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Algebraic Evaluations of Some Euler Integrals,
Duplication Formulae for Appell’s
Hypergeometric Function F;, and Brownian
Variations

Mourad E. H. Ismail and Jim Pitman

Abstract. Explicit evaluations of the symmetric Euler integral fol u*(1 — u)® f(u) du are obtained for some
particular functions f. These evaluations are related to duplication formulae for Appell’s hypergeometric
function F; which give reductions of F; (o, 3, 3, 2a, y, z) in terms of more elementary functions for arbitrary
Bwithz = y/(y — 1) andfor f = a + % with arbitrary y, z. These duplication formulae generalize the
evaluations of some symmetric Euler integrals implied by the following result: if a standard Brownian bridge
is sampled at time 0, time 1, and at n independent random times with uniform distribution on [0, 1], then the
broken line approximation to the bridge obtained from these n + 2 values has a total variation whose mean
squareis n(n+1)/(2n + 1).

1 Introduction

This paper is concerned with the explicit evaluation of some integrals of Euler type

1
(1) / u“il(lfu)bflf(u)du
0

for particular functions f, especially in the symmetric case a = b. These evaluations are
related to various reduction formulae for hypergeometric functions represented by such
integrals. Sections 4 and 5 explain how we were led to consider such integrals by a simple
formula found in [24], for the mean square of the total variation of a discrete approxima-
tion to a Brownian bridge obtained by sampling the bridge at # independent random times
with uniform distribution on (0, 1).

We first recall the basic Euler integrals which define the beta function

T(a)T(b)

1
o a—1 o b—1 _
(2) B(a,b) := /0 ' (1 —uw)’ du= Ta+b)

for a and b with positive real parts, and Gauss’s hypergeometric function

ab| \_ 1 A - SN (@a(b)a 2"
) F<c ‘Z>B(b,c—h)/o (1- r2)a dt’;o ©n 1l
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where in the integral it is assumed that z ¢ [1, 00) and that the real parts of b and ¢ — b are
positive, and for the series |z] < 1 and

_T(@+n)
(9),,.71'[(9 =T

We note for ease of later reference the well known consequence of the series expansion in
(3) that for any b

@) F(“;f’ z> — (-2,
the Euler transformation [3]
(5) F (a, CC+ d ‘ z) =1 -z " F <_d’i — z),

and Pfaff-Kummer transformation

a,c+d _ —a a,—d z
(6) F< c ’z)-(l—z) F< c Z_1>.

By expansion of (1 — yu)~? and (1 — zu) ™4 in powers of yu and zu, for all positive real a,
b, p, q there is the classical evaluation [23]

w1 —w)~du
7 =B b F + b; 8
7 / (1_yu)p(1_21/l)q ([1, ) l(a,l%%a }’Z)
where F; is one of Appell’s hypergeometric functions of two variables [4], whose series
expansion is

®)  Fonf By =3 S OBy <,

| 4!
L=l (Vmenmlnl

Appell [4, Section 4] gave a number of reduction formulae which allow F; to be expressed
in terms of simpler functions when its arguments are subject to various constraints. In par-
ticular, Appell gave formulae for Fy (o, 3, 8’,7; y,ty), and Fi(«, 8, 8, B+ 3'; y, z) in terms
of Gauss’s hypergeometric function. These reduction formulae for F;, and various trans-
formations between F; and Appell’s three other hypergeometric functions of two variables
y and z, commonly denoted F,, F3 and F4, can be found in many places [5], [6], [8], [10],
[28].

Some of the main results of this paper are the formulae (9) and (11) stated below, as
well as their generalization stated throughout the paper. These duplication formulae for the
Appell function F; are reductions in the special case when v = 2« and 8’ = 3, which do
not seem to appear in the classical sources. For all complex a, 3, y with |y| < 1/2

L, 7
(9) Fl (a7ﬂ75720¢))’7y1> F( 4(}/1)>
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Section 2 derives this formula, explains its close relation to the well known duplication

formulae for the sine and gamma functions, and gives a generalization to one of Lauricella’s
multiple hypergeometric functions. In view of (4), the case 8 = a + 1 of (9) reduces to

2 —a 1 — )
(10) F, (a,a+%,a+%,2a;y7i>:(l—y7> :%.
y—1 4(y—1 (1= 3y)%

Section 6 offers an interpretation of this formula in terms of a family of probability densities
on (0, 1) parameterized by y € [0, 1). Formulae (9) and (5) show that

F (a,a+%+d,a+%+d,2a;y,%)
=

is an algebraic function of y for each « and each positive integer d. Formula (10) is the
particular case z = y/(y — 1) of another duplication formula for F; which we learned from
Ira Gessel: for all complex o, y, z with |y| < 1and |z] < 1

1 1 2 2
11) F (a,a+ 2 a+ 1 2059,2) = - [ 1+ :
(1) Fy (0t 3,0+3,205,2) 2( \/1—y\/1—z><\/1—y+\/1—z>

Gessel’s proof of (11) is presented in Section 3 together with some generalizations of (11).
By (7), for o > 0 the right side of (11) gives an algebraic evaluation of

(12) / [u(l —w)]* 'du
B(a o) (1 — yu)(1 — zu)]o+1/2

and hence of other Euler integrals by differentiating with respect to y and z. See also [7],
[8], [16, (15)] and [31], [30] regarding various other reduction formulae for hypergeomet-
ric functions which involve duplication of an argument.

