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Abstract. We analyzes a notion of strong semistability of princi@gabundles by including reduction

to nonreduced parabolic subgroup schemes. It turns out that strong semistability is equivalent to
the Frobenius semistability of Ramanan and Rananathan. We also give a bound for nonstrongly
semistability of a semistable Gk)-bundle improving a previous result of Shepherd-Barron.
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Introduction

Principal G-bundles on a compact Riemann surface of genus 2 were studied
and the moduli space of semistaldfebundles was constructed by A. Ramanathan
([R1], [R2]). In the studying of5-bundles, the following result is important and es-
sential. Leto: G — GL(V) be anirreducible representation, then for any semistable
G-bundle E the associated vector bundke, (V) is semistable too. This theorem
is no longer true in positive characteristics, so the construction of moduli space of
G-bundles in positive characteristic remains open.

A principal G-bundleE — C is semistable if for every reductien C — E/P
to reduced parabolic subgroup schenfesf G, we have deg *(Tg,p) > 0 where
Tg,p is the tangent bundle along fibers Bf P — C. In characteristic zero, all
group schemes are reduced, thus the wedlicedcan be removed in the defin-
ition. In positive characteristic, nonreduced group schemes do occur. Thus it is
natural to think that one may expect a new concept of semistability dabandle
E (see Definition 1.2) if the wordeducedin above definition is removed. This
new semistability, called strong semistability, behaves well under the extension of
structure groups (Corollary 1.1). On the other hand, there is another notation of
semistability, calledF-semistability, if ;' E is semistable for anytth Frobenius
F,:C — C. Itturns out these two notations of semistability are equivalent to each
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other (Proposition 1.2). In Section 2 we prove that any semist@bteindle on

an elliptic curve is strongly semistable (see Theorem 2.1). It is well-known that a
semistableG-bundle on a curve of genys > 2 may not be strongly semistable.

To compare semistability with strong semistability, we introduce some numerical
invariants in Section 3. A natural problem is to bound these invariants. More pre-
cisely, to bound the instability of = F*E for a semistables-bundle E. We will

treat the problem for vector bundles of arbitrary rank (see Theorem 3.1). This is an
improvement of a result of N. I. Shepherd-Barron ([SB]) and, in the case of rank 2,
coincides with that of H. Lange and U. Stuhler ([LS]).

0. Preliminaries

Let k£ be a field of characteristip > 0 andn > 0, ¢: X — Speck) a scheme
overk, the p"th power map9y — Oy given by f — f?" is a homomorphism
and gives rise to a morphistfi,: X — X called the (absolute) Frobenius. Let
fi:Speck) — Speck) be the morphism induced by — k(@ — "), and
X® = fFX such that

x —& L x»__ A X

e

Spedk) —— Spedk) == Speck).

If k is a perfect field,f, and A are isomorphisms. We calfy: X — X@ the
geometric Frobenius.

Let7: E — X be aG-bundle, pulling back by the Frobenius we geGa
bundleFj(E) — Xr on X (where we take thé- structure onF’(E) to be the

one defined by the composif¢ (E) — Xr & Speck)). If k is a perfect field,
we can change the-structure ofF,"(E), X andG by composing their structure
morphisms withf, *: Speck) — Speck) to get a bundle=*(E) — X with struc-
ture groupf;*(G). ReplacingX by G in (D), we see tha#l gives ak-isomorphism
of f(G) with G, the latter having thé&-structure changed bfk‘l. Let a group
scheme G— SpecF,)(¢ = p") overFF, such thatG = G xp, Speck), then
£(G) = G. So thef*(G)-bundleF;(E) — X gives aG-bundle.

