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A NOTE ON THE DUBOIS-EFROYMSON DIMENSION 
THEOREM 

BY 

WOJCIECH KUCHARZ 

ABSTRACT. Let X c R" be an irreducible nonsingular algebraic 
set and let Z be an algebraic subset of X with dim Z ^ dim X — 2. 
In this paper it is shown that there exists an irreducible algebraic 
subset Y of ^satisfying the following conditions: dim Y = dim X — 1, 
Z c Y and that the ideal of regular functions on X vanishing on Y is 
principal. 

1. Introduction. We shall consider algebraic varieties over the field R of real 
numbers. First of all, to prevent confusion, we shall fix some terminology. 

Given a Zariski closed subset V of R", we denote by 0V the sheaf of regular 
functions on V. Recall that if U is a Zariski open subset of V, then a function 
/ : U —> R is said to be regular if for each point x in U there exist polynomial 
functions <px and \px on R" and a Zariski neighborhood Ux of x in U such that \px 

does not vanish on Ux and / = wx/^x on Ux. It is well known [4], [8], [11] 
that 

&V(U) = {<p/̂ |<p, \p are polynomial functions on R" and ^ does 
not vanish on U}. 

An affine real algebraic variety is a locally ringed space (X, 0X), where 0X is a 
sheaf of rings of R-valued functions on X, such that (X, (9X) is isomorphic as 
a locally ringed space to (V, 0V) for some Zariski closed subset V of R", n ^ 0. 
A ringed space (X, (9X) is called a real algebraic variety if there exists a finite 
open covering {U^ of X such that (Ui9 @x\Ui) is an affine real algebraic variety 
for all /'. Morphisms between real algebraic varieties and such concepts as 
dimension, irreducibility, nonsingularity, etc., can be defined in the standard 
way (cf. [4], [8], [11]). Every real algebraic variety can be endowed with the 
strong topology induced from the Euclidean topology on the reals. 

Given a subvariety Y of X, we shall denote by IX(Y) the ideal of &X{X) of 
regular functions vanishing on Y. 

Our aim is the following 
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THEOREM 1. Let X be an affine irreducible nonsingular real algebraic variety 
and let Zbe a closed algebraic subvariety ofX of codimension at least 2. Then there 
exists a closed algebraic subvariety Y of X such that 

(i) Y is irreducible, codim Y = 1, Z c 7, 
(ii) the ideal IX(Y) of &X(X) is principal. 

Condition (i) has been proved by Dubois and Efroymson [5] for varieties over 
any real closed field without the assumption that Xis nonsingular; condition (ii) 
is new. Notice that, in general, there are many essentially different subvarieties 
Y satisfying (i). For instance, let X = Sl X Sl, where Sl is the unit circle, and 
let Z consist of a single point z = (z1? z2). Clearly, both Yx = {zj} X Sx 

and Y2 = Sl X {z2} satisfy (i) but neither of them satisfies (ii). From a geo­
metric or topological point of view there is an essential difference between 
Yx and 72. Indeed, the divisors represented by Yx and Y2 are not linearly equiva­
lent and the homology classes of 7, and 7, in HAS1 X s\ Z/2Z) are distinct. 

i i Of course, it is easy to find a subvariety 7 of S X S satisfying (i) and (ii). It 
suffices to take any nonsingular subvariety of S] X Sl containing z whose 
homology class in H{(S

] X S\ Z/2Z) vanishes and which is C°° diffeomorphic 
to S1 (cf. for example [3], Theorem 3). The meaning of (ii) is that 7 is, in a 
certain sense, the simplest subvariety of X satisfying (i). Indeed, (ii) implies that 
the divisor represented by 7 is linearly equivalent to zero and the homology 
class represented by 7 in Hd_](X, Z/2Z), d = dim X, vanishes (here we use the 
homology built on infinite locally finite chains if X is not compact in the strong 
topology). It should be mentioned that the proof of Theorem 1 will not be 
obtained by refining methods of [5] (the author does not know if that is 
possible) but by completely different techniques in which algebraic blowing-ups 
play the main role. 