In the process of trying to understand (9)—(11) we realized that our approach gives more
general results. Examples are (26) and (28). The referee pointed out a different way to prove
(9)—(11). His proofis in Section 8.

2 Duplication Formulae and Symmetric Euler Integrals
Consider first the elementary duplication formula for the square of the sine function:

(13) sin”* 20 = 4sin” O(1 — sin” O©).

If © is picked uniformly at random from [0, 27], then so is 20 modulo 27, and hence
sin® 20 £ sin’> © where < denotes equality in distribution of two random variables. As
shown by Lévy [20] (see also [12], [13], [25]) various random variables A with

(14) ALsin’o
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arise naturally in the study of a one-dimensional Brownian motion B. One such A is the
first time that B attains its minimum value on [0, 1]; another is the amount of time that
B spends positive during the time interval [0, 1]. For A as in (14) the duplication formula
(13) is reflected by the identity in distribution

(15) 4A(1 - A) L A,

In other words, the arcsine distribution of A on (0, 1), with density

P(A € du)/du = a2 —w) (0<u<)

is invariant under the transformation u — 4u(1 — u). In the theory of iterated maps [21,
Example 1.3] this observation is usually attributed to Von Neumann and Ulam [32]. In
purely analytic terms, the identity (15) states that for all non-negative measurable functions

h
1 _ 1
(16) l/ le/ h(r) d
0 0

T ul/2(1 — u)l/2 ™ t/2(1 — 1)1/2

The substitution g(x) = 7~ 'h(4x)//x reduces (16) to the following expression of the
change of variable t = 4u(1 — u): for every non-negative measurable g:

1 1
gt/4)dt
1 1— = =17
(17) | st —wyau= [ S
If f is symmetric, meaning f(u) = f(1 — u), then f(u) is a function of u(1 — u), and so is

w11 — u)*! f(u); the Euler integral (1) for a = b can then be simplified by application
of (17). As indicated in [13, Ex. 11.9.2], for a > 0 the case of (17) with g(x) = x*~! yields

(18) B(a,a) = 2'"*B(a, 1

which in view of Euler’s formula B(a, b) = I'(a)T'(b) /T'(a + b) amounts to Legendre’s du-
plication formula for the gamma function

Qo) _ T+ d)
T(a) r)
The table of Euler integrals in Exton [11] provides dozens of other examples of (17).

(19)

Proof of Formula (9) Since the coefficient of y* on each side of (9) is evidently a rational
function of o and [, it suffices to establish the identity for & > 0 and 8 > 0. Since

2
(1yu)(1yi1u>1yy_lu(lu)

fora=b=a,p=q=0,z=y/(y — 1), formula (7) reduces to

y 1 /1 [u(l — )] ' du
F a? ) b 2a7 ) =
1( b6 yyl) Bla,a) Jo 1 —y2u(l —w)/(y — D]
which equals the right side of (9) by application of (17), (18), and the integral representa-
tion (3) of Gauss’s hypergeometric function. ]

In Section 6 we will further explore the symmetry or antisymmetry of functions around
the middle of the domain of integration.
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A Duplication Formula for a Lauricella Function

The Lauricella function [18]

(a)m1+-‘~+m”(bl)m1 e (bn)m,,x;nl o 'x;:nn

(C)m1+-~+mnm1! e mn!

Fg)(a,bl,...,bn;c,xl,...,xn) = Z

(my,...,my)

where the sum is over all vectors of # non-negative integers (my,...,m,), is known [10,
(2.3.6)] to admit the integral representation

1 Uyl —w)eolgy

200 F(a,by, ..., buc, X1, ... X)) =
( ) D(a 1 ns Cy X1 xn) B(a,cfa) A (l—uxl)bl'u(lfuxn)bn

provided the real parts of a and ¢ — a are positive and x1, ..., x, are in the open unit
disc. Another application of (17) and (18) yields the following duplication formula, which
reduces a Lauricella function of 2# variables, with ¢ = 2a, with n equal pairs of parameters,
and n corresponding pairs of variables x; and %; with £; = x;/(x; — 1) for1 <i < m,toa
Lauricella function of n variables:

(21)
F(Zn) a b, b b,,by;2a,x,% Xy Xy) = F(n) a,b b,;a+ 1
D (7 1,V1y -y UnyUn> y ALy ALy o ooy Any n) D(7 1y Un> 27}’17”'7}’”)

where y; := x7 /(4x; — 4). See also Karlsson [17] for some reductions of generalized Kampé
de Fériet functions obtained by a similar method.

