (A ⊂ C,
∂BA ◦ ∂CB ) is a Frobenius extension. We say that this chain of Frobenius extensions is compatible,
because ∂CA = ∂BA∂

C
B and ιCA = ιCBι

B
A . A more complicated system of Frobenius extensions is called

compatible if every subchain is compatible.

Let R = Sym(h∗) denote the polynomial ring of the realization. It is a graded ring, with
degαs = deg h∗ = 2, and it admits a homogeneous action of W . For a parabolic subset J let RJ

denote the ring of invariants under WJ .

346

https://doi.org/10.1112/S0010437X15007587 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007587


The dihedral cathedral

Our goal for the remainder of this section is to give the collection of rings RJ for finitary
J the structure of a (compatible) Frobenius hypercube. The subsets of S form a hypercube and
a poset, though we only consider the subposet of finitary subsets. Recall that `(I) denotes the
length of the longest element of WI . For each edge J ⊂ I = J

∐{j} there is a Frobenius extension
RI ⊂ RJ of degree `(I) − `(J). We denote the corresponding bimodule maps by ∆J

I instead of

∆RJ

RI (and similarly for µ, ι, ∂, and L). We omit I = ∅ from the notation, so that LI refers to

the product-coproduct for the extension RI ⊂ R. We omit set notation when it is obvious: Rs

instead of R{s}, Rs,t instead of R{s,t}.
The overall compatibility of this system depends on the compatibility over each face of the

hypercube. Compatible hypercubes of Frobenius extensions were studied in [ESW14], where
various general facts were proven. For instance, LCA = LCBLBA for any subchain. In our case, the
polynomial LI will be the product of the positive roots for WI , and therefore LJI will be
the product of the roots for WI which are not roots for WJ .

However, this Frobenius hypercube structure only exists under certain assumptions on the
realization. As an example, for any s ∈ S the map ∂s will extend to a map R → Rs giving
the trace for the extension Rs ⊂ R. Clearly Demazure surjectivity is required in order for this
extension to be Frobenius, because any Frobenius trace is surjective.

Remark 3.18. When I is not finitary, the extension RI ⊂ R is not Frobenius, or even finite. The
two rings have difference transcendence degrees.

Remark 3.19. The action of W on h or h∗ yields a collection of rings RJ . A choice of simple
roots and coroots encodes the Frobenius structures for the ring extensions Rs ⊂ R. A choice of all
positive roots essentially encodes the Frobenius structure for the entire hypercube. As mentioned
previously, for balanced realizations a choice of all positive roots can be made canonically from
a choice of simple roots, but for unbalanced realizations this is not true. Instead of starting with
the data of the Cartan matrix, one should start with the data of the entire Frobenius hypercube.
See the Appendix for more details.

The rings RJ are determined only by the representation of W on h, and not by the additional
structure of a choice of simple roots and coroots. As a result, the properties of these ring
extensions are determined not by the Coxeter group W , but by the Coxeter quotient which acts
faithfully (i.e. choose the smallest mst for which [mst] = 0). For the rest of this section minus a
few remarks, we assume the realization is faithful. Whether there exists a Frobenius extension
only depends on h, though the actual Frobenius structure itself is fixed by the additional data
of the simple roots.

3.6 Reflection invariants
We have already in § 3.3 defined a map ∂s : h∗ → k, and we want to extend it to a trace map
∂s : R → Rs. One way to do this is with the formula ∂s(f) = (f − s(f))/αs, which expresses
∂s as a divided difference operator or (simple) Demazure operator. Another way is to use the
twisted Leibniz rule ∂s(fg) = ∂s(f)g+s(f)∂s(g). Both of these methods require something extra
to imply that they are well defined; we discuss the first approach.

Traditionally, when working over a field of characteristic not equal to 2, one can assert that
the s-anti-invariants are a free Rs-module generated by αs. Therefore, f−s(f) has αs as a factor,
and ∂s is well defined. Already one can see how this assertion makes no sense in characteristic 2,
when invariants and anti-invariants are identical. The assertion is also false in a ring where 2 is
not prime. Nonetheless, with mild assumptions it is still true that αs divides f − s(f), for which
we need a better argument.
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Let us assume Demazure surjectivity, so that there is some linear α with ∂s(α) = 1. For any
t ∈ S we know that as,tα−αt is symmetric, so any element of R can be expressed as a polynomial
in α whose coefficients are s-invariant polynomials. Because α2 = α(α + s(α)) − αs(α), where
α+ s(α) and αs(α) are symmetric, we see that any f ∈ R can be written uniquely as f = g+hα
for g, h ∈ Rs. Now clearly f−s(f) = hαs, and defining ∂s(f) = h makes perfect sense. Continuing
this calculation, it is not hard to show that Rs is the polynomial ring generated by the linear
terms as,tα− αt (one of these is redundant) and the quadratic term α2

s.
Clearly {1, α} and {−s(α), 1} form a dual basis for ∂s, making R into a Frobenius extension

over Rs of degree 1. Clearly Ls = α− s(α) = αs.
There are two natural choices of α, though both require some assumptions. When 2 is

invertible we often use α = αs/2, which is notable because {1, αs/2} is the only possible self-dual
basis. On the other hand, when local non-degeneracy holds and as,t = −[2] there is another
useful choice, which is α = ωs = (2αs + [2]αt)/(4− [2]2). This term is uniquely defined in the
span of αs and αt by the fact that ∂s(ωs) = 1 and ∂t(ωs) = 0, and such an element exists (for
both s and t) if and only if local non-degeneracy holds. This is obviously not the right definition
of a ‘fundamental weight’ outside of the dihedral case, since ∂u(ωs) need not be zero, but it will
suffice for our purposes in this paper.

Now for the first important consequence of this Frobenius extension: a categorification
of (2.4).

Claim 3.20. Letting Bs
def
= R⊗Rs R(1), we have an isomorphism of graded R-bimodules

Bs ⊗Bs ∼= Bs(1)⊕Bs(−1). (3.3)

Proof. This is clear from the Rs-bimodule isomorphism R ∼= Rs ⊕Rs(−2). After all, one has

Bs ⊗Bs ∼= R⊗Rs R⊗Rs R(2) ∼= R⊗Rs Rs ⊗Rs R(2)⊕R⊗Rs Rs ⊗Rs R(0) ∼= Bs(1)⊕Bs(−1).

Explicitly, the isomorphism from left to right sends 1⊗ g⊗ 1 7→ (∂s(αg)⊗ 1, ∂s(g)⊗ 1), and the
isomorphism from right to left sends (1⊗ 1, 0) 7→ 1⊗ 1⊗ 1 and (0, 1⊗ 1) 7→ 1⊗−s(α)⊗ 1. 2

Remark 3.21. We have seen that ∂s : R → Rs is a Frobenius trace if and only if ∂s is surjective.
When ∂s is not surjective we can still ask whether Rs ⊂ R is Frobenius with some other trace
map ∂. If the image of ∂s forms a non-zero principal ideal generated by c ∈ k ⊂ Rs, then ∂ = ∂s/c
makes sense even when c is not invertible (if k is a domain), and this will be a Frobenius trace.
The statements in this paper can be modified to deal with this situation accordingly. However,
when the image of ∂s is not a principal ideal (as in the universal case for the infinite dihedral
group), there is little one can do.

Remark 3.22. There is at least a one-parameter family of Frobenius structures for Rs ⊂ R, given
by root rescaling, sending Ls 7→ λsLs and ∂s 7→ λ−1s ∂s. This family of Frobenius structures
is the only one worth considering because of its other desirable properties: ∂ kills Rs, Ls is
anti-invariant, and so on.

3.7 Dihedral invariants
In this subsection we will be investigating invariant subrings under dihedral parabolic subgroups.
Fix a pair s, t ∈ S and let as,t = −[2]. Continue to assume the realization is faithful.

We would like to investigate under which conditions Rs,t ⊂ R is a Frobenius extension. As an
illustrative example, we first give a description of the Ws,t-invariants and the Ws,t-anti-invariants
that live within the polynomial ring k[αs, αt]. Let L denote the product of the positive roots.
We will soon show that, when Rs,t ⊂ R is a Frobenius extension, L is its product-coproduct.
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Claim 3.23. Suppose that R = k[αs, αt]. If m =∞ and [2] = ∓2, then Rs,t = k[αs±αt]. If m =∞
and A is non-degenerate (i.e. 4 − [2]2 is invertible) then Rs,t = k[z] for z = α2

s − [2]αsαt + α2
t .

If A is non-degenerate and m <∞ then Rs,t = k[z, Z] where Z is a product of m linear factors
as described below. When m is infinite, there are no Ws,t-anti-invariants. When m is finite the
Ws,t-anti-invariants are freely generated over Rs,t by L.

Proof. This is mostly a brute-force calculation, and much of it is well known. Let us remark
on what happens when m <∞. Clearly L is anti-invariant, since s permutes the positive roots
except αs, which it sends to −αs. One may choose Z to be the product of the W -orbit of ωs
(respectively, ωt) or, if these elements exist in h∗, to be the product of the positive roots of the
dihedral group W2m which are not roots of Wm. 2

Remark 3.24. When R is not generated by αs and αt, it will typically be the case that Rs,t is
generated by the elements z and Z above, as well as additional linear terms. One can always
guarantee this when 4− [2]2 is invertible, by a simple calculation. However, when [2] = ±2, the
ring Rs,t can be more complicated. We do not have a general statement to make.

One can already see that when m =∞, the subring Rs,t has a strictly smaller transcendence
degree than R, and thus Rs,t ⊂ R cannot be a Frobenius extension. For the rest of this subsection
we assume that m <∞. We let w0 be the longest element of this parabolic subgroup. Our next
goal is to define the Frobenius trace R → Rs,t.

Claim 3.25. The simple Demazure operators satisfy the braid relation

∂s∂t · · ·︸ ︷︷ ︸
m

= ∂t∂s · · ·︸ ︷︷ ︸
m

def
= ∂s,t.

This composition is called a (higher) Demazure operator, and it maps R to Rs,t.

Proof. The braid relations for Demazure operators are well known. They can also be shown by a
straightforward calculation. Both sides can be expressed as a sum where each term is ±w(f)/π
for some w ∈ Ws,t and π some product of roots. One can match the terms on each side of the
equality using the observations in § 3.4. Because of the braid relation, the image of ∂s,t is in the
kernel of both ∂s and ∂t, and is therefore in Rs,t. 2

Remark 3.26. When the realization is odd-unbalanced, the braid relation only holds up to scalar.
For the even-unbalanced case, see Remark 3.29 below.

If ∂s,t is a Frobenius trace R→ Rs,t then there is a compatible square of Frobenius extensions,
where Rs,t ⊂ Rs has trace map ∂ss,t = ∂

m̂−1t
and Rs,t ⊂ Rt has trace map ∂ts,t = ∂

m̂−1s
.

Just because ∂s and ∂t are individually surjective it does not follow that ∂s∂t is surjective.
This would require that Rs ↪→ R → Rt is surjective. When h∗ is spanned by the simple roots,
this is only the case when ωt ∈ Rs is defined, that is, when local non-degeneracy holds.

Proposition 3.27. With Demazure surjectivity, local non-degeneracy, and lesser invertibility,
∂s,t : R → Rs,t is a Frobenius trace.

Proof. (Sketch) This is a brute-force computation. It is sufficient to show that ∂ss,t is a Frobenius

trace. Consider the basis {1, ωt, ω2
t , . . . , ω

m−1
t } of Rs over Rs,t. It is rather cute to calculate

that ∂ss,t(ω
m−1
t ) = [m − 1]!, so we leave it as an exercise in the Leibniz rule. One can show

combinatorially that a dual basis exists when [m− 1]! is invertible, by calculating the dual basis
inductively. 2
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Remark 3.28. Just as in Remark 3.21, one need not invert 4− [2]2 or [m− 1]! to guarantee the
existence of some Frobenius trace. Instead, it may be possible to divide ∂s,t by [m− 1]! formally.

Remark 3.29. Because of the braid relation, we can define ∂w for any w ∈W . Note that ∂
k̂s

= 0
for any k > m. In particular, if the realization is not faithful for this dihedral group (so that
[m] = 0 for m < mst < ∞) then ∂w0 = 0, and the braid relation holds for foolish reasons. It is
not a Frobenius trace map, of course. It is impossible for a graded ring extension A ⊂ B to be a
Frobenius extension of two different degrees at once, so that if Rs,t ⊂ R is a Frobenius extension
of degree m, it will not be one of degree mst. Thus when the realization is even-unbalanced, it
is usually not faithful, and therefore the braid relation on Demazure operators holds for foolish
reasons.

Remark 3.30. It seems likely that the assumptions in Proposition 3.27 can be weakened, but I
have not done the computation. We have also not bothered to calculate the condition for ∂wJ

to give a Frobenius trace R → RJ beyond the dihedral case. When this happens, we have a
Frobenius (partial) hypercube including all finitary RI .

Remark 3.31. A nice formula for dual bases of the Frobenius extensions RI ⊂ RJ is unknown to
the author, even in type A where the situation is far better studied. Dual bases for C[x1, . . . , xn]
over C[x1, . . . , xn]Sn are presented in [KLMS12], though this is not quite the same as type A,
which is the subring given by traceless polynomials. Note that Schubert polynomials do not form
dual bases for C[x1, . . . , xn], because ∂w0(fif

∗
j ) = δi,j only modulo positive-degree symmetric

polynomials.

Though the results below continue to apply to any dihedral parabolic subgroup, we will now
assume that W is dihedral, and write RW = Rs,t, and use similar notation like ∂W = ∂s,t.

Theorem 3.32. Take all three assumptions, with m <∞. Then RW ⊂ Rs, Rt ⊂ R is a graded
Frobenius square. Therefore, R(m) is a free RW -module of graded rank [W ], and Ri(m− 1) is a
free RW -module of graded rank [W ]/(v + v−1). Any dual bases satisfy the following properties
(starting at (3.4e), we will take elements in Rs and include them in R, in order to apply ∂t):

LW = L, (3.4a)

∂W (L) = 2m, (3.4b)

LsW =
L

αs
, (3.4c)

∂sW (LsW ) =m, (3.4d)

∆s
W (1)∂t(∆

s
W (2)) = ∂t(∆

s
W (1))∆

s
W (2) =

L

αsαt
, (3.4e)

∆s
W (1) ⊗ ∂t(f∆s

W (2)) = ∂s(f∆t
W (1))⊗∆t

W (2) ∈ Rs ⊗RW Rt for any f ∈ R. (3.4f)

(The last two equations use Sweedler notation.) In particular, the map R → Rs⊗RW Rt sending
f 7→ ∆s

W (1) ⊗ ∂t(f∆s
W (2)) = ∂s(f∆t

W (1)) ⊗ ∆t
W (2) is well defined, Rs-linear on the left, and

Rt-linear on the right.

Proof. The equations above hold in general for any square of Frobenius extensions, as shown
in [ESW14]. That paper requires a technical condition, that dual bases for R over Rs can be
chosen such that one basis lies entirely in Rt; we have already described how this follows from
local non-degeneracy in the proof of Proposition 3.27. The only interesting piece of data is
that LW = L, the product of the positive roots, from which the other facts can be deduced.
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To show this, note that ∂s(LW ) = ∂s(L
s
Wαs) = 2LsW = 2LW /αs. This is only possible if LW is

s-anti-invariant. It is t-anti-invariant by the same argument, so for degree reasons it must be

equal to a scalar multiple of L. A calculation shows that ∂W (L) = 2m, so they agree precisely. 2

As a consequence, we can also categorify (2.6) and (2.7).