A smooth 1-foliationF on a smooth varietyX is a subbundle of the tangent
bundle7y of X, closed under the Lie bracket apth powers of derivations. Given
a smooth 1-foliation¥ on X, we have a smooth variety /¥ and ak-morphism
p:X — X/F such tahtOy,+ is the algebra of functions annihilated 5y.p is
purely inseparable of degrgeg**) factoring akth geometric Frobeniugy: X —
XY asFy = o opforsomes: X/F — XU, whereX® = X x, k is the base
change ofX by the p*th power map ot. Given a factorizatioX —2> ¥ ——> X®,
we have a smooth 1-foliatiofr := Ker(dp) on X such thatt = X/% . This way
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gives a one-to-one correspondence between the factorizadfieds ¥ ——> X
of geometric Frobenius morphisms and the smooth 1-foliatiBns Ker(dp) on
X (see [EK] for the proof).

1. SemistableG-Torsors

Let G be a group scheme over an algebraically closed figlhich is flat and
locally of finite-type, but not necessarily smooth. Letbe a scheme, and 4,
denote the big flat siteL FT/X) ;. For any open sdl/ of X ;;, G defines a sheaf
G(U)onUy,. Let S be a sheaf of sets aXi;;, on whichG acts.

DEFINITION 1.1. S is called aG-torsor if there is a coveringU; — X) for the
flat topology onX such thatS|y, is isomorphic with itsG-action toG (U;).

A G-torsor S is representable by ®-scheme ifG is affine, orG is smooth and
separated oveX andX has dimension at most one. It is known thafifs smooth,
respectively étale, respectively proper, then so also igG&igrsor.

Let U = (U; — X);es be a covering ofX ;. A 1-cocyle for U with values
inGisa famlly (gij: Uij — G)jx; Such that(gijlui./k)(gjﬂui/.k) = (giklUi_/k)‘ Two
cocyclesg andg’ are cohomologous if there is family;: U; — G);¢; such that
gi; = (hilu;)gij (hjlu,_,)‘l. This is an equivalence relation, the set of the equivalent

classes (i.e. the cohomology classes) is denotel kU / X, G). It is known that
there is a one to one corresponding between isomorphism clasSewufors that
become trivial on a given coverinty and elements o 1(U/ X, G) (See [Mi]).
Thus if p: G — H is a morphism of groph schemes afids a G-torsor, we can
associate a uniqul-torsorE ,(H) sincep induces a map

HYU/X,G) - HYU/X, H).

Let E be aG-torsor overX and P CG a subgroup scheme, we defifig P to be
the sheaf orX ;; such that for any/ — X, E/P(U) := E(U)/P. If G is affine,
E/P is representable by d-scheme. It is not difficult to verify that — E/P is
a P-torsor overE/P if G — G/P is a P-torsor overG/P Let P be a subgroup
scheme ofG, p andg the Lie algebras oP andG, then the adjoint representation
of G induces a representatign P —> GL(V)of PonV = g/p. Thus for any
P-torsorE — X, we can associate a vector bundlg(V) on X. In particular, the
conjugation ofG induces an action of on the tangent bundI@G/P of G/P at
e, thus we have an associated vector burfgles of £ — E/P on E/P, which
is nothing but the tangent bundel along fibresggfP — X. A subgroup scheme
PCG is called a parabolic subgroup schemeff G/P is a projective scheme
overk. Now | would like to make the following definition.
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DEFINITION 1.2. A G-torsor E on a nonsingular projective curz is called
semistable if for every parabolic subgroup scheéhaeG and every sectioa: X —
E/P,we have de@*T,p) > 0.

We are interested in the case wh@ris a reduced reductive algebra group. In
this case, &-torsor E is also called aG-bundle. It is clear thaE is a semistable
G-bundle if E is a semistabl& -torsor. Thus, we will calE a strongly semistable
G-bundle if E is semistable as &-torsor. From now on, we always assume that
G is a reductive algebraic group, for a reduced subgroup scherewé simply
call it a subgroup ofG. A subgroup scheme of G is parabolic if and only if
Pred:= P)is a parabolic subgroup @ (i.e. containing a Borel subgroup [W1]).
For any group schemg, the group of characters éfis defined to be HoitP, G,,.),
the group of group scheme theoretic homomorphisms, which was determined by
[HL] as the following.

