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HYPERSPACES OF H-CLOSED SPACES 

L. M. FRIEDLER, R. F. DICKMAN, JR. AND R. L. KRYSTOCK 

A space is H(i) [R(i)] if every open [regular] filter base has a cluster 
point and H(ii) [R(ii)] if every open [regular] filter base with a unique 
cluster point converges. This terminology is due to C. T . Scarborough 
and A. H. Stone [11]; H(i) spaces have been studied as quasi-ff-closed 
spaces in [10] and as generalized absolutely closed spaces in [6]. Haus-
dorff H(i) [H(ii)'\ spaces are called H-closed [minimal Hausdorff] and 
regular 1\ R(i) [R(ii)] spaces are called R-dosed [minimal regular]. For 
a space X, 2X is the set of all non-empty closed subsets of X with the 
finite topology [8]. T h e present s tudy was motivated by the long­
standing problem of whether or not a 7"3 space with every closed subset 
^-closed is compact , and also by the well-known result ([8] and [14]) that 
X is compact if and only if 2X is compact . We show tha t a T\ space X is 
H(i) if and only if 2X is H(i), and t ha t if 2X is H(ii) [R(i), R(ii), feebly 
compact] then X is H{ii) [R(i), R(ii), feebly compact] . W e cannot 
expect X to be inc losed if and only if 2X is i^-closed since 2X is Hausdorff 
if and only if X is T3 [8, Theorem 4.9.3], and a J\ / /-closed space is com­
pact ; however, we do prove tha t H(X), the set of all non-empty 0-closed 
subsets of a Hausdorff space X is inclosed (in the relative topology 
inherited from 2X) if and only if X is inc losed and Urysohn. 

For Ai, . . . , An subsets of X, let 

(Ai, ...,An)= {F 6 2X:F C U A f, FC\At^ 0 f o r a l H } . 

T h e finite topology on 2X is the topology with base {(f/i, . . . , Un)\ Ut 

open in X, i = 1, . . . , n). 
For a space X and i C I , the 0-closure of A, denoted C\QA, is \x\ every 

closed neighborhood of x meets A}. A is 6-closed if CleA = A. inteA is 
defined analogously. CleA is closed and inte^l is open. These concepts 
were first defined by Velicko [13]. For a Hausdorff space X, let H(X) 
denote the collection of all 6-closed subsets of X with the topology H(X) 
inherits as a subset of 2X. 

T h e following facts are easily verified. 
1.1 Cl<^i , . . . , An) = (CI Aly . . . , CI An) [8, Lemma 2.3.2] 

i.2 < ^ 1 , . . . M „ ) = ( i ^ i ) n . . . n (x,An)r\ (VAt) 
1.3 'mt(A) = (inU) [7, p. 161, Vol. 1] 
1.4int(Z,^) - {X, mtA) 
1.5 <int^i, . . . , mtAn) C int<^i, . . . , An) 
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1.6 int C\(Ah . . . , An) = int C\(X, Ax) P . . . P int C1(Z, An) P 
mtC\(\J At) = (X, int C l / l O n . . . P (X, int Cl A„) P (mtClUA;) 

1.7 For A Ç I , C U Ç C M . 
1.8 For U open in X , £7 C intaCl**/. 
1.9 If <% = <C/f t/i , f/2, . . . , E / n ) , ^ = <F, F1? . . . , Vm) where 

U Ui: C U and U Vt C F and [ / H F = 0, 
2 = 1 1 = 1 

then either some U t fails to meet F, 1 ^ i ^ n, or some F7- fails to meet 
[7,1 ^ j S m. 