Corollary 3.33. Letting BW
def
= R⊗RW R(m) we have the following isomorphisms:

Bs ⊗BW∼=BW ⊗Bs ∼= (v + v−1)BW , (3.5)

BW ⊗BW∼=[W ]BW . (3.6)

Choosing any basis {fk} with dual basis {f∗k}, the [W ]-many projection maps from R to RW

are g 7→ ∂W (gfk) and the inclusion maps are g 7→ gf∗k . These maps, applied to the middle factor

in R⊗RW R⊗RW R, give you the projections and inclusions in (3.6) as well. To deduce (3.5) we

write R⊗Rs R⊗RW R as R⊗Rs R⊗Rs Rs⊗RW R and reduce the second factor of R as in Claim

3.20.

3.8 Soergel bimodules and variants

We continue to assume that the realization is faithful, and that Demazure surjectivity holds.

We have already defined the R-bimodules BW (when m is finite) and Bi for i ∈ {s, t}. These

can be used to define a number of full subcategories of (R,R)-bimodules, and a number of full

sub-2-categories of Bim. Here, Bim denotes the 2-category whose objects are rings A, and for

which HomBim(A,B) is the category of (B,A)-bimodules, with the obvious tensor structure

giving the composition of 1-morphisms.

Definition 3.34. The category BSBim is the (non-additive, non-graded) full monoidal

subcategory of (R,R)-bimodules generated by Bs and Bt. Given a sequence w = i1i2 . . . ik,

we write BS (w) = Bi1 ⊗R Bi2 ⊗R · · · ⊗R Bik . These are called Bott–Samelson bimodules. We

write HOM(BS (w),BS (y)) for the graded vector space of R-bimodule maps from BS (w) to any

shift of BS (y). It is a graded R-bimodule itself.

Definition 3.35. Suppose that m < ∞ and RW ⊂ Rs, Rt ⊂ R is a Frobenius square.

The category gBSBim is the (non-additive, non-graded) full monoidal subcategory of (R,R)-

bimodules generated by Bs and Bt and BW . Objects are called generalized Bott–Samelson

bimodules. We use similar conventions as for BSBim.

Definition 3.36. The category SBim is the graded Karoubi envelope of BSBim. That is, it

is the full additive monoidal subcategory of graded (R,R)-bimodules containing all grading

shifts, direct sums, and direct summands of Bott–Samelson bimodules. Objects are called Soergel

bimodules.

Though it is not immediately obvious, gBSBim ⊂ SBim, so that SBim is also the Karoubi

envelope of gBSBim.

Definition 3.37. The 2-category SBSBim is the (non-additive, non-graded) full sub-2-category

of Bim, whose objects are the rings RJ for J ⊂ S finitary, and whose 1-morphisms are generated

by the (RI , RJ)-bimodule IndIJ = RI and the (RJ , RI)-bimodule ResIJ = RI(`(J)−`(I)) whenever

I ⊂ J . Objects are called singular Bott–Samelson bimodules.
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Definition 3.38. The 2-category SSBim is the graded Karoubi envelope of SBSBim. Objects
are called singular Soergel bimodules.

It is not hard to see that the endomorphism category of ∅ ⊂ S inside SBSBim is gBSBim (or
rather, they have the same additive graded envelope) when m <∞, and BSBim when m =∞.
Therefore the endomorphism category ∅ inside SSBim is SBim.

If we wish to emphasize the base ring, we may write BSBimk. The definition of BSBim
depends on the realization, and for any base change k → k′ there is an obvious functor BSBimk⊗k
k′ → BSBimk′ . However, this functor is by no means an equivalence! For instance, specializing
q to a root of unity and thus passing from a faithful realization of an infinite dihedral group
to a non-faithful one will add new morphisms between Bott–Samelson bimodules. In addition,
taking the Karoubi envelope does not commute with base change, which may create additional
idempotents.

3.9 Soergel and Williamson categorification theorems
We summarize the main theorems of Soergel and Williamson, as they apply to the dihedral case.

Definition 3.39. A realization over a field k of characteristic 6= 2 is reflection faithful if an
element preserves a codimension-1 hyperplane of h if and only if it is a reflection, and moreover
if two distinct reflections preserve distinct hyperplanes.

In particular, any reflection-faithful realization is faithful, and satisfies all three assumptions.
However, the reflection representations of affine Weyl groups are not reflection faithful.

Theorem 3.40 (See [Soe07, Theorems 1.10, 4.2, 5.5, 6.16]). Let m > 2 or m =∞. Let k be an
infinite field of characteristic not equal to 2, and fix a reflection-faithful representation of Wm

over k. Then the SCT and the Soergel conjecture (see § 2.3) hold for BSBim.

Soergel’s results apply in great generality to other Coxeter groups. In the general case, one
can still show the SCT but not the Soergel conjecture. Soergel’s results and techniques have
been generalized by Libedinsky [Lib08] to some non-reflection-faithful realizations, including the
reflection representation of any Coxeter group. We speak of a Soergel realization to imply that
the SCT can be quoted from the literature. As discussed in the introduction, the sequel [EW13]
will use the diagrammatic presentation of morphisms to give an alternate proof of the SCT in
greater generality.

Theorem 3.41 (See [Wil11, Theorems 7.5.1, 7.4.1 and others]). Fix a Soergel realization. There
is a functor from H to the Grothendieck category of SSBim, sending v to the grading shift,
bJ ∈ Hom(J,K) to [IndJK ] for J ⊂K, and bJ ∈ Hom(K,J) to [ResJK ]. This map is an isomorphism,
and over the empty parabolic it restricts to the isomorphism above from H to [SBim]. There
is an analogous formula for calculating the size of 2-morphism spaces in SSBim, involving the
standard trace map on H.

4. Temperley–Lieb categories

4.1 The uncolored Temperley–Lieb category
The (uncolored) Temperley–Lieb algebra on n strands TLn is an algebra over Z[δ] which can be
realized pictorially. It has a basis given by crossingless matchings with n points on bottom and n
on top. Multiplication is given by vertical concatenation of diagrams, and by replacing any closed
component (i.e. circle) with the scalar −δ. We denote the crossingless matching representing the
identity element by 1n.
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Example 4.1. An element of TL10:

The Temperley–Lieb algebra is part of the Temperley–Lieb category T L, a monoidal category
whose objects are n ∈ N, pictured as n points on a line, and where the morphisms from n to m
are spanned by crossingless matchings with n points on bottom and m on top. Composition is
given by concatenation and resolving circles, as usual, so that End(n) = TLn.

Let U = Uq(sl2) be the quantum group of sl2. Let Vk be the irreducible representation with
highest weight qk, and let V = V1. In the introduction we remarked that the Temperley–Lieb
category governs the intertwiners between tensor products of V , so that HomT L(n,m) ⊗Z[δ]

Q(q) = HomU (V ⊗n, V ⊗m). Under this base change, δ 7→ [2]q, and we use quantum numbers
interchangeably with the polynomials in δ that express them.

Proposition 4.2. The Temperley–Lieb algebra TLn, after extension of scalars, contains
canonical idempotents which project V ⊗n to each isotypic component. It contains (non-canonical)
primitive idempotents refining the isotypic idempotents, which project to each individual
irreducible component. Given a choice of primitive idempotents, TLn contains maps which realize
the isomorphisms between the different irreducible summands of the same isotypic component.
These maps can be defined in any extension of Z[δ] where the quantum numbers [2], [3], . . . , [n]
are invertible.

Proof. The only part of this proposition which is not tautological is the statement about
invertible quantum numbers. This follows from recursion formulas for the idempotents, some
of which can be found below. For more on recursion formulas and coefficients see [FK97]. 2

The highest non-zero projection, from V ⊗n to Vn, is known as the Jones–Wenzl projector
JWn ∈ TLn, having been studied independently by Jones [Jon86] and by Wenzl [Wen87]. Here
are some examples of Jones–Wenzl projectors.

Example 4.3.

Claim 4.4. Jones–Wenzl projectors satisfy the following properties.

– JWn is the unique map which is killed when any cap is applied on top or any cup on bottom,
and for which the coefficient of 1n is 1.

– The ideal generated by JWn in TLn is rank 1, since any other element x ∈ TLn acts on
JWn by the coefficient of 1n in x.

– JWn is invariant under horizontal and vertical reflection.

– JWn can be defined if and only if the quantum binomial coefficients
[
n
k

]
are invertible for

all 0 6 k 6 n (these are also polynomials in δ).
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– There is a recursive formula due to Wenzl [Wen87] which holds for n > 1:

(4.1)

– There is an alternate recursive formula [FK97, Theorem 3.5], which sums over the possible
positions of cups, and follows quickly from (4.1):

(4.2)

In Kar(T L) we let Vn denote the image of JWn and (·) ⊗ V denote the functor of adding
a new line on the right (i.e. it sends the object n to n+ 1, and it acts on morphisms by adding
a new line to the right). The recursive formula (4.1) gives a diagrammatic proof of the following
obvious proposition.

Proposition 4.5. Suppose that all quantum numbers are invertible. The Karoubi envelope
Kar(T L) of T L has indecomposables Vn, n ∈ N. These satisfy V ⊗ V0 ∼= V0 ⊗ V ∼= V1 and
V ⊗ Vn ∼= Vn ⊗ V ∼= Vn+1 ⊕ Vn−1 for n > 1.

The proofs of the above facts are standard. Some references on the Temperley–Lieb
algebra and planar algebras include [GW02, BPMS12, FK97, Mor15]. Formulas for Jones–
Wenzl projectors were produced in [Wen87, FK97]; the paper [Mor15] has a more detailed
version. Finally, the statement that Jones–Wenzl denominators are defined when quantum
binomial coefficients are non-zero is a folklorish result which does not seem to appear in the
literature. A representation-theoretic justification was recently explained to me by Ben Webster
on mathoverflow.net.

4.2 Roots of unity and rotation
Suppose that the Jones–Wenzl projector JWm−1 ∈ TLm−1 is well defined. In particular, [m−1] is
invertible. One can ask when JWm−1 is negligible, which is equivalent for Jones–Wenzl projectors
to the statement that

A related question is whether the Jones–Wenzl projector has a ‘rotational eigenvalue’, that is,
whether rotating JWm−1 by a single strand will yield a scalar multiple of JWm−1. Clearly JWm−1
is negligible if and only if it has a rotational eigenvalue, if and only if it is killed by all caps on
top, bottom, or sides. See [GW02] for more details about negligibility.
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Example 4.6. JW2 is negligible if and only if [2]2 = 1 if and only if [3] = 0. On the other hand,
JW3 is only negligible if [4] = 0 and [3] = 1. If instead [4] = 0 and [3] = −1 (and [2] = 0), JW3

is not negligible.

The diagram is the rotation of the identity map by one strand, and using (4.2) one

can calculate that its coefficient in JWk is precisely 1/[k]. If there is a rotational eigenvalue for
JWm−1, it is precisely 1/[m− 1]. If there is a rotational eigenvalue, it must be an (m−1)th root
of unity (to preserve the coefficient of the identity map), and it must also be ±1 (by a variety of
arguments). It particular, if m is even then the rotational eigenvalue of JWm−1 must be 1.

Claim 4.7. If m is odd, then JWm−1 is negligible if and only if [m] = 0, and it has rotational
eigenvalue [m − 1] = ±1. If m is even, then JWm−1 is negligible if and only if [m] = 0 and
[m− 1] = 1.

This claim is the primary reason to assume that the realization is balanced: to guarantee
the existence of certain rotationally-invariant Jones–Wenzl projectors. Moreover, it demonstrates
the key difference between even-unbalanced and odd-unbalanced realizations. Even-unbalanced
situations do not have rotational eigenvalues.

Suppose that [m] = 0. Using the fact that [m−r] = [m−1][r] for 0 6 r 6m, one can see that[
m−1
k

]
is actually just a power of [m− 1], so it is invertible. Therefore JWm−1 is well defined.

4.3 The two-colored Temperley–Lieb category
Any embedded 1-manifold will divide the plane into regions which can be colored alternately with
two colors. Let us assume these two colors are red and blue. We may construct a variation on the
Temperley–Lieb algebra by coloring the regions. The two-color Temperley–Lieb 2-category 2T L
has two objects, red and blue. It has two generating 1-morphisms: a map from red to blue, and a
map from blue to red. The 2-morphisms are the Z[δ]-module spanned by appropriately-colored
crossingless matchings. Multiplication is defined as in T L.

Example 4.8. An element of Hom(rbrbrb, rbrb):

Remark 4.9. There is an ‘asymmetric’ version of 2T L where the evaluation of a circle depends
on the color of the interior, but the product of the two circles is thought of as [2]2. This is akin
to an asymmetric Cartan matrix, and is described in the Appendix.

We use notation for 1-morphisms in 2T L analogous to our notation for reduced expressions
in the dihedral group. The 1-morphism with five strands which passes through colors rbrbrb
will be denoted either as 6̂b or r6̂, and will be called right-b-aligned or left-r-aligned. There is
a color-switch isomorphism between End(n̂b) and End(n̂r); both will be called the two-colored
Temperley–Lieb algebra 2TLn−1.

Example 4.10. An element of 2TL10:

The Jones–Wenzl projectors JWn carry over to 2TLn for either choice of alignment.
Proposition 4.2 generalizes obviously to 2T L, where one remembers that each object in Kar(T L)
appears twice in Kar(2T L), once with each alignment. For instance, V0 is replaced by two distinct
indecomposables, Vb and Vr, whose identity map is represented by the empty diagram with the
region colored blue or red, respectively. Similarly, V1 is replaced by Vrb and Vbr, and so forth.
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Proposition 4.11. Suppose that all quantum numbers are invertible. The Karoubi envelope

Kar(2T L) of 2T L has indecomposables corresponding to non-empty alternating sequences of red

and blue. We denote by (·)⊗r the functor of placing a line on the right, changing a right-b-aligned

object into a right-r-aligned one. This satisfies V1̂b ⊗ r ∼= V2̂r and V
k̂b
⊗ r ∼= V

k̂+1r
⊕ V

k̂−1r
for

k > 2.

Note that we can label these indecomposables by the elements of W∞\{e}. The multiplication

rule given here is a categorification of the rule given in Claim 2.4.

When m is even, the horizontal flip of the right-b-aligned Jones–Wenzl projector JWm−1 is

the right-r-aligned JWm−1. When [m] = 0 (and [m−1] = 1 for m even), both versions of JWm−1
are negligible. Rotating the right-b-aligned JWm−1 by one strand will yield [m − 1] times the

right-r-aligned JWm−1.

Remark 4.12. We know that irreducible representations of sl2 or Uq(sl2) come in two kinds: even-

and odd-dimensional. These are distinguished, for instance, by the action of the center of SL2 (the

central character), or by the image of the highest weight in Λwt/Λrt
∼= Z/2Z. This decomposition

is compatible with the tensor product, so that Uq(sl2)-rep is actually Z/2Z-graded-monoidal.