PROPOSITION 1.1 ([HL]).Let P be the parabolic subgroup scheme correspond-
ing to theW-function f. Then the group of characters &fis the group X(P) =
[yea Zp! @ w,, wherew, are the fundamental dominant weights corresponding
to the simple roots € A, p™ is understood to bé.

LetTcPCP be atorus of5, X(P)CX(P)CX(T) A charactery of P is dom-
inant iff it is dominant as a character #f. Let X = G/P andy = Sycamgp’ @
wy € X(P), then there is an induced line bundlg:(x) on X. In this way, one
has an identification Pi&() = X(P) andL3(x) is ample if and only ifm, > 0
for eacha € A (see Corollary 7 of [HL]). The line bundlegl(x) on G/ P gives
naturally a line bundleZ (x) on E(G/P) = E/P. The following proposition gives
some equivalent description of a strongly semistablbundle.

PROPOSITION 1.2L et G be areductive algebraic group, arfla G-bundle over
a nonsingular projective curv€. Then the following are equivalent

(1) E is strongly semi-stable.
(2) F;(E) are semi-stable for any Frobenius:C — C.
(3) For any parabolic subgroup schenfe and sectiono: C — E/ﬁ we have

dego*E(x) < O for any nontrivial domlnant charactey on P where E(x)
is the natural line bundle orE/P given byL> Y(x) on each flbreG/P

Proof. Suppose thak is strongly semistable artd = (U; — X);¢; the cov-
ering (actually in Zariski's topology) of such that£ is determined by 1-cocycle
(gij:Uij = G)x;. One can see that the 1-cocycle/GfE is (gf;-”: Uij = G)ixis
and FE is nothing but the associate@-bundle E’ := E_ (G) of E by the
geometric Frobeniu¥;:G — G. If E’ is not semistable, we consider the ca-
nonical reduction(P, o) (see [Be], [KN]), where the parabolic subgroucG
and sectiono:C — E'/P are unique. The unlqueness @?, o) implies that

= f¢P, and thus defined ovef . .LetP = Fg; L(P), then F; induces an
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isomorphismG/ﬁ = G/P (note thatG/P is defined oveif,.). Hence, we have
dego*Tg,p) = dedo*Tr,p) < O contradicting (1). This shows that (1) implies
(2) (one remarks thak*(E) is semistable for any if and only if it is semistable
for sufficiently bign).

Suppose that; E are semi-stable for any Frobeni&§: C — C, we need to
prove (3). The ample line bundlez(x) on X = G/P is generated by global
sections and determines a morphisniXofo a projective space such thag(y) is
the pullback® (1) of the hyperplane line bundle of the projective space (see [La]).
By definition, E(x) is the dual ofE(¢¥ (1)) on E/P. Thus we only need to show
that dedo) := dego*E©®(1))) > 0. Letxg be the generic point of’, then, if
o (xg) is a semistable point off in the sense of geometric invariant theory, we
have dego) > 0 (see Proposition 3.10 of [RR]). & (xp) is nonsemistable, after
a Frobenius base chang&¢:C — C, we can assume thad is semistable and
o (xg) has an instability 1-PS defined over the function fielddofthen we have
that dedo) > 0 (see Proposition 3.13 of [RR]). This shows that (2) implies (3).

To prove that (3) implies (1), we need a result of [HL], which says that there
is a non-trivial dominant character on P such that det;,5) = Lp(x) (see
Proposition 7 of [HL]). Thus we have that

det(Ty,p) = E(det(T;,p) = E()H,
namely de¢o*T,5) = —dego*E(x) > 0, which shows that (3) implies (1).