1.10 H A, B £ 2X and yl $£ C l ^ , then there exist disjoint open sets U 
and V of 2X containing A and # respectively. 

1.11 The arbi t rary union of #-open subsets is 0-open [13]. 
1.12 For U open in X, Cl U = CUU [13], so tha t 

CI £/ = Cl(int,Cl,C/). 

i.i3 c\Hix)(x, u) = <x,ci f/)nflffl,cw,(F) = (ci v)nH(x), 
and i n W ( x ) C W C Y ) ( ( ^ ) n / / ( Z ) ) = ( in t 2

x Cl 2
x ( f / ) ) H i / ( X ) - (int Cl U) 

r\H(X). 
1.14 If X is //-closed and FTrysohn and A is a regularly closed subset 

of X, then C M - A, i.e., /I is 0-closed [13]. 
The reader is referred to [7] and [8] for other facts about the finite 

topology and to [1] and [11] for the s tandard characterizations of H(i), 
R(i), H (it), and R(ii) spaces. Whenever we consider 2X, we shall assume 
X is 2Y 

Definitions. A collection of subsets of X is inadequate [16, Fxercise 175] 
if it fails to cover X. A collection of subsets of X is proximately finitely 
inadequate if no finite subcollection is a proximate cover of X. 

Notice tha t the s tandard covering characterization for H(i) spaces 
may be s tated: a space X is H(i) if and only if every proximately finitely 
inadequate collection of open sets is inadequate. 

LEMMA 1 [4, p. 15]. Let Ui, . . . , Un be open in X and let U = 

b\ P . . . P Un. Then int CI U = int CI Ux P . . . P int CI Un. 

T H E O R E M 1. A space X is H(i) if and only if every subbasic open cover 
has a finite proximate subcover. 

Proof. To prove the sufficiency, let £f be a subbase for X and let (3 
be a proximately finitely inadequate family of open sets in X. By maxi­
m a l l y , /S Ç a, where a is a maximal family with this property. We shall 
show a, and thus /3, is inadequate. First, notice t ha t for any open set A, 
A Ç a if and only if int Cl A £ a. Now, the f a m i l y ^ P a is a proximately 
finitely inadequate collection of subbasic open sets and so is inadequate. 
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We claim 

u {A: A e a} =\J \A\ A ty r\a). 
If x (z A, A (: a, there exist L\, . . . , f/n in 5 ^ such tha t x G U\ C\ . . . 
H E/w C -4. Since int Cl yl £ 5^ , by maximali ty so is int Cl(f / i P\ . . . 
P\ [/„), and this set is equal to int CI U\ C\ . . . P\ int CI £/n by Lemma 1. 
We claim tha t for some i, i = 1, . . . , n, int CI U, (z a. For suppose not. 
Then, for each i there are sets An, . . . , Ami in a such tha t 

X = CI Alt U . . . U Cl 4T O i U Cl (int Cl £/,) 

= C l - 4 i , U . . . UClAmiU CI Î/,. 
But then it is easily shown tha t 

X = (CI , 4H U . . . W CI 4 w i ) U . . . U (CI Ain U . . . \J C\Amn) 

uint(ci L\r\... r\ c\ u„) 
and since 

int (CI Ui C\ . . . C\ CI Un) = int CI Ui(^ . . ,r\ int CI J7„, 

int Cl f/i H . . . H int Cl t/w is not in a, which is not possible. It follows 
tha t int CI U t, and hence Uu is in a for some i, i = 1, . . . n. Therefore, 
x (z Ui% Ui ^ F C\ a, and a is inadequate . 

LEMMA 2. Let F be an open filter base on X and letF' = {(U): U € F\. 
Then: 

(a) F' is an open filter base on 2X;^ ' is regular if F is regular and 
countable if F is countable; 

(b) if XQ is a cluster point of & , {%Q\ is a cluster point of F ; 
(c) if A is a cluster point ofF' and y £ A, then y is a cluster point of F; 
(d) if X() is the unique cluster point of F, then {x0j is the unique cluster 

point of F'; 
(e) if F' - » \x{)\, then F - » x0. 

Proof. We prove only (c). If y t^A £ C1(L) - (CI V) for all V £ F, 
then y € A Q CI V. So, Y £ C\ FC\ V and y is a cluster point oîF. 

Definition. X is feebly compact if every countable open filter base has a 
cluster point. 

PROPOSITION 1. If 2X is H(i) [or R(i) or feebly compact] then X is H(i) 
[or R(i) or feebly compact, respectively]. 

Proof. Let 2X be H(i) [R(i), feebly compact] and let F be an open 
[regular, countable open] filter base on X. By Lemma 2(a.),F' is an 
open [regular, countable open] filter base on 2X and hence has a cluster 
point F. But if y Ç F, then by Lemma 2 (c), y is a cluster point of F. 