Tensoring with the standard representation will switch between even and odd irreducibles, just

as it switches here between the two colors. This gives a representation-theoretic meaning for the

two-colored Temperley–Lieb algebra. Even and odd are usually distinguished by the fact that

the trivial representation is even, but for us there is no difference between red and blue. Thus

2T L encodes a 2-categorical version of Uq(sl2) where we remember the central character, but

forget which character is trivial. This will generalize in the construction of quantum algebraic

Satake in type A; see [Eli14].

4.4 Coxeter lines and associated polynomials

Definition 4.13. Given a colored crossingless matching in 2T L, its associated monomial will

be αasα
b
t ∈ R, where a is the number of blue regions and b the number of red regions. Given

an arbitrary 2-morphism in 2T L, its associated polynomial will be obtained by writing it in the

basis of crossingless matchings and taking the appropriate linear combination of monomials.

Note that the associated polynomial is defined only for crossingless matchings, not for

crossingless matchings with circles. That is, a circle evaluates to −[2], not to an extra copy

of αs or αt. We will use associated polynomials in a crucial way in §§ 5.4 and 6.1.3, to show that

certain morphism spaces between Soergel bimodules are non-zero.

We are interested in the associated polynomial of a Jones–Wenzl projector. Let us assume

that all quantum numbers are invertible (up to the point we are interested in). Recall that we

have defined the positive roots Ls and Lt for m =∞ in § 3.4. We now place a ‘snakelike’ order on

these roots: fs,0 < ft,0 < ft,1 < fs,1 < fs,2 < ft,2 < · · · . There is an alternative t-aligned snakelike

order which begins with ft,0 < fs,0 < fs,1 < · · · . One feature of this order is that the first m

roots enumerate precisely the m roots of the reflection representation of the corresponding finite

dihedral group, when [m] = 0.

Let L
(s)
k be the product of the first k roots in the s-aligned snakelike order. Clearly L

(s)
k = L

(t)
k

for k even, so we may ignore the superscript. When [m] = 0 and [m−1] = 1, L
(s)
m = L

(t)
m regardless

of the parity of m.

Proposition 4.14. Suppose that all quantum numbers are invertible. The associated polynomial

of JW2k−1 is L2k times an invertible scalar specified below. The associated polynomial of the
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blue-aligned (respectively, red-aligned) JW2k is L
(s)
2k+1 (respectively, L

(t)
2k+1) times an invertible

scalar specified below.

Corollary 4.15. When [m] = 0 and [m − 1] = 1, the negligible Jones–Wenzl JWm−1 has
associated polynomial precisely equal to L, the product of all the positive roots for the
corresponding finite dihedral group Wm.

Remark 4.16. This proposition is the analog of [Eli10b, § 3.7]. One should think about L in
this context not as a polynomial but in terms of the ideal it generates. This ideal cuts out in
h the union of all the reflection-fixed lines, that is, the lines f = 0 for f a root. In [Eli10b] we
examine Soergel bimodules in general type A, and obtain an analogous non-principal ideal in
k[α1, α2, . . . , αn]. This ideal cuts out the Coxeter lines in hsln (there called the ‘Weyl lines’),
which are the lines given by transverse intersections of reflection hyperplanes in h. While it is
not obvious in this dihedral setup for reasons of dimension, what we are doing is creating an
ideal which cuts out lines, not one which cuts out codimension-1 reflection hyperplanes.

Proof. The proposition is clearly true for JW0, with no scalar. We now work inductively using
(4.2). To get from the associated polynomial of the right-red-aligned JW2k to that of the right-
blue-aligned JW2k+1 we need to multiply by

1

[2k + 1]

( 2k+1∑
a=1,2k+1−a even

[a]αs +

2k+1∑
a=1,2k+1−a odd

[a]αt

)
.

Written another way, this is

1

[2k + 1]
([k + 1][k + 1]αs + [k][k + 1]αt) =

[k + 1]

[2k + 1]
([k + 1]αs + [k]αt).

The term in parentheses is precisely the (2k + 1)th root in the s-aligned snake order.
Similarly, to go from the right-blue-aligned JW2k−1 to the red-aligned JW2k we multiply by
(([k]/[2k]))([k]αs + [k + 1]αt), which is a scalar multiple of the 2kth term of the s-aligned snake
order.

Therefore, the associated polynomial of the left-blue-aligned JWm−1 is equal to the product

of the first m roots in the s-aligned order, as well as [1]
[1]

[1]
[2]

[2]
[3]

[2]
[4]

[3]
[5]

[3]
[6] · · · where the final term has

denominator [m− 1]. Using [k] = [m− 1][m− k], the overall product is

[m− 1]!

[m− 1]!
[m− 1]d = [m− 1]d,

where d is the floor of (m− 1)/2. This is invertible; in the balanced case, it is 2

5. Dihedral diagrammatics: m = ∞

Let us fix a realization h∗ of the infinite dihedral group. It has a 2 × 2 Cartan matrix indexed
by S = {s, t}, with as,t = at,s = −[2] in a specialization k of Z[δ]. We identify s with the color
blue, and t with the color red. The finitary parabolic subset b = {s} is also colored blue, r = {t}
is colored red, and ∅ is colored white. We assume Demazure surjectivity (Assumption 3.12)
everywhere below, though we remark on what can be said in its absence.

Below we will define diagrammatic categories which encode morphisms between Bott–
Samelson bimodules (and singular Bott–Samelson bimodules). Let us reiterate a key point from
the introduction. We only encode those morphisms which appear for a generic realization of the
infinite dihedral group. In contrast, when the realization is not faithful, the action of the infinite
dihedral group on h∗ factors through a finite dihedral group. As a consequence, the category
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of Soergel bimodules will categorify the Hecke algebra of the finite dihedral group, and it will
have additional, non-generic morphisms. Nonetheless, the diagrammatic category defined in this
section will categorify the Hecke algebra of the infinite dihedral group, regardless of whether the
realization is faithful or not, as proven in [EW13]. In this section, we prove the SCT and the
Soergel conjecture for (faithful) realizations of the infinite dihedral group where lesser invertibility
holds.

5.1 Diagrammatics and rotation
There are numerous excellent introductions to diagrammatics for cyclic (i.e. pivotal) monoidal
categories and 2-categories, such as [Lau10, ch. 4]. For an example of a diagrammatic category
which is self-biadjoint, see [EK10].

We make only one remark, also made in [EK10]. Cyclicity states that taking any morphism
and using adjunction maps to rotate it by 360 degrees will not change the morphism. Cyclicity
is required to draw morphisms on a plane, because any symbol we use to depict the morphism
is evidently invariant under 360-degree rotation. However, consider a morphism with boundary
Bs⊗Bs⊗Bs, reading around the circle. It is possible to rotate this morphism by 120 degrees, and
cyclicity is no guarantee that this will not change the morphism. If it is the case that 120 degree
rotation does not change the morphism, then one may depict the morphism using a diagram
which is 120-degree rotation invariant, such as a trivalent vertex.

One may pose the same question for any 2-morphism whose boundary admits symmetry. For
example, in the balanced case one can draw the negligible Jones–Wenzl projector as a vertex, as
it is invariant under all viable rotations, color switches, and reflections.

When one gives a diagrammatic category by generators and relations, and generators are
drawn to have some non-trivial rotational invariance, then there is a hidden relation (called the
isotopy relation) which states that rotating that 2-morphism does nothing. This relation will go
unstated, but will need to be checked when applying functors to non-diagrammatic categories.

5.2 Singular Soergel bimodules: m = ∞
In this section we introduce a diagrammatic 2-category D(∞) which is supposed to represent
SBSBim for the infinite dihedral group. We define a fully faithful 2-functor 2T L → D(∞)
(though the proof of faithfulness is postponed until § 5.4). We also define a 2-functor D(∞) →

SBSBim, which is fully faithful for faithful realizations (again, the proof is postponed).

5.2.1 Definitions.

Definition 5.1. A (singular) Soergel diagram for m =∞ is an isotopy class of a particular kind
of decorated 1-manifold with boundary, properly embedded in the planar strip R × [0, 1] (i.e.
the boundary of the manifold is embedded in the boundary of the strip). The regions cut out by
this 1-manifold are colored by finitary parabolic subsets of S, in such a way that two adjacent
regions differ by a single index (i.e. b is not adjacent to r, no color is adjacent to itself). One may
place boxes inside any region, each decorated by a homogeneous polynomial in the appropriate
invariant subring. For instance, one can place a polynomial f ∈ Rs inside a blue region, or a
polynomial f ∈ R inside a white region.

This region labeling determines a coloring and orientation of the 1-manifold itself, as follows.
If two adjacent regions differ by the index s, then the component of the 1-manifold which
separates them will be colored s. It will be oriented such that the larger parabolic subset is on
the right-hand side of the 1-manifold. Conversely, the coloring and orientation of the 1-manifold
determines the region labelings, but not all colorings and orientations are allowable (i.e. will lead
to consistent region labels).
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The boundary of the manifold gives two sequences of colored oriented points, the top and

bottom boundary. Soergel 1-manifold diagrams are graded, where the degree of a clockwise cup or

cap is +1, the degree of a counterclockwise cup or cap is −1, and the degree of a box is the degree

of the polynomial inside. Note that the degree of a Soergel diagram is independent of the isotopy

class, since by planar Morse theory, cups and caps are created in clockwise–counterclockwise

pairs.

Many examples of Soergel diagrams are found in the following pages.

We think of a Soergel diagram as being the data of two oriented 1-manifolds, one blue and

one red, which are not allowed to overlap (with some additional restrictions). In the next chapter

when we treat the case m <∞, these manifolds will be allowed to intersect transversely.

To rotate a diagram is to change which external regions are extremal, that is, which regions go

to ∞ on the right or left. Rotation causes part of the boundary to switch from top to bottom or

vice versa. Rotating a singular Soergel diagram may change its degree! We will happily calculate

using planar disk diagrams, which are essentially equivalence classes under rotation.

Definition 5.2. Let D(∞) be the 2-category defined as follows. The objects are {∅, b, r}. The

1-morphisms are generated by maps from ∅ to b (respectively, r) and back. A path in the

object space (e.g. b∅r∅b∅b∅) uniquely specifies a 1-morphism. The 2-morphism space between

1-morphisms is the free k-module spanned by Soergel diagrams with the appropriate boundary

(by convention, the bottom boundary is the source, and the top boundary the target), modulo

the relations below. All relations hold with the colors b and r switched. Hom spaces will be

graded by the degree of the Soergel diagrams.

It will be an unwritten relation in this and future definitions that boxes containing

polynomials will add and multiply as the polynomials do. Then we have:

(5.1a)

when f ∈ Rs (5.1b)

(5.1c)

(5.1d)

This ends the definition.

Let us explain the symbol ∆s in (5.1d). By placing polynomials in R in a white region, and

using the sliding relation (5.1b), it is clear that there is an action of R⊗Rs R on diagrams with a

blue strip separating white regions. The element ∆s ∈ R⊗Rs R is precisely the comultiplication

element for the Frobenius extension Rs ⊂ R. For example, one knows that 2∆s = αs⊗1+1⊗αs,
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so that, multiplying (5.1d) by 2, one obtains

These four relations are standard for Frobenius extensions. See [ESW14] for more details.
By Demazure surjectivity, one can write any polynomial f ∈ R as g + hα for g, h ∈ Rs and

∂s(α) = 1. From this it is easy to show the polynomial forcing relation:

(5.2)

Clearly (5.2) implies (5.1d) as well.
One can define the 2-category D(∞) without assuming Demazure surjectivity, using relation

(5.2) instead of (5.1d). However, if ∂s is not surjective it will be impossible to use this relation to
resolve a ‘broken strip’, as in the left-hand side of (5.1d), into a linear combination of diagrams
with an unbroken strip, as in the right-hand side of (5.1d). One can only perform this operation
up to torsion.

One should keep in mind that we do not yet know whether the map R → End(∅) is injective
or even non-zero. We will eventually show it is an isomorphism.

Using Soergel diagrams without boxes, one can still express any polynomial f ∈ R which is
in the image of the subpolynomial ring generated by αs and αt, using colored circles as in (5.1a).
In the rest of this subsection, we describe a boxless presentation for D(∞) under the assumption
that αs and αt generate R. We will also need to assume Demazure surjectivity, which in this
case is equivalent to the statement that the ideal (2, ast) ⊂ k contains the unit.

Let us note the following relations among boxless diagrams, which follow easily from the
relations above.

The empty circle relation:

(5.3)

The Cartan relations:

(5.4a)

(5.4b)

The circle forcing relations:

(5.5a)
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(5.5b)

We claim that these five relations give an equivalent presentation of D(∞) under the
assumptions above. The key goal is to give a well-defined notion of a box labeled by f ∈ RI
in a region colored I.

Using (5.1a) as a convention (rather than a relation), we may place any polynomial in αs
and αt in a white region, and thus by our assumption, any polynomial in R. It is not difficult to
use the circle forcing relations to prove the polynomial forcing relation. In particular, the circle
forcing relations imply this fact for any linear combination of αs and αt, and the Leibniz rule is
clear. Alternatively, (5.2) is easy to check for α2

s, and thus by our description of Rs in § 3.6, it
holds for any f ∈ Rs. Writing an arbitrary f ∈ R as f = g + hα for g, h ∈ Rs, the result is now
clear from the linear case.

Claim 5.3. Suppose that ∂s(α) = 1. For any f ∈ R we have

(5.6)

Proof. The claim holds for any f ∈ k, since in that case the left-hand side is zero by (5.3). The
claim also holds for f ∈ h∗ by an easy application of the Cartan relations.

Now begin with f inside a counterclockwise circle, as in the left-hand side of (5.6). Inside
the blue region, one can add a new counterclockwise circle containing α in its white interior; this
operation will not change the morphism. Apply (5.2) to force f into the new white region. The
first term is precisely the right-hand side of (5.6). The second term is zero, because it contains
an empty circle where f once was. 2

Since ∂s is surjective, we can define what it means to place an element of Rs in a blue region
using the convention (5.1c). The previous claim implies that this convention is consistent. Now
it is easy to prove (5.1b), using a similar proof to the previous claim. In fact, this shows that
(5.1b) is redundant given (5.2) and (5.1c), though it was needed to prove (5.2) given (5.1d).

5.2.2 The functor to bimodules and evaluation.

Definition 5.4. We give a (strict) 2-functor F : D(∞) → SBSBim. This 2-functor is the identity
on objects. The maps from ∅ to b and back correspond to Ress and Inds (defined in § 3.5),
respectively. To define the 2-functor on 2-morphisms we need only give the image of the boxes
and the clockwise and counterclockwise cups and caps. Boxes are sent to multiplication by
a polynomial. Cups and caps are sent to the four structure maps of the Frobenius extension
Rs ⊂ R: that is, the (blue) clockwise cap is sent to multiplication Bs = R ⊗Rs R(1) → R; the
clockwise cup is sent to comultiplication 1 7→ ∆s as a map R → Bs; the counterclockwise cap is
sent to the Demazure operator ∂s : R → Rs, and the counterclockwise cup is sent to the inclusion
Rs ⊂ R.