Remarkl.1. It was pointed out by the referee that the Frobenius semistability
of Ramanan and Ramanathan corresponds to reduction to the special class of non-
reduced parabolic subgroup schendgs? (whereG, denotes the:th Frobenius
kernel of G). Thus it is clear that (1) implies (2) in Proposition 1.2.

COROLLARY 1.1. Let f:G — H be a homomorphism of reductive algeb-
raic groups, which maps the centre 6finto that of H. Then if E is a strongly
semistableG-bundle then the extendéd-bundle £(H) is strongly semistable.
Proof. To prove thatt’ = e(H) is strongly semistable, le® be a parabolic
subgroup scheme @f corresponding to th#& -function f, x a dominant character
on P ando: C — E’/P asection, we need to show that detf’(x) < 0 by the
Proposition 1.2. From the proof of Proposition 1.2, we know thahduces an
ample line bundle. on X = H/P such thatt’(x) = E'(L)"*onE'(X) = E'/P.
Now the groupG acts throughf on the projective schemg linearly with respect
to L, thus the group schem&(G) acts onE’(L)(= E(L)) and E'(X)(= E(X))
compatibility over the curve&. If o (xg) is a semistable point under the action of
E(Gy), then the Proposition 3.10 of [RR] implies that detf’(x) < 0. If o (xp) is
a nonsemistable point, then, after a Frobenius base chaidgewef can assume that
o (xg) has an instability 1-PS defined ovErC), thus we have deg*E’'(x) < 0
(see Proposition 3.13 of [RRY]).
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2. G-Bundles on an Elliptic Curve

Letw: E — C be aG-bundle over a smooth projective curgeof genusg > 0,
namely,G operates orE on the right andr is G-variant and locally trivial in the

étale topology. We know that there do exist Frobenius semistable (thus strongly
semistable) bundles (see [RR] p.289). On the other hand, it is not difficult to con-
struct nonstrongly semistable but semistable bundles on a smooth projective curve
of genusg > 1 (see Proposition 4.4 of [RR]). In this section, we will prove the
following result.

THEOREM 2.1. Every semi-stabl&-bundle on an elliptic curve is strongly semi-
stable.

Before the proof, let us recall some notations and facts which we ne&dslf
a quasi-projective scheme on whiGhoperates (on the left), the associated bundle
E(F) is the quotient ofE x F under the action ofG given by g(e, f) = (e -

2.8 Y f),ecE, feF, geG(Se]).LetG act on itself by inner conjugation,
then the associated bundi¥G) — C is naturally a group scheme ow€rand acts
naturally on theC-schemeE (F).

LetPaKE(G)/C) be the scheme consisting of the parabolic subgroups 69,
which is a smooth projectiv€-scheme. Itis easy to see that @&(G)/C) is natur-
ally isomorphic toE (PanG/k)), whereG acts on PG/ k) by inner conjugation.

If P isa parabolic subgroup @f, then the mag;/P — PanG/k) given bygP —
gPg~1is a G-equivariant isomorphism of;/ P onto the connected component
Par (G/k) of PaG/ k) consisting of parabolic subgroups conjugate’torhere-
fore we have a natural isomorphisB(G/P) = E(Parp(G/k))CPalE(G)/C)
and the sections af (G/P) — C are in bijective correspondence with parabolic
subgroup schemes &f(G) of type P (i.e., each geometric fibre is conjugateRth

Proof of Theoren2.1. Letwr: E — C be a semistabl&-bundle on an elliptic
curve C, and F:C — C be the Frobenius map of degree It is enough, by
Propo§ition 1.2, to show thd := F*E is semistable.

If E is not semistable, then there is a unique canonical smooth parabolic sub-
group scheme” CE(G) such that degP) > O (see Theorem 7.3 of [Be]). L&
and3 be the Lie algebra bundles 6f(G) and respectively, then dég /) < 0
and HO(&/9) = 0 sinceg(C) = 1 (see the Conjecture 7.6 of [Be] and the
remarks there). By the remarks at the beginning of this section, it is equivalent
to say that there is a unique parabolic subgraupf G and a unique section
0:C — E(G/P) := X, suchthatV., s = 6/, whereCo = o (C), thus

HO(N¢y3) =0 degNg,z) <O.