3 Formula (10) and Related Topics

We first start with Gessel’s proof of formula (11). Gessel argues that formula (11) can be
obtained by taking the average of the following two formulas:

(22) Fillasa+ Lt a+L20+1;y,2) = 2 :
RT3, T 53 e VT +vI—z
and
2a
(23) Fila+La+ia+L2a+1;9,2) = ! 2
’ 2 2 7 VI— V1 -z \JT—y+/1—z '

To prove these formulas, apply the reduction formula [6, 9.5 (2)],
y—z
1—-z

o, a+ ]
20+ 1

a,b
b+c¢

Fi(a;b,c;b+¢cy,z)=(1—2)°F <

to get

Fiosa + %,a—l— %;2a+ L;y,2) = (1 —z)‘”‘F(

y—z
1—2z
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y—z
1—-z /)

and

a+l,a+;
20+ 1

Fila+ La+ %,a+ %;2a+ L;y,z) = (1 —z)_“_lF(

Finally, apply the formulas [1, (15.1.13) and (15.1.14), p. 556]

2a
a7a+% - 2
(24) F(Za—l—l “><1+m>
and
1 1 2 2a

(25) F<a+l,a+2 u) _ ( )

200+ 1 VIi—u\l1+y1—u
and simplify.

To discover what is behind formula (11) we appeal to (2), p. 239 in [8] and get, for
j=0,1,2,..., the following result

1 =y*Fla,y+j—86" 72
. z—
:Fl <a7_]7ﬁ/77; y y)

y—11-y
j . m o0 n
N Em ( y > (@min(B ) <zy>
mZ:O m! y—1 ;::0 (V) mntt! 1—y

Therefore

j

Fl(a77+j7/6/75/,7;y7z):(17)/)702(7])"1(04)"1 ( Y )

m! (V) m -1
(26) = ml(y) y
F a+m,fB' | z—y
v+ m 1—y/)’

At this stage one needs to make judicious choices of the parameters of the hypergeometric
function on the right-hand side of formula (26) to reduce it to an algebraic function. One
choice is

(27) y=a+8 —1/2.

When j = 1 the right-hand side of (26) is the sum of the F in (25) and a similar F with a
different value of a.. This explains Gessel’s identity.

For general j we chose 8’ = «a + 1/2 then apply the quadratic transformation [8,
(2.11.13)]. The result is that for all j =0,1,2,... and 8’ = a + 1/2 the F in (26) is

1-2\" (2a+2m-12a]1 1 (1-2\"
1—y 2a+m 2 2\1-y '

https://doi.org/10.4153/CJM-2000-040-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2000-040-3

Appell functions and Brownian variations 967

The hypergeometric function in the above expression is algebraic as can be seen from the
Pfaff-Kummer transformation (6). The final result is

(28)
Fl(a7a+j—ﬂ/,ﬁ'7’y;y,z)

1 —
= Tyt VT2 2 | =

-y

S (D@m= [y )" T 4 T3

XZZ m! k! Qo + k) y—1 =2 W1y +vl—z

m=0 k=0 o m
Another case is
(29) y=a—-p"+1
We need to apply

a, b _ —an(a/2,(a+1)/2 4z

(30) F(ab+1 Z)_(1+Z) F( a—b+1 ’(1+z)2>’

[8, (2.11.34)]. The quadratic transformation (30) had a misprint in the original reference
where a — b + 1 on the right-hand side was printed as a — b — 1. In this case, that is when
(29) holds, (30) becomes

z—y

-y

F< a+m, [
() (e e | ey

a—pB +1+m
1—2y+z a—pF"+1+m (1—2y+2)?
Now (26) becomes

Fl(a,a+1+j—,8',a—,8'+1,y,z)

j : .
_ Z (7])m(a)m (*}’)
(31) Sml(a — B+ 1)y (1= 2y +2z)0tm
(a+m)/2,(a+m+1)/2 | 4(z—y)A —y)
X F ) RETVRLTITY,
a—pB ' +1+m (1 —2y +2z)?
It is clear from this formula that the choice 8/ = k+ 1 + /2, so that v = —k + /2,

k=1,2,...,k > (j +1)/2, and the Pfaff-Kummer transformation (6) reduce the F; in
(30) to an algebraic function.
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We take this opportunity to add that a general useful identity which generalizes (6) is
the Fields and Wimp formula [15]
zw)

F al,...,ap, Cly.--yCr

prrtas bi,....bg, di,...,ds
(@)n--(ap)n (=2)" n+ay,...,n+a
— F ) 9 p
(32) ;(bl)n"‘(bq)n nt T\ n+by,...,n+b,

w).