We could not have defined this functor without Demazure surjectivity, because then ∆s

would not exist.
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Claim 5.5. The above definition gives a well-defined 2-functor.

Proof. The isotopy relations follow by properties of Frobenius extensions. The action of
polynomials in various regions is clearly preserved by F, as are the relations (5.1). 2

Whenever b (respectively, r) appears in a 1-morphism of D(∞), it is either on the far right
or far left, or it is surrounded by ∅ on both sides. Therefore, one can take any Soergel diagram
and perform the following operations.

– If a blue region appears on the far right, place a new blue strand to create a white region
on the far right. Do the mirrored operation on the far left. Do the same with blue and red
switched. Now the diagram has extremal white space, in that ∅ appears on the right and
left.

– Whenever ∅b∅ appears inside the source (respectively, target), precompose with a cup from
∅ → ∅b∅ (respectively, postcompose with a cap ∅b∅ → ∅). Do the same with the colors
switched.

What remains is an endomorphism of ∅. This is sent by F to a polynomial in R. This procedure,
sending any 2-morphism space to R, is called the evaluation map. For instance, a boxless diagram
where every region is external would be sent to αasα

b
t , where a was the number of blue regions

and b the number of red regions.

5.2.3 Temperley–Lieb.

Definition 5.6. We give a Z[δ]-linear 2-functor from 2T L to D(∞) as follows. The 1-morphism
in 2T L from blue to red is sent to the 1-morphism r∅b, and the 1-morphism from red to blue
is sent to b∅r. Visually, the map on 2-morphisms takes a crossingless matching and widens each
strand into a region labeled ∅, with its boundary oriented counterclockwise.

Claim 5.7. The 2-functor above is well defined, and its image consists of degree-zero maps.

Proof. That the isotopy relations of 2T L are satisfied is obvious. That reduction of circles works
follows from the Cartan relations. 2

Claim 5.8. Composing this functor with the evaluation map, we get the associated polynomial
of a 2-morphism in 2T L.

Proof. This is obvious. 2

We will soon use this fact to prove the faithfulness of 2T L→ D(∞), when the realization
is faithful. Each Jones–Wenzl projector is sent to a non-zero 2-morphism in D(∞), because
Proposition 4.14 implies that its evaluation is a product of roots (up to non-zero scalar).
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5.3 The category D(∞)
Now we introduce a diagrammatic category D(∞) which is supposed to represent BSBim for
the infinite dihedral group.

5.3.1 Definitions and basics.

Definition 5.9. A Soergel graph for m = ∞ is an isotopy class of a particular kind of graph
with boundary, properly embedded in the planar strip (so that the boundary of the graph is
always embedded in the boundary of the strip). The edges in this graph are colored by either s
or t. The vertices in this graph are either univalent (dots) or trivalent, with all three adjoining
edges having the same color. The boundary of the graph gives two sequences of colors, the top
and bottom boundary. Soergel graphs have a degree, where trivalent vertices have degree −1 and
dots have degree 1. One can place a box labeled by f ∈ R in any region.

Unlike the singular case, rotating a strand from the top boundary to the bottom does not
affect the degree of the morphism, so we can consider Soergel graphs on the planar disk without
any degree issues.

Definition 5.10. Let D(∞) be the k-linear monoidal category defined herein. The objects
will be finite sequences w = i1i2 . . . id of indices s and t, with a monoidal structure given by
concatenation. The space HomD(∞)(w, y) will be the free k-module generated by Soergel graphs
with bottom boundary w and top boundary y, modulo the relations below. All relations hold
with the colors s and t switched. Hom spaces will be graded by the degree of the Soergel graphs.

The needle relation:

(5.7)

The barbell relation:

(5.8)

The polynomial forcing relation:

(5.9)

The Frobenius relations:

(5.10a)

(5.10b)

This ends the definition.

The hidden isotopy relations are below. They use cups and caps, which can be expressed in
terms of trivalents and dots by a rotation of (5.10b):

(5.11)

(5.12)
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The barbell forcing relations are implications of the above:

(5.13a)

(5.13b)

The analogy between barbells and the circles in D(∞) is quite clear. In particular, if the
polynomial ring R is generated by αs and αt, we may replace the polynomial forcing relations
with the barbell forcing relations. Barbells were called double dots in some previous work.

A tree is a connected graph with no cycles. By a successive application of (5.10b) and (5.10a),
one can reduce any tree to a minimal form depending on its boundary. If the boundary is empty,
the minimal form is either a barbell or the empty graph. If the boundary consists of one point,
the minimal form is a single dot, called a boundary dot. If there are n > 2 boundary points, the
minimal form has n − 2 trivalent vertices and no dots; any two such trees are equivalent under
(5.10a). With the exception of the barbell, we call such minimal trees simple.

It follows immediately from the Frobenius and needle relations that any blue cycle with
an empty interior evaluates to zero. Combining this with the polynomial forcing rule, a cycle
surrounding a polynomial f can be replaced by the broken cycle with ∂s(f) outside. We call
this procedure cycle reduction. The resulting morphism does not depend on where the cycle was
broken or where the polynomial ∂s(f) is placed.

(5.14)

5.3.2 Functors.

Definition 5.11. We give a monoidal functor ι : D(∞) → HomD(∞)(∅,∅), mapping to diagrams
with extremal white space. On objects, it sends s to the path ∅s∅ and t to the path ∅t∅. We
define the functor on generators:

Claim 5.12. The above definition gives a well-defined functor.

Proof. Both categories only consider pictures up to isotopy, so we may ignore questions of isotopy
invariance. Relations (5.10b) and (5.10a) also correspond to mere isotopies in D(∞). Relation
(5.7) follows from relation (5.3). A barbell in D(∞) goes to a clockwise circle in D(∞). The
correspondence between the polynomial forcing relations of D(∞) and those of D(∞) is clear. 2

Proposition 5.13. The functor ι is an isomorphism of categories.

Proof. Let us construct ι−1. Clearly any path from ∅ to itself will be composed out of the
smaller loops ∅s∅ and ∅t∅, so that we have a bijection of objects between sequences of indices
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i and sequences of paths ∅i∅. This defines ι−1 on objects. Now take any Soergel diagram with

extremal white space, use (5.1c) to replace any polynomial in a blue (respectively, red) region

with a polynomial in a white region inside a counterclockwise circle, and deformation retract the

shaded regions to some tree (or barbell) with the appropriate boundaries. The choice of tree is

irrelevant.

Now we check that this is a well-defined functor (if so, it is clearly an inverse). Checking

that relations (5.1a) and (5.2) are satisfied is easy. Any instance of relation (5.1c) will yield an

instance of (5.14). Finally, (5.1b) follows from (5.1c) and (5.2). 2

Definition 5.14. Let F = F∞ be the k-linear monoidal functor from D(∞) to BSBim defined

by composing F ◦ ι. The object w is sent to BS (w).

The evaluation map on D(∞) is the map HomD(∞)(w, y) → R which places a dot on every

boundary edge to get a graph with empty boundary, and then applies the functor F . This map

commutes with the evaluation map on D(∞), via ι and its inverse.

Finally, consider a 2-morphism in D(∞) which need not have extremal white space. By

adding lines on the left or right (as in the first step of the evaluation map) one can obtain a

diagram with extremal white space. This process is clearly not monoidal, for adding lines does

not preserve horizontal multiplication, only vertical multiplication.

Applying this to the image of 2T L→ D(∞), we have a functor 2T L→ D(∞):

Again, this is not a monoidal or 2-functor, failing to commute with horizontal composition, as

the following example shows.

Example 5.15.

As an example, here are the images of the first few right-blue-aligned Jones–Wenzl projectors.

Note that JWm−1 has m−1 strands in the Temperley–Lieb context and m strands in the Soergel

context.
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Example 5.16.

We can modify the functor 2T L → D(∞) to obtain a map from two-colored crossingless
matchings on the disk to Soergel graphs on the disk with alternating boundary, having degree
+2. Here are a few Jones–Wenzl projectors in this context.

Example 5.17.

Notation 5.18. When we view the Jones–Wenzl projector as a map of degree 2 with boundary

(st)m−1 reading around the circle, we will draw it as a circle labeled by JW . For instance, .

This map is not rotation invariant in general, so we cannot draw it in a rotation-invariant way.

5.3.3 Graphical manipulations, spanning sets, and minimal degrees. We say that two
subgraphs of a Soergel graph are adjacent if no other part of the graph intervenes, that is,
if they lie in the same connected component of the plane minus the rest of the graph. Given two
adjacent dots of the same color, one can fuse them into an edge; this operation decreases the
degree of the graph by 2. Given any two adjacent edges, one can fuse them as follows: replace
each edge with a trivalent vertex attached to a dot, as in (5.10b), so that the dots are adjacent;
then fuse the dots. The reverse operation is to break an edge, replacing it with two dots, and
increasing the degree of the graph by 2.

Equation (5.9) is what allows one to break and fuse lines in practice. When ∂s(f) = 1, (5.9)
implies that one can fuse two dots (or edges), at the cost of placing linear polynomials in the
adjoining regions. Conversely, (5.9) allows one to force polynomials from one region to another,
at the cost of possibly breaking some edges.

Proposition 5.19. Any morphism in D(∞) can be written as a linear combination of graphs
where each component is either a simple tree or a polynomial; moreover, all polynomials are in
the leftmost region. Therefore, any morphism with no boundary reduces to a polynomial.
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Proof. By reducing trees to minimal form, a graph with no cycles and empty boundary reduces to
a product of barbells, that is, a polynomial. Now we induct on the number of cycles in a graph. If
a graph has a cycle, then the interior of that cycle is a graph with empty boundary, having fewer

cycles than the original graph. An obvious inductive argument allows one to reduce the interior
to a polynomial, which can then be used to break the original cycle. Once one has reduced the
graph to a collection of simple trees with polynomials, one can force all the polynomials to
the left, at the cost of breaking some edges. Breaking edges in a simple tree will result in

additional simple trees and barbells, but cannot add cycles. 2

(Disjoint unions of) simple trees with polynomials on the left do not constitute a basis, as
the following equality shows:

(5.15)

Corollary 5.20. The endomorphism ring of ∅ in D(∞) is precisely R.

Proof. The endomorphism ring is spanned by polynomials, so that R surjects on to it. After

applying F , we get the identity map R → EndBSBim(R) = R. Therefore R ∼= End(∅). 2

Let us consider morphisms of minimal degree (with a given fixed boundary), within the span
of simple trees with polynomials. Clearly any polynomials can be removed, lowering the degree.

Fusing two edges will also lower the degree. If these edges are in the same simple tree, then
fusing the edges will create an empty cycle, and yield the zero morphism. However, fusing edges
in two disjoint simple trees will merge them into a single tree. This motivates the following
definition.

Definition 5.21. Consider a graph, each component of which is a simple tree. The plane minus
the red subgraph is split into connected components, each of which contains a (possibly empty)
blue subgraph. If every such blue subgraph is connected, and the same is true with the roles of

red and blue reversed, then we call the graph maximally connected.

A typical example is a graph in the image of the functor from 2T L; a non-example can then
be obtained by breaking an edge.

Claim 5.22. Fix a sequence of colors along the boundary of a planar disk. Morphisms represented
by maximally connected diagrams with this boundary all have the same degree, and are the

minimal degree attainable for morphisms inD(∞) with that boundary. If the colors on the bound-

ary alternate, this degree is 2; for every repetition on the boundary this degree is lowered by 1.

Example 5.23. Given boundary brbrrrbbrb, the minimal degree would be −2 because there are

four repetitions (this sequence lies on a circle so the end is adjacent to the beginning).

Proof. If there is more than one blue tree in a single component of the plane minus the red graph,
then two of them can be fused, yielding a graph of smaller degree. Therefore a minimal-degree
map must be maximally connected. It is a simple exercise to show that any maximally connected

diagram has the appropriate degree. 2

Claim 5.24. All morphisms are generated over maximally connected diagrams by placing

polynomials in any of the regions.
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Proof. One can reach any disjoint collection of simple trees by breaking lines in a maximally
connected diagram. One can break lines by adding polynomials, using (5.9) with ∂s(f) = 1 for
instance. 2

We will soon show that maximally connected graphs form a basis for the space of minimal-
degree morphisms in D(∞). This could be accomplished by applying F and using some
combinatorics, but we will give a cheaper proof soon. It is easy to see that the image of either
map from 2T L (to degree 0, or degree 2) will be precisely the maximally connected graphs.

Remark 5.25. We have already noted in § 2.2.2 that certain decomposition numbers c12k−1 are
Catalan numbers. These numbers also agree with the degree-2 part of the trace of an alternating
monomial. This supports the claim that Temperley–Lieb diagrams form a basis.

5.3.4 Pitchforks and alldots. Let us call the following map a pitchfork :

Let us call the map from w to ∅ consisting entirely of boundary dots by the name alldot.

Recall that tm̂ denotes the alternating sequence of length m which begins with t.

Claim 5.26. Hom(tm̂,∅) is generated (over polynomials in the extremal region) by maps which
begin with pitchforks (i.e. they have a pitchfork somewhere on the far bottom of the diagram),
and by the alldot.

Proof. Without loss of generality, we may assume that our morphism is represented by a
collection of simple trees. We will use induction on m, where the statement is obviously true for
m 6 2 (and there are no pitchforks). If the very first (red) strand is a boundary dot, then we
may use the inductive hypothesis for m−1 on the remainder of the diagram. Otherwise, the first
strand connects to some other index t on the boundary. Consider the first such index it connects
to, and how this divides the graph into two regions:

By induction, the morphism in the inner region either begins with a pitchfork (and thus satisfies
our criterion) or is the alldot. But this latter possibility is within the span of pitchforks as well:

We fused two red components using (5.9); here, {1, a} and {b, 1} are dual bases of R over Rt. The
map with b begins with a pitchfork, while the map with a does not yet begin with a pitchfork.
However, in the map with a, the region where b is absent looks like what we began with, so by
induction it is within the span of pitchforks. 2
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Inside End(BS (tm̂)) we have the Jones–Wenzl projector JWm−1 living in degree zero. The

defining property of JW says that it is killed by all pitchforks. Therefore, in the Karoubi envelope

we see that Hom(Im(JWm−1),∅) is spanned (over R) by the alldot.

5.4 The Grothendieck group of D(∞) and D(∞)

5.4.1 Potential categorifications. The only relation in the infinite dihedral Hecke algebroid

is

i∅i ∼= (v + v−1)i, (5.16)

for i = r or b. This is categorified in D(∞) by a rotation of (5.1d), such as

(5.17)

This splits the identity of i∅i as a sum i1p1+ i2p2 of orthogonal idempotents, where p1i1 and p2i2
are the identity of i. In this picture we have chosen the dual bases {1, αs/2} and {αs/2, 1}, but

one could define such an idempotent decomposition for any dual bases {1, α} and {−s(α), 1}.
Similarly, in D(∞) we have the idempotent decomposition

(5.18)

which is analogous to the isomorphism (3.3). Thus D(∞) satisfies

ii ∼= i{1} ⊕ i{−1}. (5.19)

Therefore, D(∞) is a potential categorification of H (for m =∞), and D(∞) is a potential

categorification of H.