2. Proof of Theorem 1. Let X be an affine real algebraic variety and let 7 be 
its closed subvariety. We shall denote by TT(X, Y):B(X, 7) —» X the algebraic 
blowing-up of X along 7 (cf. [2] or [4] for elementary properties of this 
construction in the context suitable for this paper). Since real projective space 
with its natural structure of an abstract algebraic variety is actually an affine 
variety (cf. [2], [4] or [11]), it follows that B(X, 7) is an affine real alge­
braic variety. Moreover, TT(X, 7) is a proper map in the strong topology and in­
duces an algebraic isomorphism between B(X, Y)\IT(X, Y)~l(Y) and X\Y. If 
both X and 7 are nonsingular, then B(X, 7) also is nonsingular and ir(X, 7) is 
surjective. If Z is a closed subvariety of 7, then B(Y, Z) will be considered as a 
subvariety of B(X, Z). Notice that B(Y, Z) is just the Zariski closure of 
ir(X, Z)~\Y\Z) in B(X, Z). We shall be using these properties later on without 
explicitly referring to them. 

By a multiblowup of X along 7 we mean a real algebraic morphism m\X —> X 
together with a sequence of real algebraic morphisms 
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X ;= Xk —» A^_ j —» . . . —> Â  —» Z0 = A" 

and a sequence of closed nonsingular sub varieties Z z_, c A ^ i , dim Zt_x < 
dim y, / = 1, . . . , /c, such that 77 = 77, o . . . o irh Z0 c y, Xx = £(A^0, Z0), 
77j = TT{XQ, Z0) and for each i = 2 , . . . , / : , AT, = B(Xl_x Zt_x), nl = 
7r(Xl_x, Z ^ j ) . If F i s a closed subvariety of A", then the subvariety V of J? ob­
tained by the following process: Vx = the Zariski closure of TT^1(V\Z0) in 
A"j, . . . , Vk = the Zariski closure of irk

x(Vk_x\Zk_x) in Xk, V = KA„ is called 
the strict preimage of Z under 77. To simplify the exposition, we shall refer 
to 7T:X —» X as a multiblowup, tacitly assuming that there are also associated 
with 77 the sequences {77,} and { Z ^ j } , / = 1, . . . , k. 

Given a real algebraic variety X, we shall denote by Sing(X) its set of singular 
points. The following deep result, which is a version of Hironaka's desingulari-
zation theorem, will be crucial. 

THEOREM 2 [6]. Let X be an affine real algebraic variety and let Y be a closed 
subvariety of X. Then there exists a multiblowup TT'.X —» X of X along Y such that 
the strict preimage Y of Y under 77 is a nonsingular subvariety of X and 77 induces 
an algebraic isomorphism from X\7r~ (Sing(y) ) onto X\Sing(Y). 

We shall also need the following technical result. 

LEMMA 3. Let X be an affine nonsingular real algebraic variety and let Z be a 
closed subvariety of X of codimension at least 2. Let I be a locally principal ideal of 
®X(X) such that the ideal WX(X\Z) of 0x(X\Z) is principal Then the ideal I is 
principal, provided that X is compact in the strong topology. 

PROOF. We shall consider 0X(X) as a subring of the ring tf(X) of continuous 
(in the strong topology) real-valued functions on X. Clearly, I^(X) is a 
projective ^(JQ-module of rank 1. Let £ be a continuous real line bundle over X 
associated with Itf(X) in the standard way. By assumption, £ is topologically 
trivial over U0 = X\Z. Pick a continuous nonvanishing section s0 of £ over U0. 
One easily finds a finite collection {^} / = i k of open subsets of X and a 
collection {st}i= x A, st\ Ut —> £, of nonvanishing continuous sections of £ such 
that Z c Ux U . . . U Uk, each Ui is homeomorphic to a ball and si = XÉs0 on 
U\Z, where À, is a continuous positive function on U\Z (notice that U\Z is 
connected, codim Z being at least 2). Let {<p.}• 0 k be a continuous partition 
of unity subordinate to the open covering {L^} = 0 k of X. Define the section 
s of £ by s = <p(>s0 + . . . + <pksk. Obviously, s vanishes nowhere. Thus the line 
vector bundle £ is topologically trivial and hence the ideal I^{X) of ^(X) is 
principal. Let fxgx H- . . . + fg^ be a generator of I^(X), where f ^ I and 
gr e tf(X). It follows from the Weierstrass approximation theorem that there 
exists hr e @X(X) arbitrarily close to gr r = 1, . . . , / . By [10], Lemma 1.3, we 
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may assume t h a t / = fxhx + . . . + f€h£ generates IV(X). Let </ = (f)0x(X). 
Then #<S(X) = IV(X) and in virtue of [10], Theorem 2 .2 (a ) , / = /. 