For a treatment of such formulas, see [14]. One can apply (31) istead of (6) to functions of
several variables defined by beta type integrals like (7) and establish similar identities. We
shall not discuss this any further in this work.

)

—Nn,C1y...,C
><r+1Fs
di,...,d

4 Brownian Variations

Let (b(u), 0<u< 1) be a standard Brownian bridge, that is the centered Gaussian process
with continuous sample paths and covariance function

(33) E(bwb() =u(l—v) (0<u<v<1),

obtained by conditioning a standard one-dimensional Brownian motion started at 0 to
return to 0 at time 1. See [27], [26] for background. Let V,, denote the variation of the path
of b over the random partition of [0, 1] defined by cutting the interval at each of n points
picked uniformly at random from [0, 1], independently of each other and of b. That is

n+l
(34) Vai=Y_|A,;| where A, ;= b(Uy;) — b(Uyi1)

i=1

forU,; < Uy, < -+ < Uy, the uniform order statistics obtained by putting the # uniform
random variables in increasing order, and U, o = 0, U, ,s1 = 1. In [24] the distribution of
V. is characterized as the unique distribution on (0, co) whose p-th moment is given for
each p > 0 by the formula

T(n+p) T(@2n) T(n+p/2)

_ np/2
(35) Bvy =2 T(n) TCn+p) I(n)

and the corresponding density is expressed in terms of the Hermite function defined in
[19]. In particular, (35) gives

7LI‘(n+l/2)‘ ,  n(n+1)
(36) EVi = V2 T(n) ~ " 2n+1

The formula for EV,, is easily checked as follows, by conditioning on the U,;. It is well
known that the Brownian bridge b has exchangeable increments, and that the spacings
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A, = U, — Ui for1 < i < n+ 1 are exchangeable [2]. It follows that in the sum
(34) defining V,, the n + 1 terms |A,, ;| are exchangeable. Combined with the consequence
of (33) that

(37) An.,l é \/ Un,lUn,IZ

where U,,; := 1 — U, 1, and Z is a standard Gaussian variable independent of U,, , so

/2
(38) E|Z| = /=, EZ*=1,
™

the exchangeability of the | A, ;| allows the following evaluation:
= (n+ DE[A,| = (n+ 1)(E\/ U, U1 )E|Z|

L) T(n+3)

=t Un—re oV

which reduces to the expression for EV,, in (36).

It is not so easy to check the evaluation of EV?2 in (36) by the same method. Rather,
this method yields an expression for EV? which when compared with that in (36) leads by
a remarkable sequence of integral identities to the evaluation of Euler integral presented
in the introduction as (1), an example is (57). It might also be interesting to explore the
integral identities implied similarly by (35) for n = 3,4, ..., but these appear to be much
more complicated.

By the same considerations of exchangeability

n+1

(39) EV? = (Z A \) = (n+ DEA2, + (n+ )nE|A,, A,,|.

Now by (37)
n

n
(40)  (n+1EA, (it D)(nt2) n+2

= (n+1)(E(Up1Un1))EZ* = (n+1)

n,1
and by a straightforward extension of (37)

(41) E|An,lAn72| =E <Xn An.,lAn.,l |Yn| A11,2An.,2>

where X := 1 — x and (X,,Y,) is a pair of random variables which given A, ; and A,,; has

the standard bivariate normal distribution with correlation

An,lAn.Z

42 E XnYn An 7A11. = — —_— = .
(42) ( | Ant, Ap) AviBs

Here A, ; and A,,; have the same joint distribution as min;<j<, U; and 1 — max;<j<, U;
for independent uniform (0, 1) variables U;. For n > 2 this means

(43) P(A,y €dx, Ay, €dy) =n(n—1)(1 —x— y)”*2 dxdy (x,y>0,x+y <1).

The expectation in (41) can be evaluated with the help of the following lemma.
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Lemma 1 Let (X,Y) have the standard bivariate normal distribution with
EX)=EY)=0; EX*)=EY*>=1; EXY)=re[-1,1],

meaning that

(44) Y=rX+V1-12Z

for independent standard normal X and Z. Then

(45) E|XY| = %(m + rarcsinr).