Remark 5.27. In fact, D(∞) is a potential categorification of H even without Demazure

surjectivity. To obtain the isomorphism (5.19), we can use the idempotent decomposition

(5.20)

where a+ b = −1. These idempotents do not rely on the existence of a dual basis.

However, for D(∞) to be a potential categorification of H, one does require Demazure

surjectivity. It is not difficult to show that the only morphisms i∅i → i are given by a cap

with a polynomial, and the construction of appropriate maps i1, p1, i2, and p2 requires the

existence of dual bases.

5.4.2 The SCT and the Soergel conjecture.

Definition 5.28. Assume lesser invertibility (Assumption 3.14), that is, all quantum numbers

are invertible. Let Be denote BS (∅), and for w 6= e let Bw ∈ Kar(D(∞)) denote the image of

the Jones–Wenzl projector in BS (w) for a reduced expression w.
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The Temperley–Lieb algebra subsumes all degree-zero endomorphisms of BS (w) for non-

trivial reduced expressions in W . Therefore, an idempotent which is primitive in the Temperley–

Lieb algebra is primitive in D(∞) as well. In particular, Bw is indecomposable in Kar(D(∞)),

and BS (w) splits into indecomposables in Kar(D(∞)) exactly as the corresponding object does

in 2T L. Therefore, the formula for decomposing bw into the KL basis in Claim 2.8 is categorified,

decomposing BS (w) into indecomposables. Finally, we note that inverting [2] implies Demazure

surjectivity, so that the functor F is well defined. Moreover, the splitting (5.19) implies that

every Bott–Samelson bimodule decomposes into direct sums of various Bw with shifts.

Theorem 5.29. Assume lesser invertibility. Then the SCT and the Soergel conjecture hold for D.

For any Soergel realization (see § 3.9), the functor F is an equivalence, and the indecomposables

Bw go to the indecomposable Soergel bimodules that he also labels Bw.

Proof. Let us compute Hom(Bw, Be), which is equal to Hom(BS (w), Be)JW for a reduced

expression w, the precomposition of this Hom space with the Jones–Wenzl projector. Let

ψ ∈ Hom(BS (w), Be) denote the alldot. We have already seen, in § 5.3.4, that Hom(Bw, Be)

is spanned by ψ ◦ JW . Also, F(ψ ◦ JW ) is non-zero. After all, the evaluation map applied to

ψ ◦ JW is the same as the evaluation map applied to JW , which is a non-zero product of roots.

Since R acts freely on morphisms in SBim, it must act freely on ψ ◦ JW as well. Therefore,

Hom(Bw, Be) is the free R-module of rank 1 generated in degree `(w).

We have now seen that D(∞) satisfies the conditions of Lemma 2.17 for the standard trace,

because ε(bw) = v`(w). For a Soergel realization, SBim also satisfies these conditions. Therefore,

Corollaries 2.18 and 2.19 will finish the proof. 2

This also proves that maximally connected graphs are linearly independent and form a basis

for the minimal-degree morphism space.

Corollary 5.30. Suppose that all quantum numbers are invertible in k. The 2-category

Kar(D(∞)k) is a categorification of the Hecke category H, and categorifies the standard trace.

The 2-functor Fk is an equivalence for Soergel realizations.

Proof. We proceed as in Lemma 2.17. We have a functor from the Hecke category to the

Grothendieck category of D(∞), and Hom spaces induce a semilinear pairing on H. Because

a blue up arrow is clearly biadjoint to a blue down arrow, this pairing is determined by a trace

on the category. Any trace on H is determined by its values on EndH(∅) (see § 2.4.3). Moreover,

we know the graded rank of all Hom spaces in HomD(∞)(∅,∅) because it is equivalent to D(∞).

Therefore, the trace on EndH(∅) = H agrees with the standard trace, and the trace on all of H

agrees with the standard trace. Moreover, F induces isomorphisms on Hom spaces in the category

EndD(∞)(e) since F does.

The idempotents in 2T L give rise to idempotents in D(∞) which give a number of direct

sum decompositions. In particular, we can find objects in the Karoubi envelope which descend to

the Kazhdan–Lusztig basis of H, and are therefore indecomposable and pairwise non-isomorphic.

Therefore the map from H to the Grothendieck category is an equivalence of categories. Similar

arguments show that F is an equivalence. 2

Remark 5.31. When some quantum numbers are not invertible, certain idempotents can no

longer be defined, and various objects that usually decompose will no longer do so. How precisely

this affects the Grothendieck group is now an answerable question, supposing that one can answer

the same question for the Temperley–Lieb algebra.
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Remark 5.32. Suppose that the quantum numbers [k] for k < m are invertible. One can use

similar arguments to show that bw 7→ [Bw] for `(w) 6 m, and F will be fully faithful on Hom

spaces between k̂s and n̂s for k, n 6 m.

5.4.3 Induced modules.

Corollary 5.33. Assume lesser invertibility. The category HomD(∞)(∅, s) categorifies the left

ideal of bs, which is the induced module from the trivial representation of Hs. The module action

is categorified by the monoidal action of EndD(∞)(∅) = D(∞).

Note that this Hom category can easily be described using a slight modification of D(∞),

in a precise analogy to [Eli10a, ch. 4]. One may draw the usual Soergel graphs but require that

they end in a ‘blue region’. One adds a new morphism corresponding to a trivalent vertex with

the blue region, and imposes relations corresponding to (5.10a) and (5.10b).

Explicitly, the new generator is . The new relations are

(5.21)

Any usual Soergel graph, with the usual Soergel relations, may be drawn to the left of the blue

region.

It is quite easy to provide the equivalence of categories between this diagrammatic category

and HomD(∞)(∅, s), in analogy to the functor ι above.

6. Dihedral diagrammatics: m < ∞

In Kar(D(∞)) we have found two idempotents corresponding to B m̂s
and B m̂t

, and we have

already shown (see Remark 5.32) that they descend to b m̂s
and b m̂t

in the Grothendieck group.

Therefore, to obtain a potential categorification of Hm, one can formally add an isomorphism

between Bm̂s
and Bm̂t

to Kar(D(∞)). Instead, we do the same thing before taking the Karoubi

envelope, modifying D(∞) into a category Dm by adding maps from BS (m̂s) → BS (m̂t) and

back which interact in a precise way with the various idempotents.

Given a representation of W∞ defined by a Cartan matrix over a base ring k, it is enough

to base-change k so that [m] = 0 in order to obtain a representation of Wm. However, changing

base for D(∞) is not sufficient to produce Dm; one must add these new morphisms as well.

The morphism JWm−1 and its behavior do depend strongly onm. However, having abstracted

the Jones–Wenzl projector into a symbol, a remarkable thing occurs: the relations inDm involving

this new generator have a very simple form which is independent of m.

6.1 Singular Soergel bimodules: m < ∞
In order to define the diagrammatic version of SBSBim, one should assume that RW ⊂ Rs,

Rt ⊂ R is a Frobenius square.
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Figure 1. Degrees of Soergel diagrams.

6.1.1 Definitions.

Definition 6.1. A singular Soergel diagram for m is an isotopy class of two oriented 1-manifolds

with boundary properly embedded in the planar strip, one of each color, and they can only

intersect transversely. Moreover, there must be a consistent labeling of the regions between these

edges. Regions may be labeled by parabolic subsets {∅, r, b, p}. A line can be colored s or t, and

separates two regions whose labels differ by that element. The orientation is such that the larger

parabolic subset is on the right hand of the 1-manifold. A polynomial in RI can be placed in any

region labeled by I. The boundary of the graph gives two sequences of colored oriented points,

the top and bottom boundary. Not every oriented colored 1-manifold gives rise to a consistent

labeling of regions. Soergel 1-manifold diagrams are graded as in Figure 1.

If there is no ambiguity, we shorten the name to ‘Soergel diagram’. One can remember that

the degree of a cup or cap is always ‘in minus out’, regardless of orientation, where we associate

to a region the length of the longest element of the corresponding parabolic subgroup (which is

0, 1, or m). The degree of a sideways crossing is ‘big plus small minus middles’, which in this

case is always m + 0 − 1 − 1 = m − 2. Note that the degree of a diagram is not defined on the

planar disk, but we can still discuss disk diagrams with the same caveats as before.

A picture is often worth a thousand words. We will try to be very clear about what we

refer to in a picture. ‘Lines’ or ‘strands’ will refer to sections of the red or the blue 1-manifold.

A ‘blue circle’ will denote a blue line in the shape of a circle (which can separate either a red

region from a purple one, or blue from white), while a ‘blue circular region’ will refer to a blue

region enclosed by a circle of indefinite color. Purple designates the parabolic subset p = {s, t}.
A diagram without any purple regions is by definition a Soergel diagram for m =∞, as in § 5.2.

We call it an ∞-diagram.

Definition 6.2. Let Dm be the 2-category defined as follows. The objects are {∅, r, b, p}, thought

of as parabolic subsets. The 1-morphisms are generated by maps from I to J and whenever their

difference is a single element. A path in the object space (like b∅bprpb∅) uniquely specifies

a 1-morphism. The 2-morphism space between 1-morphisms is the free k-module spanned by

Soergel diagrams with the appropriate boundary, modulo the relations below. Hom spaces will

be graded by the degree of Soergel diagrams.
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We have all the relations present in D(∞) (see § 5.2.1). This means that we have a functor
D(∞) → Dm:

(6.1)

(6.2)

when f ∈ RW (6.3)

(6.4)

These relations hold with colors switched. They are standard relations for the Frobenius extension

RW ⊂ Rs, and should remind the reader of the analogous relations for D(∞) for the extension

Rs ⊂ R. Because of the relation (6.3), there is a map from Rs ⊗RW Rs → End(bpb) given

by placing boxes in the right and left regions. The element ∆s
W ∈ Rs ⊗RW Rs is described in

Theorem 3.32.

The next relation, an analog of Reidemeister II, says that like-oriented strands can be pulled

apart:

(6.5)

We also have non-oriented Reidemeister II relations. The element ∂∆st represents the element
∆s
W (1) ⊗ ∂t(∆s

W (2)) = ∂s(∆
t
W (1))⊗∆t

W (2) ∈ Rs ⊗W Rt, as described in Theorem 3.32:

(6.6)

(6.7)

All of the above relations hold in generality for Frobenius squares. See [ESW14] for more

details. There is only one truly interesting relation, unique to the dihedral group. This relation

starts with m−1 alternating arcs of each color, oriented clockwise around an inner purple region.

It replaces this with an∞-diagram, the image of JWm−1 under the functor 2T L→ D(∞) → Dm,
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which we still denote JWm−1.

(6.8)

In writing down the coefficients in the Jones–Wenzl projectors above, we have already

incorporated the fact that [m− 1] = 1 (as our realization is balanced). Thanks to the results of

§ 4.2, the morphism JWm−1 is rotation invariant, like the left-hand side.

Also note that, as for D(∞), one can use boxless diagrams to represent any polynomial which

lives in the invariant subring RI . As before, we have not yet proven that the action of RI (by

placing polynomials in a region labeled I) is faithful in Dm.

6.1.2 Graph simplifications.

Lemma 6.3 (The circle removal lemma). Any morphism in Dm can be represented as a linear

combination of diagrams with no closed components of either color, but with polynomials in

arbitrary regions. Any Soergel diagram with empty boundary reduces to a polynomial.

Proof. This is proven in [ESW14], and is a general statement about Frobenius squares. 2

In other words, a collection of nested circles easily evaluates to a polynomial using the

relations above, and a more complicated system of overlapping circles may be pulled apart

using Reidemeister II moves, and reduced to a polynomial as well. Note that this lemma holds

regardless of the color of the region on the boundary, so that a closed Soergel diagram with

white exterior evaluates to a polynomial in R, and a closed Soergel diagram with blue exterior

becomes a polynomial in Rs.

Now we attempt to simplify more complicated graphs with boundary.

Notation 6.4. When given k alternating arcs of each color oriented around an inner purple region

as in (6.8), we will denote the map by vk. For instance, relation (6.8) says that vm−1 = JWm−1.
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In the following example, k = 6:

The map vk can be positioned as a planar strip diagram in many ways, and its positioning
determines its degree. However, when positioned as a map from ∅b∅r∅ · · · ∅ to ∅r∅b∅ · · · ∅, it will
have degree 2(m − k). We let v0 denote a purple circle in a blue annulus in a white region (or
purple in red in white, these are equal). Using the relations above, v0 is equal to L. It is obvious
that any purple region which does not meet the boundary must have a neighborhood equal to
vk for some k > 1, or simply be a purple circular region, reducible to a polynomial.

If we place a colored cap on one of the colored sections of the boundary of vk for k > 1, we
can use (6.5) to pull two strands apart, and obtain vk−1 with an added ‘trivalent vertex’:

(6.9)

From this, it is easy to show that ‘pitchforks’ kill vk, and double capping vk will yield vk−1:

Relation (6.8) says that vm−1 can be de-purplified, that is, rewritten as a sum of∞-diagrams.
Therefore, any vk for k 6m−1 can also be de-purplified. After all, vk equals vm−1 with a number
of caps attached, and will be equal to JWm−1 with a number of caps attached. Note that relation
(6.7) is actually a statement about v1; in fact, this relation is redundant, merely stating that the
right-hand side is what one obtains when one caps JWm−1 almost everywhere.

Warning: Remember, (6.8) says that vm−1 = JWm−1, but it does not say that vk = JWk

for all k. Capping off JWm−1 certainly does not yield JWk for k < m − 1. When working with
diagrams for m, only JWm−1 will be relevant, and JWk for k < m− 1 will never be used except
to assert the existence of well-behaved idempotents.

For k > m − 1, one cannot use (6.8) to de-purplify vk. In fact, vm is the smallest diagram
which is not in the span of ∞-diagrams. Thankfully, all vk for k > m can be expressed using
only vm. In order to show this, and to aid further calculations, we introduce a family of auxiliary
maps.
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For k > 3, consider the following maps Ck of degree 2(m − k), where the number of circles
is k − 2:

Using the circle elimination lemma and polynomial manipulation rules, it is clear that this
map must reduce to the action of polynomials on either side of Ri ⊗RW Rj , where i, j ∈ {s, t}
depend on the colors in the diagram.

Claim 6.5. When k > m we have Ck = 0. When m = k (so that this map is of degree zero) we
have

(6.10)

Proof. This map must reduce to some polynomial in Ri⊗RW Rj . For degree reasons, one already
can deduce that Ck = 0 when k > m, and that Cm is a scalar. We need only check that this
scalar is 1. The derivation goes as follows, for the case m = 4, and the general proof is similar.

The first step is to apply (6.6) to obtain a sum of diagrams with boxes in the rightmost blue
region, and a box in the red region as pictured. However, only one term in this sum survives:
the term where the box in the rightmost region is 1. Were the box in the rightmost region of
degree greater than zero, then the diagram to the left of that region would have to reduce to a
polynomial of negative degree, equal to zero. Therefore Cm is equal to the right-hand side, where
if f is the polynomial dual to 1 under ∂sW , then the element in the box is ∂t(f).

Now we apply (5.1b), (6.5), and (5.1c) until the diagram only has a box in the left region.