On the other hand, leff; be thepth Frobenius of Spég) andCY = C x; k,
thenEWD := F(E) is a semistabl&s Y := F*(G)-bundle. If we identifyF* (G)
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with G and writeX®® = E®(G/P), then we have the following commutative
diagram

x@

!

c®

A=

sinceX = E(G/P) is the same a&¥ ¥ xcu C.
The natural morphisnfc: X — X gives a factorization offy, and thus

dF
determines a unigue smooth 1-foliati¢gh = Ker(73 —— FCJX(l)) onX. Itis
easy to see thaf = f*7¢; in fact,

F = Tx,x0 = fTc/c0 = Te = Oc.
The F|¢,(= Oc,) is a subbundle of 5|, by the following exact sequence
8
0— T, = Txlcy — Neg/g = 0
and the facti®(N.,,z) = 0, we haves(¥|c,) = 0 and thus¥|c, < Tc, is
a smooth 1-foliation orCy since ¥ |, is closed under the Lie bracket apdh

powers of derivations. Hend@c induces an inseparable morphigrg — FC(CO)
of degreep, we get a sectiolf’; := Fc(Co) of f: X® — ¢ such that

1~ ~ 1
Kxw,cw - C1 = ;FC*(FéKxﬂ)/c(i) -Co) = ;K)?/C - Co,

whereO ya (Kxa cw) = dei(JX(l)/C(l)) andOx(Kg,c) = de1(J v o) Therefore
. 1 1
deg(fl TE(l)/P) = —Kx(l)/c(l) . Cl = _;K)?/C . CO = ;degNCo/i) < 0,

whereo;: CY — XD determined byC;, which contradicts the semistability &f,
thus proved the theorem.

Remark2.1. If F is a nonsemistabl&-bundle over a smooth projective curve
C of genusg and (P, Fp) the canonical reduction df, then Fp(g/p) is a vector
bundle onC, whereg andp are the Lie algebras aff and P. Conjecture 7.6 of
[Be] is thatH®(C, Fp(g/p)) =0

In the case of characteristic zero, this conjecture was proved by S. Kummar and

M. S. Narasimhan (see [KN], Lemma 3.6). In the case of positive characteristic,
some partial results were known (see [Be]), for example, it is true wheri.
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If F =E is the pullback of a semistablg&-bundle £ by a Frobenius of degree
p, then we actually proved that there is a nontrivial morphigm— Ep(g/p) on
any smooth projective curv@. Thus

H(C, Ep(g/p) ® ) #0,

which means that the instability & cannot be too ‘large’ if one believes the
conjecture.

Itis known that a nonsemistabie-bundle E on a smooth projective curve has a
canonical reduction to a unique parabolic subgrdupf G with unipotent radical
U and a Levi componerttC P such thatP = L-U. The following result should be
known to experts, at least in characteristic zero. Since there is no publishing proof,
we give a proof here in arbitrary characteristic.

THEOREM 2.2. Every nonsemistabl&-bundle E on an elliptic curveC admits
a semistable reduction to the Levi componént

Proof Let (P, Ep) be the canonical reduction @& andP = L - U, whereEp
is the P-bundle obtained fronk by the canonical reduction. We will show th&p
admits a reduction t@, which is obviously a semistable reduction. It is equivalent
to show thatE (P/L) — C has a section. SincR acts onlJ by inner conjugation
(U is anormal subgroup a?), we can associate a group schemgU) — C. Itis
not difficult to see thak» (P/L) — C is a principal homogeneous space under the
group scheme »(U) — C, hence we are reduced to prove that the non Abelian
cohomology grougd*(C, E»(U)) is trivial (see [Mi], Section 4 of Chapter 3).