Proof By conditioning on X and applying a standard integral representation of the Mc-

Donald function Kj, as indicated in [29], there is the following correction of formula (2)
of [29]: for all real z

1 rz 2|
(46) ID(XYEdZ):7r 1_rzeXp<1r2)K°<lr2> e

The classical identity

* az 1
(47) /O (4 Ko(bZ) = 1727

T a
— — in — <
— (2 arcsin b) (0 <lal < b)

now yields the moment generating function of |XY|: for [#| < (1+1)~!

T+ 2arcsin(r+ 01 — r2)) N ™ — 2arcsin(r —6(1 — r2))

(48) ‘ 27/ 1 — 1 — (1 — 12)62 2mV/1+ 10 — (1 — )62

and (45) is read from the coefficient of € in the expansion of (48) in powers of 6. [ |

As a check on (47), this formula combined with (46) yields the following companion of
(45), which is a well known consequence of (44) and the symmetry of the joint distribution
of (X, Z) under rotations:

1 1 .
P(XY > 0) = — + — arcsinr.
2 0w
As checks on (48), the coefficient of 62 agrees with the formula E(XY)? = 1 + 2r* which is

obvious from (44), and the coefficients of §” for small even 7 are found to agree with those
of the well known m.g.f. of XY

(49) EY =1/4/1—2r0 — (1 — r2)62.

The computation in (41) can now be continued by conditioning on (A, 1, A, ;) and
applying (42) and (45) to evaluate

L 2 p— A,
(50) E[An 1A, = _E\/An 18,2(A 1+ A+ —E| A1A,sarcsin | ——= 17n2
: : i ' i ' ' m ' ' An,lAn,Z
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where X := 1 — x. By (43), the first term is a Dirichlet integral, which is easily evaluated as
3(n—1)2/(n— 3)3, where (6),, is the rising factorial with m factors. Substitute this in (50),
then (50) and (40) in (39), and compare with (36) to deduce that foreachn = 1,2, ...

2 AuiA 24301
(51) —E | A, 1A, arcsin ~nl15n2 ) 3(3n" +3n . ) .
T o AniBuz | 8(n+1)2(n— 1)

Ifn=1thenA;; = ALQ = U say has uniform distribution on (0, 1), and (51) reduces to
the elementary evaluation E(UU) = 1/6. Forn > 2 set p = n — 2. In view of (43), the
identity (51) with both sides divided by n(n — 1) = (p + 1), reads

2 - . [xy 33p* +15p + 17)
(52) — //x (x+ )P arcsin , | = dxdy = i
™ ey Ve Y 8(p+1)al(p+3)s

x+y<l1

0<x,y

The following argument shows that this identity holds in fact for all complex p with positive
real part. The left side of (52) is evidently the p-th moment fol zP f(z) dz of a positive

density f on (0, 1), which is found by partial fraction expansion of the right side of (52) to
be

(53) f@)= (1= Va @+ Va1 +2V2).

In view of (43) for n = 2 and its consequence that A, 3 = A, + A, , has probability den-
sity 2(1—z) at z € (0, 1), it follows from the above discussion that the function f(z)/(1—z)
can be interpreted as follows as a conditional expectation: for 0 < z < 1

Ay, ) _ @)

(1-2)

2 Ay A
(54) —E <A271A272 arcsin 21722
T

AZ,IAZ,Z

Since A, ; given A, 3 = z has uniform distribution on 1 — z, which is the distribution of
U(1 — z) for U with uniform distribution on (0, 1), it follows after setting w = (1 — z) and
U=(1-U)thatfor0 <w<1

wrUU _fa—w)
(1—wU)(1—wO) | w?

2 - .
(55) —E|UU arcsm\/
T

5 Some Symmetric Euler Integrals

Substitute x = 1/w in (55), use the formula (53) for f, and simplify, to see that (55)
amounts to the following identity: for all x > 1

(56)
1 -
/ i arcsin (L du = % (78x3 + 1267 — 2+ v/x(x — 1)(8x* — 8x — 3)).
0

x—u)(x— )
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The formula
arcsin\/1/(1+z) = m/2 — arctan v/z

reduces (56) to
(57)

! [x(x—1) o 5 ) )
/0 u(1 — u) arctan mdu—ﬂ(&c —12x"+4 — v/x(x — 1)(8x —8x—3)).

Equivalently, from (57) via (17),

(58) / —arctan\/ x(x; 1) 3(8 — 1267 + 4 — /x(x — 1)(8x% 78x73))

which can be verified using Mathematica. To relate (57) to the identities discussed in the
introduction, consider for x > 1, a > 0 and arbitrary real 3 the integral

(u(1 - u))a_1
x—u)(x—1+ u))ﬁ

1
(59) I(a, B5x) :z/ ( du
0

where the denominator of the integrand can be expressed differently using

(60) (xu)(x1+u)x(x1)+u(1u)x(x1)(1“)(1 u >
X

1—x

By differentiating (57) with respect to x, and dividing both sides by 2x — 1, formula (57) is
seen to be equivalent to

C2mdP(x -1 ¢

(61) I3, I;x) = P —g(sz—Sx—l).