(6.11)

We place ∂t(f) in the box in every diagram on the first row. But then ∂s(∂t(f)) appears
in the box on the second row, and ∂t(∂s(∂t(f))) on the third row (and so forth, for m > 4).
Therefore, the final polynomial appearing is ∂sW (f), which is 1 in every diagram on the first row
of (6.11). 2
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The following picture is a definition of what it means to ‘attach vk to vl by n colored bands’,
for n 6 k, l. Obviously, the colors of the ‘new’ bands appearing on right and left depend on the
parity of n. This is the example n = 4, k = 5, and l = 6.

This is the example n = 1, k = 3, and l = 4.

Claim 6.6. For k > m, if one attaches vk to vm by m colored bands, one obtains vk+1:

(6.12)

Proof. The example below should make the general proof clear. When m = 2, use (6.6) instead.

2

Claim 6.7. Assume k, l > n. For n > m, attaching vk and vl along n colored bands yields zero.
For n 6 m, attaching vk and vl along n colored bands yields (a linear combination of) diagrams
which look like vk+l+1−n with polynomials in various regions, having degree 2(m− n).

Proof. When n > 3, we can use the same argument as before, only now we resolve Cn into
polynomials in Ri ⊗RW Rj . When n > m the resulting polynomials are zero for degree reasons.
When m > n > 3, this technique yields vk+l+1−n with these polynomials on either side. When
n = 2, we apply (6.6) to the center of the diagram, yielding vk+l−1 times ∂∆W . When n = 1,
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we stretch the purple regions together through the blue region and apply (6.4), yielding vk+l
times ∆s

W . 2

Lemma 6.8. Suppose that a diagram in Dm has no purple appearing on the boundary. Then it
reduces to linear combinations of diagrams generated by ∞-diagrams and vm.

Proof. Now suppose that there is a purple region in the diagram. If this purple region is a
circular region, it reduces to a polynomial by (6.2). If this purple region is vk for 1 6 k < m
then we may de-purplify it, as previously discussed. If this purple region is vk for k >m then we
may express it using only copies of vm, by using (6.12) iteratively. This procedure will strictly
decrease the number of purple regions labeled by k 6= m, and therefore we may eliminate all
such purple regions. 2

Note that if there is no purple on the boundary, then the boundary is a 1-morphism in the
image of D(∞) → Dm.

Corollary 6.9. Suppose that a diagram has boundary ∅i1∅i2∅ . . . ∅id∅ when reading around
the boundary of the disk, where i alternates between b and r. If d < 2m then every diagram with
that boundary can be de-purplified.

Proof. Using the circle removal lemma, let us assume that there are no closed 1-manifold
components of either color, so that each component connects to the boundary. We may also
assume that each purple region in the diagram is vk for k > m, since any region of the form vk
for k 6 m − 1 can be de-purplified with (6.8). Any strand leaving a region vk must meet the
boundary, meet another strand from the same vk, or meet a strand from a different purple region.
Whenever two purple regions share a strand, it is easy to show that (up to simple manipulations)
they are connected with some number of colored bands, and thus can be fused using Claim 6.7.
Thus we can assume that no two purple regions share a strand. If any strand from vk loops back
to the same purple region, simple planar arguments imply that vk must have a cap somewhere,
and thus can be reduced to vk−1. Finally, one of these reductions can be performed so long as
there is any purple region with k > m, because there are not enough strands on the boundary
to accommodate all the strands from vk. 2

6.1.3 The functor to bimodules.

Definition 6.10. We define a 2-functor Fm : Dm → SBSBimm as follows. The objects of the two
categories are already identified. For I ⊂ J , it sends the 1-morphism from I to J to ResIJ , and the
1-morphism from J to I to IndIJ . Cups and caps are sent to the appropriate Frobenius structure
maps, as discussed in § 3.5. The upwards-pointing crossing goes to the canonical isomorphism
R ⊗Rs Rs ⊗RW RW ∼= R ⊗Rt Rt ⊗RW RW , which are both R as an (R,RW )-bimodule; this
isomorphism sends 1 ⊗ 1 ⊗ 1 7→ 1 ⊗ 1 ⊗ 1. Similarly, the downwards-pointing crossing is a
canonical isomorphism between R and itself as an (RW , R)-bimodule. The sideways crossings
are maps between R and Rs ⊗RW Rt as Rs − Rt-bimodules, which are either multiplication or
the map f → ∆s

W,(1) ⊗ ∂t(f∆s
W,(2)) discussed in Theorem 3.32.

Proposition 6.11. This 2-functor is well defined.

Proof. We must check the relations of the category, as well as isotopy relations. With the
exception of (6.8), all these relations (including the isotopy relations) hold in more generality
for squares of Frobenius extensions, as proven in [ESW14]. The only relation that needs to be
checked is (6.8), expressing vm−1 as JWm−1.

By rotation, we may view the map vm−1 as a map from BS ( ̂2(m− 1)
s
) → R, which is killed

by every pitchfork and has minimal degree. We have already seen that the space of such maps is
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one-dimensional, and that composing with an alldot (which corresponds in the singular world to
placing caps on every colored band) gives an injective map from this one-dimensional space into
End(∅) = R. Therefore, we need only show that vm−1 and JWm−1 produce the same polynomial
when capped off everywhere. But we have already shown that vm−1 capped off everywhere
is v0 = L, while JWm−1 capped off everywhere is its associated polynomial, which is also L
(see § 4.4). 2

Corollary 6.12. For any parabolic subset, EndDm(I) ∼= RI .

Proof. We have already seen that all such diagrams reduce to polynomials, and the existence of
the functor implies that there can be no additional relations between polynomials. 2

Corollary 6.13. For i an alternating sequence of length d < 2m and X the corresponding
1-morphism ∅i1∅ . . . ∅id∅ in Dm or D(∞), the 2-functor D(∞) → Dm induces isomorphisms on
Hom(X,∅).

Proof. The map on Hom spaces induced by D(∞) → Dm is surjective by Corollary 6.9. The
2-functor F is faithful on these objects, as in Remark 5.32, and it factors through Dm, so we also
have injectivity. 2

6.1.4 The Grothendieck algebroid.

Theorem 6.14. Assume Demazure surjectivity, local non-degeneracy, and lesser invertibility.
The 2-category Kar(Dm) categorifies the Hecke algebroid Hm. If k is a Soergel ring then Fm is
an equivalence after passage to the Karoubi envelope.

Proof. First we show that Dm is a potential categorification of Hm. We have presented Hm
by generators and relations in § 2.4.2, and it is clear how to define the map Hm → [Dm] on
generators. Equation (2.9a) follows as in D(∞), and (2.9b) follows in the same way from (6.4).
The isomorphism ∅bp ∼= ∅rp required by (2.9c) is realized by the upwards-pointing crossing, and

the same for (2.9d) and the downwards-pointing crossing. The most interesting relation is (2.9e).
Let j = b when m is odd, and r when m is even. Temperley–Lieb theory implies that bjpb is sent
to the image of JWm−1, when viewed on the planar strip as an endomorphism of j∅ . . . r∅b. Then
(6.8) says that this image actually factors as a map j∅ . . . r∅b → jpb → j∅ . . . r∅b. The reader
can finish the deduction that jpb is isomorphic to this image.

Therefore, Dm induces a trace on Hm, which can be identified by its values on EndHm(∅) =
Hm. This trace ε is determined by ε(b

k̂s
) and ε(b

k̂t
) for k 6 m. These in turn are determined

by the graded dimensions of the Hom spaces specified in Corollary 6.13 (giving the formula for
all k < 2m), which agree with the graded ranks of Hom spaces in D(∞). Therefore, the trace
induced by Dm is equal to the standard trace. The remaining arguments proceed as usual. 2

6.2 The category Dm

In order to define the diagrammatic version of BSBim, we need make fewer assumptions than
for SBSBim. In particular, we only need to assume Demazure surjectivity. However, the proof
of the SCT in this paper also relies on local non-degeneracy and lesser invertibility as well. For
a more general proof, see [EW13].

6.2.1 Definitions.

Definition 6.15. A Soergel graph for m < ∞ is an isotopy class of a particular kind of graph
with boundary, properly embedded in the planar strip (so that the boundary of the graph is
always embedded in the boundary of the strip). The edges in this graph are colored by either
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s or t. The vertices in this graph are either univalent (dots), trivalent with all three adjoining
edges having the same color, or 2m-valent with alternating edge colors. Polynomials in R can
be placed in any region. The boundary of the graph gives two sequences of colors, the top and
bottom boundary. Soergel graphs have a degree, where trivalent vertices have degree −1, dots
have degree 1, and 2m-valent vertices have degree 0.

An ∞-graph will be a graph without 2m-valent vertices.

Definition 6.16. Let Dm be the k-linear monoidal category defined herein. The objects will
be finite sequences w of indices s and t, with a monoidal structure given by concatenation. The
space HomDm(w, y) will be the free k-module generated by Soergel graphs with bottom boundary
w and top boundary y, modulo the relations below. Hom spaces will be graded by the degree of
the Soergel graphs.

We have all the relations that define D(∞) (see § 5.3.1) as well as two new relations, called
the two-color relations, found in equations (6.13) and (6.14). They hold with the colors switched
as well. It is difficult to draw these relations for all m at once, since the number of strands
entering a vertex changes. A circle labeled JW contains the Jones–Wenzl projector JWm−1 as
a map of degree 2 (see Notation 5.18), and a circle labeled v contains the 2m-valent vertex. A
sequence of a few purple lines will indicate an alternating sequence of red and blue lines of the
appropriate length (depending on m).

The new relations are two-color associativity :

(6.13)

and dotting the vertex :

(6.14)
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Each figure has some examples, with the 2m-valent vertex in these relations circled. In writing

the coefficients of the Jones–Wenzl projector, we have assumed that [m− 1] = 1.

Now we derive some other relations in Dm. The following two pictures become the same after

an application of (6.13):

(6.15)

Relation (6.14) implies that the 2m-valent vertex is killed by any pitchfork. Thus we may

deduce that

(6.16)

Only one term in JW survives: the term yielding the identity map. The other terms produce

pitchforks.

Claim 6.17. The following relation holds. (Note: this will be the idempotent which projects onto

Bw0 .)

(6.17)

Proof. We purposely present two proofs, for study in the Appendix. For the first, use in order

(5.10b), (6.15), (6.14), (6.16), and (6.14). The coloration is as though m is even, although if m

is odd one only need change the color on the leftmost strands.
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For the second proof, merely apply a dot in the correct place to (6.13), in such a way that

the right-hand side of (6.13) becomes the left-hand side of (6.17). 2

We invite the reader to compare relation (6.13) with relation (3.7) in [Eli10a].

6.2.2 Functors.

Definition 6.18. Assume local non-degeneracy and lesser invertibility, so that Dm is well

defined. We give a functor ιm : Dm → HomDm(∅,∅). On objects, it sends s to the path ∅b∅

and t to the path ∅r∅. We define the functor on dots and trivalent vertices as in Definition 5.11.

The image of the 2m-valent vertex is vm:

Claim 6.19. The above definition gives a well-defined functor.

Proof. In Definition 5.11 we already had a well-defined functor for∞-graphs. We need only check

the relations involving 2m-valent vertices. Relation (6.14) follows from (6.9) and (6.8). Relation

(6.13) follows from

2

Claim 6.20. This functor is full.

Proof. This is precisely the statement of Lemma 6.8. 2
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Now ιm is not essentially surjective, because there are loops based at ∅ which pass through p,
but it will be surjective after passage to the Karoubi envelope. After all, one can already see that
∅p∅ is the image of the Jones–Wenzl projector inside BS (m̂s), by rewriting this Jones–Wenzl
projector using vm−1.

Definition 6.21. We define the functor Fm : Dm → SBimm as the composition of ιm and Fm.

Clearly this functor agrees with F∞ on ∞-graphs, since Fm agrees with F∞ on ∞-diagrams.
We have avoided giving an explicit formula for the image of the 2m-valent vertex, instead
describing it as the image of vm, which itself is a composition of numerous cups, caps, and
crossings. It seems that a straightforward formula for this composition is quite nasty in general.
The formula for m = 2, 3 was given in [EK10].

6.2.3 Graph reduction. Relation (6.12) told us how to construct the singular Soergel graph
vk out of vm, and we can perform the same construction with Soergel graphs with the 2m-valent
vertex replacing vm. This yields a well-defined Soergel graph vk for all k > 0. It is not difficult to
prove that vk is rotation invariant for all k, using either increasing or decreasing induction from
vm. Therefore, vk is killed by any pitchfork. It is not terrible to duplicate the results of Claim 6.7,
though now the proof should go the other way, starting with vk+l+1−n with some polynomials,
and using the dot forcing rules to break lines and resolve until obtaining vk attached to vl.

Proposition 6.22. Any morphism in Dm on a planar disk with an alternating boundary of
length less than 2m reduces to a sum of ∞-graphs.

Proof. This proof is entirely analogous to Claim 6.9, and we leave it as an exercise to the
reader. 2

Lemma 6.23. The functor Fm induces an isomorphism EndDm(∅) ∼= R.

Proof. Proposition 6.22 shows that all maps reduce to boxes. The functor to bimodules gives us a
surjective map from a rank-1 R-module to EndSBim(Be) = R, which must be an isomorphism. 2

The upshot is that the new relations (6.13) and (6.14) do not impose any new relations on
polynomials.

6.2.4 The Grothendieck group. There is clearly a map from H∞ → [Kar(Dm)], because
(5.19) still holds. One can define all the idempotents in Dm coming from 2T L for elements
w ∈W∞ of length less than or equal to m. We call the image of the corresponding Jones–Wenzl
Bw ∈ Kar(Dm), as before. We make no claim yet that these are indecomposable or non-zero,
but we do have bw 7→ [Bw] for `(w) 6 m. Relation (6.17) implies that, in the Karoubi envelope,
the 2m-valent vertex is precisely an isomorphism from Bm̂s

→ Bm̂t
, whose inverse isomorphism

is its own rotation. Therefore, Kar(Dm) is a potential categorification of Hm.

Theorem 6.24. Assume lesser invertibility and local non-degeneracy. Then the SCT and the
Soergel conjecture hold for Dm. For any Soergel ring, Fm is an equivalence of categories, sending
indecomposables Bw to Bw. In addition, ιm is fully faithful.

Proof. As in Theorem 5.29, this is a simple application of Lemma 2.17 and Corollary 2.18. All
that remains is to check whether the trace on Hm induced by the map Hm → [Kar(Dm)] agrees
with the standard trace. As in the proof of Theorem 5.29, using Proposition 6.22 it is easy to
show that the Hom space from B

k̂s
to Be is generated over R by the alldot, and that it is free

of rank 1 over R comes from the functor Fm.
The functor Fm factors through ιm and thus ιm is faithful. 2
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6.3 Thickening
Suppose that m <∞ and continue to assume lesser invertibility and local non-degeneracy.

6.3.1 Diagrams for gBSBim. Recall that gBSBim is the full subcategory of SBim
monoidally generated by Bs, Bt, and BW . We present this category diagrammatically, in precise
analogy with [Eli10a, ch. 3.5].

Definition 6.25. A thick Soergel graph has edges labeled either s, t, or W (purple). The new
vertices (compared to a Soergel graph) are: trivalent with three purple edges (degree −m);
trivalent with two purple and one other (degree −1); univalent with one purple (degree m); and
(m+ 1)-valent with one purple edge and the remainder alternating between s and t (degree 0).