Given a real algebraic variety X and its subvariety 7, to simplify notation, we 
shall write (P(X) for 0X(X) and I(Y) for IX(Y). Assume that X is nonsingular. 
A family {^}z = i c of nonsingular subvarieties of X is said to be in gen­
eral position if for each x in Yx U . . . U 7C, the family {Tx(Yf) }/GA(\-)> where 
A(x) = {/|x G î^}, of vector subspaces of ^(A") (Tx(-) = Zariski tangent 
space at x) is in general position, i.e., 

codim H ^ ( ^ ) = 2 codim r x ( ^ ) . 
/GA(JC) /eA(.0 

PROOF OF THEOREM 1. If F is an irreducible component of Z, then V is 
contained in a closed irreducible subvariety W oi X with dim W = dim V 4- 1. 
Thus we can assume that all irreducible components of Z have the same 
dimension. Let c = codim Z. 

STEP 1. Assume that X is compact in the strong topology, Z is nonsingular 
and there exist closed nonsingular subvarieties Yj, . . . , Yc of Xof condimension 
1 which are in general position and satisfy Z c Y} Pi . . . n 7r. 

By [2], Proposition 4.3, there exists an arbitrarily small C°° isotopy ft\Z —> X, 
0 ^ f ^ 1, such that / 0 is the inclusion map and Z' = 7J(Z) is a 
closed nonsingular algebraic subvariety of X transverse to Z. It follows 
from [2], Lemma 3.1 that the normal vector bundle of B(Z, Z n Z') in 
i?(X, Z n Z') splits a C°° trivial line bundle. Thus there exists a C°° function 
g:5(X, Z Pi Z') —» R transverse to 0 in R and vanishing on £(Z, Z Pi Z'). By 
the relative version of the Weierstrass approximation theorem (cf. [1], 
Proposition 2.1) one can find a regular function h:B(X, Z n Z') —> R vanishing 
on 5(Z, Z n Zr) and arbitrarily close to g in the C°° topology. Clearly, one can 
assume that h is transverse to 0 in R. Let <p, , . . . , <pA be generators of the 
ideal I(B(Z, Z C\ Z')) of 0(5(* , Z n Zr) ). We claim that for a generic 
s = (^j, . . . , ^ ) in RA (i.e. for all 5 in R*\2 , where 2 is a certain closed 
subvariety of R , dim 2 < /c), the function hs = h + sx<px + . . . + sk<pk is 
transverse to 0 in R and VS\B(Z, Z n Zr) is an irreducible variety, where Vs 

is the set of zeros of hs. Now we shall finish the proof of Step 1 assuming that 
the claim is true. Notice that Vs is irreducible. Indeed, as one easily sees, Vs 

is the Zariski closure of VS\B{Z, Z n Z') in B(X, Z n Zr). Let Y be the 
Zariski closure of TT(X, Z h Z,)(^\77(Ar, Z n Z , )~ , (Z n Zr) ) in X Clear­
ly, 7 is irreducible and codim 7 = 1 . Also notice that Z\(Z n Zr) c Y and 
hence Z c 7. Since the ideal I(VS) of 0(B(X, Z n Z')) is generated by 
hs, the ideal / ( 7 ) 0 ( X \ ( Z n Z') ) of Q(X\(Z n Z') ) is principal. By Lem­
ma 3, the ideal 7(7) of 0(A") is principal. 
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To prove the claim, notice that its first part follows from a standard trans-
versality argument. Thus it remains to show that VS\B(Z9 Z n Z') is an irreduc­
ible variety for a generic choice of s. Since B = B(X, Z D Z')\B(Z, Z n Z') is 
an affine variety (any open subvariety of an affine real algebraic variety 
is affine!), we can embed B as a closed subvariety in R^ for some N > 0. Let Bc 