It is easily seen that

() a8+ 15%) = ——— L1, gi
BQ2x —1) dx

and provided 8 > 0 this operation is inverted by

(63) I(a, B;x) = ﬁ/ 2y — DI(a, B+ 1;9) dy.

Thus by repeatedly differentiating and dividing by 2x — 1, we find that (61) is equivalent
in turn to each of an infinite chain of explicit evaluations of I (%, B;x)for 3 =1,2,...,the
next few of which are

5 9. x) — x(x — 1)(8x* — 8x + 3)
(64) 13,25x) =7 <1 _ e )
5 3., — 3T
(65) 16,39 = e
(66) I3, 4%) = m(24x — 24x + 1)
29 b -

8x3/2(x — 1)3/2(2x — 1)7
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and so on. The simplest of this sequence of identities is (65). This is the special case o = 2

2
of the following identity: for all real « > 0 and x > 1

B(a, )2

Vaxlx — 1)(2x — 1)2°

By using the last expression in (60) and (7) the integral I(«, 3;x) can be presented as

(67) I(a7a+%;x) =

B
(68) fo 5520 = O i (00205 )

where F, is Appell’s hypergeometric function (8). Thus (67) is just a restatement of (10),
and (9) amounts to the following more general evaluation: for x > 1, & > 0 and real 53,

—1

dx(x — 1) )

The operation (62) shows that for each a formula (67) generates an infinite sequence of
explicit evaluations of I(a, + d + %;x) in terms of algebraic functions for d = 0,1, 2,
... . For some a, as in the case for o = % as illustrated above, it is also possible to work
backwards using (63) to get algebraic expressions for I(cr,  + d + 3;x) for negative d.
Now if d is a positive integer the Gauss function on the right side of (5) is a polynomial
in z. Substituted in (69) witha = aandc = a + %, this gives an explicit formula for
(o, +d+ %; x) instead of a recursive evaluation. The question of whether or not there is
an explicit representation for I (v, §; x) in terms of elementary functions of x for a particular
choice of (v, B) reduces to whether or not the Gauss function appearing in (69) can be so
represented. See for [8], [1] for tabulations of such elementary evaluations of the Gauss
function.

B ) )
(69) (e, B5x) = #_al))ﬂfj (;:Lﬁ%

6 Generalized Beta Densities

For arbitrary positive a, b, and real ¢j and y; with [y;| < 1,1 < j < n the formula

n

(70) w1 —w O =y

=1

defines a positive function of u € (0, 1) which can be normalized to define a probability
density on (0, 1), which we shall call a generalized beta density. As noted by Exton [10, Sec-
tion 7.1.1], the integral representation (20) of the Lauricella function F\" implies that this
function appears in the normalization constant and in formulae for the moments of this
family of distributions on (0, 1). The functions in (70) are weight functions for orthogonal
polynomials which generalize Jacobi polynomials. These weight functions are referred to
as generalized Jacobi weights [22].

The following discussion concerns a particular one-parameter sub-family of this multi-
parameter family of distributions on (0, 1), which is related to the duplication formula (9)
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for the Appell function F;. For each y € [0,1) define non-negative functions ¥, and f,
with domain [0, 1] by the formulae

(1—yp)2(1—1y)?
;.
(1—yw)(1—y(1—u))?

u(l —u)(1 - 1y)?

71 \\ =
7 B (1—yu)(1—y(1 —u)

and  f,(u) :=

Observe that in view of (7), formula (10) can be rewritten as follows: for each y € [0,1)
anda >0

1 1
(72) / [\I’y(u)]”‘*lfy(u) du = B(a,a) = / [u(1 — u)]* ! du.
0 0

For o = 1 this shows f, is a probability density on (0, 1) for each y € [0, 1). This family
is evidently the subfamily of the family of densities obtained by normalization of the func-
tions (70), fora=b=1,n=2,y1 =y, 5, = y/(y — 1) and c; = ¢, = 3. The following
graphs show the densities of f, for y = i/10,0 <i<9.

2.5¢

\S]

1.5

0.5¢

0.2 0.4 0.6 0.8 1

The graphs illustrate the following facts which are easily verified by calculus. For each
0 < y < 1 the density f, is convex and symmetric about 1/2, with maximum value
(1 — % ¥)?/(1 — y) attained at 0 and 1, and as y 1 1 the probability distribution with
density f, converges weakly to the Bernoulli (%) distribution on {0, 1}.

According to formula (72), if U, denotes a random variable with density f,, and U = U,
is a random variable with uniform distribution on (0, 1), then

(73) E[V,(U)]1*" =Bla,) = E[UL —=U)]*" (a>0).