Definition 6.26. The category gD has morphisms given by thick Soergel graphs, with the
relations of Dm as well as the following relations:

(6.18)

(6.19)

(6.20)

(6.21)

Relation (6.18) identifies the purple line as the image of the idempotent which picks out
Bw0 inside BS (m̂). The remaining equalities identify the new generators as pre-existing maps
in SBim. Therefore, the fact that this category is equivalent to gBSBim is entirely obvious. We
can also describe these morphisms within Dm as follows:

We encourage the reader to check (6.20), which will involve evaluating (6.10) as in the proof
of (6.12).
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This defines a functor from gD to EndDm(∅), which sends the purple object to ∅rpr∅. There

is an isomorphic functor sending purple to ∅bpb∅, passing through blue instead of red.

Proposition 6.27. We also have the following equalities:

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

Proof. These are each very easy to show within Dm. Checking (6.26) also requires (6.10) as

above. The remaining relations then follow from isotopy or Frobenius extension relations. 2

Remark 6.28. Note also that neither the 2m-valent vertex nor the (m + 1)-valent vertex are

actually required, in the presence of the other maps. For instance:

There are perhaps many more interesting equalities to find.

6.3.2 Induced modules. As in § 5.4.3, we may represent HomDm(∅, I) for I ⊂ {s, t} simply

using Soergel graphs with a shaded region, in precise analogy with [Eli10a, ch. 4]. When I = {s}
or I = {t}, we have already described the answer for D(∞) in § 5.4.3, and the result for Dm is

identical, except that we have additional relations between Soergel graphs. When I = {s, t}, we

require that graphs end in a ‘purple region’, and add new morphisms corresponding to trivalent

vertices with the purple region.
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Explicitly, the new generators are

The new relations are

(6.27)

Any usual Soergel graph, with the usual Soergel relations, may be drawn to the left of the purple
region.

Again, the equivalence between these diagrams and certain singular Soergel diagrams is easy.

6.4 Temperley–Lieb categorifies Temperley–Lieb
Let m < ∞. Recall that the generalized Temperley–Lieb algebra TLWm of the finite dihedral
group Wm for m > 2 is the quotient of Hm by bw0 . According to the original definition in
[Gra96], one should take TLW2 = H2. However, for the purposes of this chapter, we let TLW2

be the quotient of H2 by bw0 . Recall that the two-sided ideal of bw0 is none other than the
Z[v±1]-span of bw0 .

Similarly, the generalized Temperley–Lieb algebroid is the quotient of Hm by morphisms
factoring through the object p.

Theorem 6.29. Consider the quotient of Dm by the 2m-valent vertex. This categorifies TLWm .
The degree-zero Hom spaces are given precisely by 2T Lnegl. Similarly, the quotient of Dm by
the purple region categorifies the generalized Temperley–Lieb algebroid of Wm.

Here is a sketch of the proof. There is clearly a map from TLW to the Grothendieck ring of this
quotient, because the map from Hm factors through the ideal bw0 = 0. Therefore, this quotient
induces a trace map on TLW . We still have idempotents which yield objects Bw, w ∈W\{w0},
and though we have not yet shown that these objects are non-zero, we do know that all other
objects can be expressed as direct sums of these. If they remain indecomposable and pairwise
non-isomorphic in the quotient, then they will descend to a basis of TLW , and the map from
TLW will be an isomorphism. This, in turn, will follow from the calculation of the trace on TLW ,
because the graded rank of End(Bw) will be in 1 + vZ[v], and the graded rank of Hom(Bw, Bx)
for w 6= x will be in vZ[v].

In order to calculate the trace map, we must determine what elements of Hom(BS (w), Be)
survive in the quotient, for each reduced expression w. This is a diagrammatic calculation.

For instance, what will be End(Be) in the quotient category? We rephrase this in singular
language. Consider a Soergel 1-manifold diagram with a purple region and with empty white
boundary. We know that this reduces to a polynomial in R, but which polynomials can appear?
We claim that the polynomials which appear are precisely the ideal generated by L, and that
therefore End(B∅) ∼= R/L.

We can use an argument similar to the proof of Proposition 6.22 to show that any diagram
containing vm can be reduced to a diagram containing vk once for k > m, and has no other
purple regions in the same connected component. As in the proof that Hom(Bw0 ,∅) = R, one
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can show that the only way to get a non-zero map for that connected component is to attach
the alldot to vk, yielding L. This calculation is done for the case m = 3 in [Eli10b].

Similarly, Hom(Bs, B∅) should be isomorphic to R/(L/αs), where each polynomial is placed
next to the blue dot. This kernel is generated by the 2m-valent vertex with all but one dot
attached. Similarly, if w = sts . . . has length k then Hom(Bw, B∅) will be generated by the
alldot, and the kernel will be generated by the 2m-valent vertex with k strands attached to the
boundary, and the remaining strands dotted.

Calculating Hom(Bw, Be) for each w, we pin down the trace precisely. One then checks that
the graded ranks of Hom spaces satisfy the desired properties above. This concludes the sketch.

After investigation, we see that the morphism spaces in this quotient category, as R-modules,
are supported on the union of the Coxeter lines. Moreover, one can associate to each w ∈ W
a set of positive roots of size l(w), such that Hom(Bw, Be) is supported on the complement of
those root hyperplanes.
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Appendix A. Non-symmetric and unbalanced Cartan matrices

In this appendix we discuss how to modify the statements and proofs of this paper to account
for unbalanced and non-symmetric realizations. We do this by introducing two-colored quantum
numbers, which make the computations quite analogous to the symmetric case. However, one
must keep track of additional data in order to construct a Frobenius hypercube. This appendix
is written so that it may be read in conjunction with the main paper, after reading the
corresponding section there. For a more detailed version of many of these computations, see
the author’s PhD thesis [Eli11].

A.1 Two-colored quantum numbers
Section 3.1 gave a number of facts about quantum numbers, both inside the ring Z[δ] and inside
the specialization where q is a root of unity. Our new ring to replace Z[δ] will be Z[x, y]. We
identify the subring Z[xy] with the subring Z[δ2] via xy = δ2. We think of x and y as alternate
versions of [2], which need to be balanced in a more complicated quantum number. A symmetric
specialization of Z[x, y] is a specialization factoring through the map to Z[δ] sending x and
y to δ.

Definition A.1. We define two-colored quantum numbers, which are elements of Z[x, y]
analogous to the quantum numbers in Z[δ]. Because [2k + 1] and [2k]/[2] are both inside Z[δ2],
we may express them as polynomials in xy. When m is odd, we define [m] = [m]x = [m]y. When
m is even, we define [m]x = x[m]/[2] and [m]y = y[m]/[2], where in both cases [m]/[2] represents
the corresponding polynomial in xy.

Example A.2. [2]x = x and [2]y = y; [3]x = xy − 1 = [3]y; [4]x = x2y − 2x and [4]y = xy2 − 2y.

Each of the facts about quantum numbers has a two-colored analog, derived in essentially
the same way. Instead of the usual recurrence relation, one uses [2]x[m]y = [m + 1]x + [m− 1]x
for m > 1. To ‘specialize q2 = ζm to a primitive root of unity’, we set Qm(xy) = 0. When m
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is odd, it seems more difficult to distinguish between the specializations q = ζ2m and q = ζm,
because Qm(xy) does not split. For example, when m = 3, Qm(δ2) = δ2 − 1 = (δ + 1)(δ − 1),
while Qm(xy) = xy − 1. However, when m is even it is still true that Qm(xy) = 0 implies that
[m− 1] = 1.

When m is even, x[m]y = y[m]x. In a domain with xy 6= 0 one has [m]x = 0 ⇐⇒ [m]y = 0.
If [m]y = 0, one still has [m− k]x = [m− 1][k]x, so that [m− 1]2 = 1. If [2m]x = [2m]y = 0 and
[2m − 1] = −1, one can deduce that 2[m]x = [2]y[m]x = 0 and 2[m]y = [2]x[m]y = 0, just as in
Claim 3.2.

When m is odd and [m] = 0, a great simplification occurs. Now x is invertible because it
divides [m − 1]x and [m − 1]x[m − 1]y = 1. If Qm(xy) = 0 then there is actually a polynomial
in xy, namely [m − 2], which satisfies Pm([m − 2]) = 0, the algebraic conditions to be equal to
[2]q at q = ζ2m! We write [2]m to represent [m− 2], the element which behaves like ‘quantum 2’
should. In other words, when m is odd Z[x, y]/Qm(xy) is no more than the extension of Z[[2]m]
by the invertible variable λ = [2]m/x = y/[2]m. Note also that [2]x[m− 1]y = [m− 2] = [2]m, so
that λ = [m − 1]y and λ−1 = [m − 1]x. Now there are two symmetric specializations, λ = ±1,
which correspond to the specializations q = ζ2m and q = ζm.

This rescaling factor λ will appear numerous times below. There is no general definition of λ
in the case where m is even or infinite, as there is no element in Z[x, y]/Qm(xy) which behaves
like [2]m.

A.2 Realizations
Definition A.3. Let k be a commutative ring and (W,S) be a Coxeter system. A realization
of (W,S) over k is a free, finite-rank k-module h, together with a choice of simple coroots and
roots having a Cartan matrix (as,t)s,t∈S satisfying the following properties:

(i) as,s = 2 for all s ∈ S;

(ii) for any s, t ∈ S with mst <∞, if k is given a Z[x, y]-algebra structure where −x = as,t and
−y = at,s, then [mst]x = [mst]y = 0;

(iii) the assignment s(v)
def
= v − 〈v, αs〉α∨s for all v ∈ h yields a representation of W .

When analyzing a particular dihedral subgroup, we always use the convention that the Cartan
matrix is

A =

(
2 −x
−y 2

)
,

living inside some specialization k of Z[x, y]. The determinant of this matrix is 4 − xy, which
replaces 4− [2]2 in all previous formulas.

We define the action of W on h∗ as before. The formulas for the action of (st)k go through
with minor adaptations. The action on the span of αs and αt is given by

(st)k =

(
[2k + 1] −[2k]x

[2k]y −[2k − 1]

)
. (A.1)

The action on αu is given by

(st)k(αu) = αu + ([k]x[k]yas,u + [k]x[k + 1]xat,u)αs + ([k]y[k − 1]yas,u + [k]x[k]yat,u)αt. (A.2)

In particular, for a domain or modulo 2-torsion, (st)m is trivial if and only if [m]x = [m]y = 0.
As in the symmetric case, outside of degenerate situations there is redundancy between the fact
that [mst] = 0 and the fact that there is an action of W .
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Definition A.4. A realization is balanced if for each s, t ∈ S with mst <∞ one has [mst−1]x =

[mst − 1]y = 1. The notions of even-balanced, odd-balanced, and so on are easy to extrapolate.

There is an enormous difference between realizations which are unbalanced for m even, and

those which are unbalanced for m odd! This will be a common theme. Let us momentarily

consider only dihedral realizations where k is a domain, and where h is spanned by the coroots.

Suppose that m is even. If the realization is faithful then Qm(xy) = 0 so that [m − 1] = 1,

and the realization is automatically balanced. If the realization is not faithful it is quite possible

that it is not balanced. Note that a faithful realization need not be symmetrizable, but only

because k may not contain enough scalars; if k is a field and xy has a square root, the Cartan

matrix is symmetrizable.

Suppose that m is odd. If the realization is faithful then it is balanced if and only if it is

symmetric and [m − 1] = 1 (i.e. if λ = 1, where λ was defined in §A.1). Root rescaling by the

diagonal matrix with entries (λ, 1) will yield a symmetric matrix. It will be balanced as a faithful

dihedral realization, but need not be balanced when viewed as a non-faithful dihedral realization

of Wmk (the dihedral group with 2mk elements, for some k > 2).

Example A.5. The best example of a non-symmetrizable non-balanceable Cartan matrix that

still plays a significant role is exotic affine sln for n > 3. When n = 4, it is given by the following

matrix over k = Z[q±]:

A =


2 −1 0 0 −q−1
−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −q
−q 0 0 −q−1 2

 .

Note that the Coxeter group which acts faithfully in rank 2 does not depend on the specialization

of q, and thus agrees with the case q = 1, which is the usual affine sln Cartan matrix. This matrix

is even-balanced and odd-unbalanced. The matrix for exotic affine sl2 is symmetric and balanced,

given by

A =

(
2 −(q + q−1)

−(q + q−1) 2

)
.

Now, of course, the Coxeter group which acts faithfully in rank 2 can change when q is specialized.

In [Eli14] we will explain how Soergel bimodules for exotic affine sln give rise to a quantum Satake

equivalence.

A.3 Realizations and roots

Outside of the discussion of roots, everything up to § 3.7 can be followed verbatim.

When m is even or infinite, the definition of positive roots is unchanged. However, when m

is odd, fs,m−1 = [m − 1]yft = λft. Thus fs,m−1−l = λft,l for all 0 6 l 6 m − 1. With positive

roots defined only up to a scalar, one must make some conventional choices.

In the calculation of the associated polynomial of a Jones–Wenzl projector (see §§ 4.4, and

A.6 below) it was useful to define a snakelike order on the set of positive roots for the infinite

dihedral group, either an s-aligned or a t-aligned snakelike order. The s-aligned version is fs,0 <

ft,0 < ft,1 < fs,1 < fs,2 < ft,2 < · · · .
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Definition A.6. The s-aligned choice of roots L(s) for the finite dihedral group Wm are the first
m roots in the s-aligned snakelike order. The t-aligned choice of roots is defined analogously.

It is easy to observe that the only difference between these choices occurs when m = 2k+1 is
odd, where L(s) contains fs,k and L(t) contains ft,k. Letting L(s) be the product of the elements
of L(s), we have L(s) = λL(t). These are not the only choices of positive roots, of course, but they
will be the most convenient for our calculations. Choosing a set of positive roots for Coxeter
groups of rank 3 or higher will require more bookkeeping.

The main conceptual difference between balanced and unbalanced Cartan matrices is the
following claim.

Claim A.7. Suppose that m = ms,t <∞. Then the simple Demazure operators satisfy the braid
relation ∂s∂t . . .︸ ︷︷ ︸

m

= ∂t∂s . . .︸ ︷︷ ︸
m

when m is even. When m is odd, ∂s∂t . . . ∂s︸ ︷︷ ︸
m

= λ−1 ∂t∂s . . . ∂t︸ ︷︷ ︸
m

.

Proof. (Sketch) As in the suggested brute-force proof for the symmetric case, we can write the
iterated Demazure operator applied to f as a sum of terms of the form ±w(f)/π where w ∈W
and π is a product of m roots. If one finds a formula for the products π which appear for each
side of the braid relation, and matches them (up to scalar, using the identification of fs,l with
ft,m−l in the odd case), one will end up with the desired result. 2

When m is odd, there is a simpler proof, using the fact that the Cartan matrix is
symmetrizable. Rescaling αs by λ (from the symmetric case) will perforce rescale ∂s by λ−1,
and this rescaling factor will affect the left-hand side one more time than the right-hand side.

In particular, for w ∈W with multiple reduced expressions, one can only define the operator
∂w up to scalar.