be the complexification of B, i.e., the smallest closed complex subvariety of C^ 
containing B. It follows from the description of 0(B) given at the beginning 
of Section 1 that one can find a Zariski open neighborhood U of B in Bc 

and complex regular functions hc:U —» C, <p/C: U —> C, / = 1, . . . , k such that 
hc\B = h\B, q>iC\B — q>i\B and the set of common zeros of <JP1C, . . . , q>kC is 
empty. Since B is irreducible so is U. By Bertini's theorem (cf. [7], p. 586 and 
also [9], Theorem 1.4), there exists a closed complex subvariety 2 C c C*, 
dim 2 C < k, such that for each u = (wl5 . . . , uk) in C*\2C , the variety 

{z e f/|Ac(z) + W!Vlc(z) + . . . 4- uk<pkC(z) = 0} 

is irreducible. If for some s in R , hs is transverse to 0 in R, then the ideal 
I(VS\B(Z, Z n Z') ) of 0(5) is generated by hs\B. Hence F , \£(Z, Z n Z') is 
irreducible provided that, in addition, s belongs to R* \2 C . 

STEP 2. Assume only that X is compact in the strong topology. 

By Theorem 2, there exists a multiblowup TT\'.XX —> X of X along Z such that 
the strict preimage Zx of Z under 7Tj is a nonsingular subvariety of Xx and ITX 

restricted to X,\771~
1(Sing(Z) ) is an algebraic isomorphism onto X\Sing(Z). It 

follows from [2], Theorem 3.5 that one can find a multiblowup 77-2:X2 —» Xx 

of Xj along Zi such that if Z2 is the strict preimage of Zx under 7r2, then 
Z2 c K] Pi . . . n Kc, where Fj, . . . , Fc are closed nonsingular sub varieties 
of X2 of codimension 1 which are in general position. Step 1 implies the exist­
ence of a closed irreducible subvariety Y2 of X2 with Z2 c Y2 and the ideal I(Y2) 
of &(X2) being principal. By construction, there exists a closed subvariety 
Z0 of Z such that dim Z0 < dim Z and 77-, o 772 induces the algebraic iso­
morphism between X2\(irl o 7T2)~

{(ZQ) and X\Z0. Let Y be the Zariski 
closure of (77-j o 77-2)(y2\(77-] o 7T2)_1(Z)) in X. Obviously, Y is irreduc­
ible and codim 7 = 1 . Since Z\Z0 c Y and all irreducible components of 
Z are of the same dimension, we have Z c Y. Notice that the ideal 
I(Y)0(X\Zo) of (P(X\Z0) is principal. Thus, by Lemma 3, the ideal I(Y) of 
(9{X) is principal. 

STEP 3. X arbitrary. 

We can assume that Jfis a closed algebraic subvariety of R", n > 0. Let Sn be 
the unit «-dimensional sphere and let p:Sn\{a} —» R" be the stereographic 
projection from a = (0, . . . , 0, 1). Denote by X* the Zariski closure of p~l(X) 
in S". Obviously, X* is compact in the strong topology and Sing(Jf*) c {a}. Let 
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<n\X —> X* be a multiblowup of A* such that A"' is nonsingular and 77 induces an 
algebraic isomorphism from X'\?r~\a) onto X*\{a} (Theorem 2). Let Z' be 
the Zariski closure of ir~\p~l(Z)) in Jf. Since X is compact in the strong 
topology, it follows from Step 2 that there exists a closed irreducible subvariety 
Y of X such that Z' c F , codim 7' = 1 and the ideal 7 (F) of 0(X) is 
principal. Let y be the Zariski closure of P(IT(Y\TT~ (a)))in X. Clearly, y is ir­
reducible, codim Y = 1 and Z c X. Moreover, since p o 77:X'\IT~ '(a) —> Xis an 
algebraic isomorphism, the ideal 7(Y) of 0 ^ ) is principal. 
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