Since a distribution on (0, 1) is uniquely determined by its moments, this implies the iden-
tity in distribution

(74) U,(U,) LU0 - V).
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Equivalently, for each non-negative measurable function g with domain [0, 1/4]

1 1 1
(75) /0 g(\Ily(u))fy(u) du = / g(u(l — u)) du = / %

0 0

where the second equality is just (17) again. This second equality shows that 4U (1 —U) has

the beta (1, 1) distribution with density 1 (1 — u)" Y2 atu € (0,1), hence that U(1 — U) 4
i(l — U?). It then follows by inversion of the transformation ¥ » that a random variable
U, with density f, can be constructed as

y2 —1/2
(76) Uy:=3+1iU <1 (2—y)2(1U2)>

where = is a random sign, equally likely to be +1 or —1, independent of U. By symmetry,
U, has mean 1/2 for all y. The variance of U, is found by integration using (76) to be

2-y)? Vi—y y
(77) E(U, — %)2 = 1 <1 -2 p arctan 2m> .

As the first equality in (75) does not seem obvious, we provide the following check:

Direct proof of the first equality in (75) Since ¥, (u) = ¥, (1 —u) and f,(u) = f,(1 —u),
the left side of (71) equals

1

1
: 4 d
79 2 [ s ) pGend=2 [Tgmnf (v m) \—V;fvm‘ dw
0

0

by the change of variable w = W, (1 + v) which makes w decrease from 1/4 to 0 as v
increases from 0 to %, with

1 /1—4w dv,(w) c, — 4
v:vy(w)::E 1—cw ;w - yl 3
y 4(1 —4w)2(1 — ¢,w)2
where ,
¢ = —2
Y-y

The right side of (78) can be simplified, by use of the following identities, which follow
easily from the above definitions:

22— 9)*(1 —y)?

((2 — )%+ 4v2y2)

HG+v) =

3
2

where for v = v, (w)

1—4w)y? 41 —y)
2 R ayt = (2 g4 =
( y) vy ( y) I —cw I—cw
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SO

22— y)2(1 — y)2(1 — c,w)% Q- pP— cyw)%

1 =
(79) £ (5 +v(w) 4%(1 ~ y)% 41 —y)

and4 — ¢, = 16(1 — y)/(2 — y)* so that

dvy,(w) _ 16(1 — )

(80) dw

1 é
42 — )21 — 4w):i(1 — ¢,w)2
and the equality of first and last expressions in (75) follows by cancellation, and a final
change of variable x = 4w. ]

7 Companion ldentities

For arbitrary non-negative measurable functions / and g there is the following extension
of the change of variable formula (17) to deal with asymmetric integrands, obtained by

setting r = 4u(l — u) sou = %(1 + V1 —1), |du/dt| = 1/(4y/1 —1t):

1 1 1 —
o) / Bl — )= 3 h(t/0)g (A1 +oyT=1)
0

dt.
oe{£1} 70 4vl—t

We now show how (11) and other related formulas follow from (81). Here again we
prove a more general result which may be of independent interest. The basic ingredients
are the following relationships involving the ultraspherical polynomials {C¥ (x)} and Jacobi

polynomials {P{*(x)},
(82) Clzjm(x) _ (V) m any—l/27—1/2)(2x2 1),
(1/2)m
Wmt pw—1/21/2) 1.2
(83 CY o (x) = — 2L xpv=1/21/2) (952 _ 1),
: 210 = )
oo
(84) Zp;a=ﬂ>(g)w” =2 PRI —w+R) ™ “(1+w+R)7°,
n=0
where
(85) R=(1-2Cw+wH)2

See for example (10.9.21), (10.9.22), (10.9.29), and (10.9.30), respectively in [9]. We shall
also need the well-known generating function

(86) S oChyw' =1 — 2w+ w) .

n=0
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Theorem 2 We have

Fi(a, 8, 8,205 5,2) = [(1 — y/2)(1 — 2/2)] 77

v “2a- Sa—ar e
with Z defined as
S
(88) = % -1
and
Fla+1,6,8,2a+1;y,2) — Fi(a, 8, 8,205 y, 2)
(89) _ Py+z—y1) (y2)"(B)ms1 pU-1/21/2) 7).