Claim A.8. When m = 2k, ∂s∂t . . . ∂t︸ ︷︷ ︸
m

(L) = ∂t∂s . . . ∂s︸ ︷︷ ︸
m

(L) = 2m. When m = 2k + 1,

∂s∂t . . . ∂s︸ ︷︷ ︸
m

(L(s)) = 2m and ∂t∂s . . . ∂t︸ ︷︷ ︸
m

(L(t)) = 2m.

Proof. An annoying exercise for the reader. 2

A.4 Frobenius structures
Given any Frobenius extension A ⊂ B with trace ∂ and µ(∆(1)) = L ∈ B, there is a one-
parameter family of Frobenius extension structures having trace λ−1∂ and coproduct–product
λL, for some invertible scalar λ ∈ k. One can pin down this scalar by choosing ∂ or by choosing
L; one determines the other by the requirement that ∂(L) = n, the rank of the extension.

As discussed previously in the dihedral case, there will be no convenient Frobenius extension
structure on RI ⊂ R when m < ∞ unless the realization is faithful for the parabolic subgroup
WI . If it is faithful, however, then ∂wI (up to scalar) is a Frobenius trace map. To define a
Frobenius hypercube structure on the invariant rings RI ⊂ RJ , one should let ∂JI : RJ → RI be
the Demazure operator associated to the relative longest element wIwJ , which is only defined up
to scalar. Then one should normalize these scalars so that the Frobenius hypercube is compatible.

In the unbalanced odd dihedral case, normalization is required. There is only one choice of
reduced expression for w0s and for w0t, and ∂w0s∂s = λ−1∂w0t∂t.

Definition A.9. A Frobenius realization is the data of a faithful realization of a Coxeter group
W , together with a Frobenius hypercube structure. More precisely, for all finitary subsets I
with J = I\{i}, one fixes a reduced expression for wIwJ so that one has an unambiguous
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operator ∂wIwJ . Then one chooses scalars λJI , and sets ∂JI = ∂wIwJλ
J
I . These must satisfy the

following properties:

– λs = 1 for all s ∈ S;

– whenever K ⊂ J, J ′ ⊂ I is a square in the poset of S, one has ∂JI ∂
K
J = ∂J

′
I ∂

K
J ′ .

When the realization is balanced, there is a canonical choice of Frobenius realization, with
λJI = 1 for all J ⊂ I. For a dihedral group, the difference between a Frobenius realization and a
usual realization is merely the choice of one arbitrary invertible scalar in k.

Instead of fixing a family of scalars as in the definition above, it may be preferable to fix a
system of positive roots for W . For a faithful realization, it is not difficult to see that the lines
spanned by the roots are well defined, even though the choice of positive root within that line
may not be.

Definition A.10. A root realization is the data of a faithful realization of a Coxeter group W ,
together with a choice of positive roots. More precisely, for each distinct line spanned by w(αs)
or w(αt) in h∗, one chooses a non-zero vector to be the corresponding positive root. One requires
αs and αt to be chosen.

Given a root realization, one can obtain a Frobenius realization as follows. Given I ⊂ S, a
root is a root for WI when it lies on the line of w(αs) for some w ∈WI and s ∈ I. Let LJI be the
product of the positive roots for WI that are not roots for WJ . Now fix the scalars λJI in order
that ∂JI (LJI ) is the size of WI/WJ . It is easy to see that these scalars yield a compatible Frobenius
hypercube. Given a Frobenius realization, there may be multiple choices of root realization giving
rise to it.

(The discussion of the previous paragraph does not make sense when the size of WI/WJ is
a zero-divisor in k. In this case, there is usually not a Frobenius extension structure anyway,
except in the easy case where m = 2. However, I am not entirely sure.)

In [Eli14], a choice of positive roots is made for exotic affine sln in such a way that certain
circular singular Soergel diagrams evaluate to quantum binomial coefficients. This illustrates
that some choices are more natural than others.

We have already defined two choices of root realization for the dihedral group, L(s) and L(t).
Below we reformulate Theorem 3.32 for the choice L(s).
Theorem A.11. When m is even, Theorem 3.32 holds exactly as stated even in the asymmetric
case, with the Frobenius traces given. When m is odd, we give RW ⊂ R a Frobenius structure
with trace ∂W = ∂s∂t . . .︸ ︷︷ ︸

m

and coproduct–product LW = L(s). We give RW ⊂ Rs a Frobenius

structure with trace ∂sW = . . . ∂s∂t︸ ︷︷ ︸
m−1

and LsW = LW /αs. We give RW ⊂ Rt a Frobenius structure

with trace ∂tW = λ . . . ∂t∂s︸ ︷︷ ︸ and LtW = LW /αt. We give Rs ⊂ R and Rt ⊂ R the usual Frobenius

structure. The result is a Frobenius square.

A.5 Additional comments about realizations
It is easy to come up with formulas for z, Z ∈ Rs,t, and thus to find an explicit description of
this invariant subring, in analogy to Claim 3.23.

Soergel worked abstractly with the representation h∗, not fixing a basis or the Frobenius
structures. Therefore, his techniques still apply in the unbalanced or non-symmetric setting, so
long as k is an infinite field of characteristic not equal to 2. In [EW13], we give an independent
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proof of Soergel’s results directly for the diagrammatic category, without needing to use the

equivalence F . This proof will work equally well for the non-symmetric or unbalanced case.

By working formally with universal non-symmetric specializations, one has recourse to the

symmetric specialization. This is a useful tool. For instance, we know that various useful elements

of Z[x, y] (like the coefficients of Jones–Wenzl projectors below) are non-zero generically, because

they specialize to non-zero elements.

A.6 Non-symmetric Temperley–Lieb

We now redefine the two-color Temperley–Lieb 2-category 2T L as having coefficients which lie

in Z[x, y]. A circle with red (respectively, blue) interior evaluates to −x (respectively, −y).

Two-colored Jones–Wenzl projectors JWn exist in this generality as well, and its coefficients

will have two-colored quantum numbers instead of usual quantum numbers. The recursion

formulas (4.1) and (4.2) can be generalized, using two-color quantum numbers. To modify (4.2),

replace [n+ 1] with [n+ 1]x if the diagram is right-blue-aligned, and replace [a] with [a]x if the

interior of the new cup is blue, and [a]y if the interior is red. We give examples of the first few

right-blue-aligned projectors:

(A.3)

To obtain the right-red-aligned projector, switch the colors and switch x and y. The coefficient

of the identity map should always be equal to 1.

There are two specializations of the scalars in 2T L which occur most frequently in the

literature: the spherical specialization, identical to the symmetric specialization x = y = [2]; and

the lopsided specialization, where x = 1 and y = [2]2. In fact, the general case is no more than

a ‘perturbation’ of the spherical specialization, in the sense of [DGG14]. Outside of these two

specializations, references are difficult to find. The proofs, however, are completely analogous to

the uncolored case.

Proposition A.12. The canonical isotypic idempotents, the non-canonical primitive idem-

potents, and the intra-isotypic isomorphisms of Proposition 4.2 all have analogs in 2TLn after

localization. These maps are defined over any extension of Z[x, y] for which the two-color quantum

numbers up to [n] are invertible.

The results on the Karoubi envelope of Kar(2T L) are also analogous.

Whenever [m]x = [m]y = 0 (and [m−1] = 1 for m even) either two-colored JWm−1 is rotation

invariant by two strands (or any color-preserving rotation). If we rotate the right-blue-aligned

JWm−1 by one strand, we obtain the right-red-aligned JWm−1 multiplied by a factor of λ.

Rotating the right-red-aligned JWm−1 by a strand, we obtain the right-blue-aligned JWm−1
multiplied by a factor of λ−1.
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Associated to a 2×2 Cartan matrix one has a specialization of the Temperley–Lieb 2-category.

Even-unbalanced realizations behave poorly, in that their Jones–Wenzl operators JWm−1 are

not rotation invariant; as already remarked, this can only occur over a domain for non-faithful

realizations. Odd-unbalanced realizations behave well, but again call for additional bookkeeping.

The statement and proof of Proposition 4.14 adapt to the non-symmetric case as well. Now

the scalar factor which appears is [1]x
[1]x

[1]x
[2]y

[2]y
[3]x

[2]y
[4]y

[3]x
[5]x

[3]x
[6]y
· · · .

A.7 Diagrammatic modifications when m = ∞
When m =∞, the objects of study are the Frobenius extensions Rs, Rt ⊂ R. There are essentially

no complications which arise from non-symmetric or unbalanced Cartan matrices, as higher

Demazure operators play no role. The definitions of D(∞) and D(∞) are entirely unchanged.

If one desires to define the boxless version of the category when R = k[αs, αt], one should

adjust the Cartan relations and the circle forcing relations accordingly:

(A.4)

(A.5)

(A.6)

(A.7)

Similar adjustments need to be made to the dot forcing relations in D(∞).

Of course, the non-symmetric version of the two-colored Temperley–Lieb category is to be

used whenever appropriate. Whenever an example of a Jones–Wenzl projector is given, one must

replace the usual quantum numbers with two-colored quantum numbers, as in (A.3).

The only detail which has the slightest bit of subtlety is the proof that certain Hom spaces

are non-zero by calculating the evaluation of the Jones–Wenzl projectors. In the non-symmetric

context, evaluation still gives a generically non-zero element, as can be checked with the

symmetric specialization.

Aside from these minor changes, everything works verbatim!

A.7.1 Diagrammatic modifications when m < ∞. We remind the reader that different

assumptions are needed to define Dm and to define Dm. The category Dm depends on the

existence of a Frobenius square, which requires the realization to be faithful. As in the body of

the paper, we guarantee this by assuming local non-degeneracy and lesser invertibility. To define

the category Dm one does not require the realization to be faithful (though the proof of the SCT
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in this paper does), and one only needs Demazure surjectivity. One will still need to choose an

arbitrary scalar, as though one were choosing a Frobenius structure for Rs,t ⊂ R, even though

for non-faithful realizations no such Frobenius structure exists. In both situations, one needs to

assume the realization is even-balanced; we require a two-colored Jones–Wenzl projector which

is rotation invariant under color-preserving rotations.

First let us examine Dm. In [ESW14], relations are presented for an arbitrary Frobenius

square. For the Frobenius square structure induced by a symmetric Cartan matrix, these give all

the relations in § 5.2.1 except the dihedral relation (6.8). They are already expressed in a general

format, and for a general Frobenius realization, these relations are unchanged.

For relation (6.8), the question arises: which Jones–Wenzl projector does one use? The left-

hand side of (6.8) is invariant under rotation, and thus the right-hand side must be as well.

Therefore, one cannot simply use the right-blue-aligned JW when blue appears on the right, and

the right-red-aligned JW when red appears on the right, because this is not rotation invariant.

Instead, the right-hand side of (6.8) should be a rescaling of either Jones–Wenzl projector, with

scalar determined not by the coloration but by the choice of Frobenius structure. One chooses

the scalar to be compatible with relation (6.7). In other words, one chooses the (rescaling of the)

Jones–Wenzl projector whose evaluation is equal to the chosen product of roots L.

For example, when m = 3 the evaluation of the right-blue-aligned Jones–Wenzl projector

JW2 from (A.3) is αsαt(αs + (1/x)αt). Since xy = 1, this is the product αsαtt(αs), or L(t). Thus

one should use this Jones–Wenzl projector if the chosen Frobenius structure on Rs,t ⊂ R has

product-coproduct L(t).

In particular, one cannot define the category Dm when m is even and the realization is

unbalanced, because JWm−1 is not rotation invariant. When m is odd, JWm−1 is rotation

invariant under color-preserving rotations, regardless of whether the realization is balanced or

not.

In similar fashion, there are other scalars sprinkled throughout that one must keep track of.

For instance, (6.10) no longer holds on the nose, being true only up to scalar. This scalar is the

difference between ∂sW and . . . ∂s∂t, as is clear from tracing the proof. As a consequence, there

will be scalars involved attaching vk to vl along m colored bands, but this does not affect any of

the proofs. It may be a worthwhile exercise for the reader to confirm the following claim.

Claim A.13. We have

(A.8)

In this equation, the scalar a is equal to the coefficient of the identity in the rotation of the

chosen Jones–Wenzl projector having the same alignment.

For example, if m is odd and if we choose L(t) as our product of roots, the coefficient of the

identity in the blue-aligned JW is 1, and the coefficient in the red-aligned JW is λ. Thus a = 1

for the above-pictured blue-aligned Cm, but a = λ for the red-aligned Cm. If m is even, then the

scalar a does not depend on the coloration, because of rotation invariance.
Now consider the definition ofDm. Even though we do not assume the existence of a Frobenius

square, we must still assume the existence of a rotation-invariant Jones–Wenzl projector JWm−1
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(well defined up to scalar), and we must fix a scalar multiple once and for all. Now (6.14) holds
as drawn, using that multiple of JW . We must modify (6.13), and consequently (6.17):

(A.9)

(A.10)

Again, the scalar a is the coefficient of the identity in the corresponding rotation of the

chosen Jones–Wenzl. In the picture for m odd for either relation, one takes the coefficient of

the identity in the red-aligned Jones–Wenzl. To check the consistency of this with (6.14), we

recommend that the reader follow the two proofs of (6.17) using the new unbalanced relations,

and confirm that they agree. The reader can also check that (A.8) matches with (A.9), so that

the functor Dm → Dm is still well defined.

Because of the scalar appearing in (A.10), it is no longer the case that the doubled m-valent

vertex is an idempotent. It is, however, an idempotent up to an invertible scalar, independent

of coloring. This invertible scalar is the product of the two possible values of a, for the two

colorings.

There is an alternative approach to defining the diagrammatic category Dm, which sacrifices

one measure of simplicity for another. There is a unique scalar multiple of the 2m-valent vertex

which, when viewed as a map BS (m̂t) → BS (m̂s) after applying the functor to Bott–Samelson

bimodules, will act on the lowest non-zero degree by sending 1⊗1⊗· · ·⊗1 7→ 1⊗1⊗· · ·⊗1. One

can draw this map as a 2m-valent vertex where the vertex itself is colored blue. Similarly, there

is a (different) scalar multiple which ‘preserves the 1-tensor’ when viewed as a map BS (m̂s) →

BS (m̂t) which we can draw as a 2m-valent vertex with the vertex colored red. Each of these

maps is cyclic (i.e. invariant under 360-degree rotation, or even (360/m)-degree rotation), but

one is not the rotation of the other.

With this convention, one must modify the relations (6.14) and (6.13) so that each keeps

track of the color on the vertex, and must also add a new relation stating that rotation of one

version of the 2m-valent vertex is equal to the other up to a scalar (this scalar, in fact, is λ±1).
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The reader can guess what the two new versions of (6.14) become. Relation (6.13) will become

(A.11)

The key point in this coloration is that the rightmost input of each 2m-valent vertex in the
diagram is red. In a version of this relation where the rightmost input is blue, one would color
the vertex red instead. Similarly, one can replace (6.17) with

(A.12)

where the Jones–Wenzl in this relation has identity coefficient 1. The composition of these two
vertices is thus a genuine idempotent.

The remainder of the study of Dm works verbatim. The avid reader can figure out how to
modify the sections on thickening and the Temperley–Lieb quotient accordingly.
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