To show thatH1(C, Ep(U)) = 1, we consider the filtration

U=UyD U1 D DU, ={e}

of U defined in Proposition 2.1 of [SGAS3], which satisfies

(1) U; are P-invariant normal subgroups a? and the commutatofU;, U;]<
Uitj+1-

(2) U;/U; ;1 = W; are vector groups and the inner conjugationPoécts onW;
linearly.

The exact sequence & Ep(U;;1) — Ep(U;)) — Ep(W;) — 0, induce exact
sequences of pointed sets

HY(C, Ep(Uiy1)) — HYC, Ep(Uy)) — HYC, Ep(W))).

Therefore the theorem will be proved if we can show for &# that
H(C, Ep(W;)) = 0. By the definition of canonical reductior¥y, := Ep(W;)

are vector bundles ol of deg'W;) > 0. ThusH(C, Ep(W;)) coincides with the
cohomologyH*(‘'W;) of coherent sheaves by the definitions of the non Abelian co-
homology and théech cohomology of sheaves. Itis clear tHa(W,) = HO(W))

will be trivial if 'W; are semistable vector bundles.
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From the property of the above filtratioli, acts onW; trivially since (Uy, U;)<
U; .1, thusP — GL(W;) factors through? /U — GL(W;) and the centre oP /U
goes to that of GLW,). Let Ep,y be the associate®/U-bundle of E, through
P — P/U, thenEp,y is a semistable?/U-bundle on an elliptic curv€ by the
definition of canonical reduction df (see [Be], Definition 5.6), which is strongly
semistable by our Theorem 2.1. Therefore the associated vector buiigles
Ep(W;) = Ep,y(W;) are also strongly semistable by the Corollary 1.1. We are
done.

3. Instability of G-Bundles

It is well-known that a semistablé&-bundle on a curve of genus > 2 may
not be strongly semistable. To measure the nonstrongly semistability of a semi-
stableG-bundle, we can introduce some numerical invariants in a geometric way.
A natural problem is, of course, to bound these invariants. The philosophy here is
that the Frobenius pull back of a semistabléoundle should not be too unstable,
the instability of it should be bounded. This is done in this sectiofesr GL(V).

Letr: E — C be aG-bundle on a smooth projective curve of gegus 2. For
any parabolic subgroup of G andnp: Xp = E/P = E(G/P) — C, we define
the divisorKy,,c on Xp to be the relative canonical divisor &f »/C. For any
irreducible horizontal curvéd of np: Xp — C, the maprp|p: D — C a finite
morphism. Letp'® be the pure inseparable degreergf 5, we call D the curve
of typei (D). Write

wi(P) = SUpKx,,c - D|DCXp of typei(D) < i},
wi(E) = sugu; (P)| P € ParG/k)}.

Then it is clear that we have
pmo(E) < ua(E) < pa(E) < -+ S wi(E) < - -+

The semistability ofe means that for any € PaG/P) and any sectiod of
mp:Xp — C,we have thaKy,,c - Co < 0. In particularuo(E) < 0 implies that
E is semistable. Actually, we have

PROPOSITION 3.1.E is a semistablér-bundle if and only ifug(E) < 0.
Let D be a curve of type 0 o » andC — D the normalization o in the

7Pl

function field of D. Let f:C — C be the finite morphisnC - D —— C,
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which is separable by the definition 6% and%: E = E x C — C the pull back
of E, then we have commutative diagram

E/P=Xp Xp

[

C.

Thus there is a sectiofip of X » — C such thatf,Co = D, which implies that

Kxpjc D= fi(Co- f*Kx,/c) = fiKz, e Co).
Thus the proposition is equivalent to the following lemma.

LEMMA 3.1. If n: E — C is a semi-stableG-bundle, then for any separable
finite morphismf: C — C, the puIlbackf*E is also semistable.