(=2 =2 =22 —y)2-2)]"(@+1/2)pa "

Proof Substitution of the right-hand side of (86) in the integral representation (7) ([9,
(5.8.5)]) shows that the left-hand side of (87) is

-
LQa) 1 et {1—( 4 +L> (214—1)-1-7}/2(2”_1)2} du

IM(a) Jo 2—y 2-z 2-y)2-2)

~ T'Q2a) ! (t)‘“l 1

T T2(a) 0 4 44/1 —t

(}’Z)”/z 8 ytz—yz n/2
2 C — dt.
g nz;mn[@*ﬂ@*z)l”/z "\Vyz2 =2 -2 (Lo

The above expression then simplifies to the right-hand side of (87) through the use of (83).
Using the integral representiation (7) and the duplication formula for the gamma function,
the difference in (89) is seen to equal

I'2a)
I'(a)

1
/ (1 — u)]* ' Qu — D[(1 — uy)(1 — uz)] P du
0

Lo 1y Loy

(90) " T%a) J, \a 4Tt

(y2)"/? 5 y+z—yz n2
C — dt.
* L T pe-arEe (\/J’Z(Z— e —z)) ot

by expansion of the integrand as in the previous case. This simplifies via (83) to the expres-
sion in (89). [ |
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When 8 = « + 1/2 in Theorem 2, the generating function (84)—(85) implies (11).
Another special case is to choose z = y/(y — 1) but keep 3 general subject to restrictions
that make the integrals and sums involved converge. This choice makes y +z — yz = 0 and
hence Z = —1. Now [9, (10.8.3), (10.8.13)] imply

P = CEDn gy
Thus we get
oy N a=pnf B2y
(91) F (04,5757204;)’,)/_ 1) - (1 —y/2)25F<04+% )2

which is equivalent to (9) through the Pfaff-Kummer transformation (6).
The same cases 5 = a + 1/2 orz = y/(y — 1) are of interest in the second formula of
Theorem 2. Thus

Fila+1, a+— a+ 200+ 15y, 2)

() )
(92) T2 VI—pV1—z) \VT=y+/1—2
220‘”(3""2_ )’Z) )’Z)m(ﬁ)mﬂ (@,1/2) (7
[2—y@2-2)] a+3/22[<2—y><2—z)1 v @

In the notation of (88),

4,./(1 —y)(1 —2) yz
=7 — - 7=
(=4 R=Ta e "Ta e o
PR PN A R kA M S SHIPY LA Ut 1G]
2-y)2-2) 2-y)2-2)

Now (92) implies formula (23).
Another way to evaluate the integral on the left-hand side of (89) as

%[Fl(a"' 17555,205"' 1§}’?Z) 7F1(O‘75’6,2a+ 1§)’,Z)]~

This establishes formula (22). Finally the case z = y/(y — 1) in (89) gives the identity

(93) Fi(a+1,3,8,2a+1;y,y/(y — 1)) = Fi(a,3,83,205 5,y /(y — 1)).

Thus (9) can be recast as

(94) Fl(a+175,ﬂ,2a+1;y,y/(y—1)):F(o7+1

y2
4(y — 1>)'
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8 Remarks

The referee has kindly pointed out that formulas (11)—(9) can be proved in a more direct

and simpler way. We left our original proofs in the body of the paper because they also

prove generalizations of (11)—(9), as we saw in the previous sections. The referee’s proof is

interesting, brief, and provides an alternate explanation of the source of Gessel’s formulas.
The referee’s master formula is

> (adBy—ak ytazyt
Fl(a,ﬁ,ﬁ,%y,Z)—gk!(y/z)k((vﬂ)/z)k( 4 )

B+k (a+k)/2,(a+k+1)/2
X3F2( k+7/2,k+(y+1)/2 ‘)HLZ_)/Z)'

(95)

Proof From (7) it follows that

Fi(a, B,8,7:y,2) Z(z.)lg,(yf)k ‘F (1_2’?;(

)

Applying (29) to the right-hand side in the above identity we are led to

m —m m - ’ - 4
Fila, 8,8, 3,2) = Z(:,((ﬁ)) (y+2) F( m{Z_(é_i;:)/Z (yijzzy)‘
m=0

Let j be the summation index in the F series on the right-hand side of the above equation.
Thus m > 2j. Replace m by m + 2j and use the duplication formula (19), and the fact that
(B)m/ (L =B —m)j = (=1)/(B)m—; to get (94). u

Observe that if z = y/(y — 1) then the argument in the ;F, vanishes and we obtain

. _ a,ﬁ,y—a yz
(96) Fl(aaﬁuﬂal}/)yvy/(y_ 1)) =sh <'Y/2,(’Y+ 1)/2 ' 4()/_ 1)) ’

Now (95) with v = 2« gives (9) while the case ¥ = 2a— 1 gives (93). Next the case v = 2«
and 8 = a+ 1/2 and [8, (2.8.6)] imply (11). Furthermore (94) with y = —z gives the
interesting identity

570‘/2,(04"'1)/2 2
97 Fi(a, B8, 8,7y, —y) = 3F .
(97) 1, B, 8,75, =) 32(7/27(7_'_1)/2
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