Proof. We can assume thgt C — C is a Galois cover with Galois group.
If E = [*E is not semistable, then there is a unigkes ParG/k) and a unique
sectlonCO of XP = E(G/P) — C such thatk'z, & - CO > 0. Theg acts naturally
onXp, andCo is invariant under thg, action, which gives a sectiaty, of Xp — C
such thatkx,,c - Co > 0 contradicts the semistability &.

COROLLARY 3.1. Let F,: C — C denote the:th Frobenius andE a G-bundle,
them the following are equivalent

(1) FE is semistable
(2) ua(E) < 0.

In particular, E is strongly semistable if and onlylifm,,_, o, 1, (E) < 0

Proof. FE is semistable if and only i E are semistable bundles for all
k < n. Thus we are reduced to show thi&g,,c - D < 0 for any irreducible curve
D on X, such thatrp|p: D — C is a pure inseparable cover of degree which
must be the:th Frobenius. Therefore the corollary follows the same argument as
above.

In the rest of this section, we restrict ourselves to the special cas& that
GL, (k), the & denotes the associated vector bundle of a@)-bundle onC by
the standard representatidhof GL, (k). For any vector bundl€ on C, we write
w(&) = deq &)/rk(€). The Harder—Narasimhan filtration &fis

O - 80C81C M an = 85

such thatg; := §;/&;_, are semistable vector bundles gntz1) > -+ > w(Gn).
Write 1(41) = umax(€) andu(%,) = umin(€), then we have the following fact.
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LEMMA 3.2. It A and B are vector bundles o6 and imin(A) > Umax(B), then
Hom(4, 8) = 0.

THEOREM 3.1. Let & be a semistable vector bundle raink » on a smooth pro-
jective curveC of genusg > 2 and F:C — C the Frobenius. WriteF*€ = &,
thenumax(€) — umin(€) < (r — 1 (2g — 2).

Proof. Let CY = C x, k be the base change ¢f by the pth power map
of k and & the pullback ofé, then&™ is semistable and = Fz&® for the
geometric Frobeniugc: C — C. Let0= &Cé&C--- CE, = € be the Harder—
Narasimhan filtration of and consider the exact sequence-0 & — & —
/& — 0.PutP, = P(§/&),P = P(&) andP = P(EWD), then we have a
commutative diagram

P, ‘ P fe P
tf lf
c—Tfc . co,

The mapF, determines a line subbundi& of 75 such thaf? = P/F andF =
f*7c. By the exact sequence & Tp, — (*T5 — Np,p — 0, one gets a
nontrivial map*# — Np 5. Otherwise;* ¥ gives aline subbundle ofp,, which
is a smooth 1-foliation orP;, andP; maps p-to-1 to its image inP; giving a
subscroll ofP that destabilize€® (see [SB]). Thus we havéTe — Op, (1) ®
[ (&), where f; = f - is the natural projectiol?(€/&;) — C, namelyTc —
€/& ® &, which implies that Honti¢ ® €;, €/€;) # 0. Thus Lemma 3.2 gives
us the following inequalityimin(Tc ® &) — umax(€/&) < 0.
On the other hand, it is easy to see that

tmin(Te ® &) = w(€/&-1) +2—2g,  pmad(€/8&) = n(&:11/8&),
if one notes that 6= E,C&,C--- & _1CE&;,
0=2¢/8CE41/6C-- CE /& = E/E

are the Harder—Narasimhan filtrations&fand & /&;. Write (& /8;_1) = w; and
we have

Mmax(g) - Mmin(g) =M1 — Uy = Z(Mi — iy < (n — 1D(2g —2),
i=1

which proves the theorem singe< rk(€).

Remark3.1. Our bound is an improvement of a result of N.l. Shepherd—Barron
and the proof is a modification of [SB]. When= 1, this gives another proof of
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our Theorem 2.1 in the case of vector bundles. In the case of rank two, the bound
coincides with that of H. Lange and U. Stuhler (see [LS], Satz 2.4).
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