T H E O R E M 2. X is H(i) if and only if 2X is H(i). 
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Proof. The sufficiency follows immediately from Proposition 1. For the 
necessity, by Theorem 1 it is enough to show tha t every subbasic open 
cover of 2X has a finite proximate subcover. Let 

2X = Ua(X, Ua)\J Ue(Vfi) 

and let 

F = X - U« Ua. 

Then Fis closed. If F = 0, then X = U« Ua and since X is H(i) there is 
a finite sub-collection Uai, . . . , Uan such tha t X = W CI £/ai. But then 

2X = C\(X, f / a i ) U . . . U C l < X , £/an). 

U F 5* 0, then ^ G 2* so /*" Ç ( I ^ 0 ) for some p0; tha t is, 

^ C VfiQ C int CI Vp0 

and so 

X - int CI V0O CX - F = Ua Ua. 

Since X — int CI V$Q is regularly closed, it is H(i) [S, 2.2], and hence 
there exists a subcollection Uai, • . . , c7an such tha t 

X - int CI Vfi0 C CI Uai U . . . U CI [/an. 

We claim 

2* = C1(X, i/01) U . . . \J C\(X, Uan) U C1<T>0). 

For if G Ç 2X and G C CI I^0 then 

G e <C1 F,„) = CI <!',„). 

If G is not contained in CI Vp0, then G is not contained in int CI Vp0, so 
tha t G P\ Cl f/at 7e 0 for some k, k = 1, . . . , n, and then 

G Ç (X, CI t/aft) = C1(X, Uak). 

We omit the easy proofs of the corollaries below. 

COROLLARY 1. For a Hausdorff space X the following are equivalent: 
(a) X is compact; 
(b) 2X is compact; 
(c) 2X is minimal Hausdorff; 
(d) 2X is H-closed; 
(e) 2X is minimal regular; 
(f) 2X is R-closed. 

COROLLARY 2. A Hausdorff space X is H-closed if and only if 2X is H(i). 

T H E O R E M 3. A Hausdorff space X is H-closed and Urysohn if and only 
if H(X) is H-closed. 
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Proof. Suppose X is inc losed and Urysohn. Then, by 1.10, H(X) is a 
Hausdorff space. Also, if 

H(x) = Ua((x,ua)nH(X))VJ u0((Vp)nH(x)), 
then 

H(X) = Ua ((X, into CI* Ua) C\ H(X)) KJ Up ((Vfi) P H(X)). 

Now, if F = X - U« into CI* f/a, 

/< = Ha (X\intB C\e Ua) = Ha ( ^ \ i n t CI t/a) 

and by 1.14, each X \ i n t CI Ua is ^-closed. T h u s F is 0-closed. 
Using 1.7 through 1.13 above, the remainder of the demonstrat ion that 

II(X) is H{i) is essentially as in the proof of Theorem 1. Thus , H(X) is 
H(i) and Hausdorff, so //-closed. 

Now suppose H(X) is //-closed. I t follows almost exactly as in 
Proposition 1 tha t X is H(i), and thus //-closed since X is Hausdorff. We 
will now show tha t X is Urysohn. Suppose to the contrary , t ha t X is not 
Urysohn. Then there exist x, y £ X such tha t Cl Nx P Cl Ny ^ 0 for 
every Nx Ç jV x and Ny £ «^y. (Here^K^ denotes the set of all open sets 
containing p G -Y.) Let Nx and 7V?/ be chosen so t ha t Nx P CI Ny = 0. 
Now since À" is Hausdorff, and J^~(X), the set of all non-empty finite 
subsets of X is dense in 2X and # ~ ( X ) C # ( X ) , it follows from 1.9 tha t 

J F = {(Ny,NvC\Nt)r\H(X)\ z G ClNxnClNy,Nt CE^2 | 

is an open filter base on H(X). Thus , since H(X) is H(i), there exists a 
cluster point T of # ~ and T £ H{X). I t then follows from 1.13, t ha t 

(*) T 6 P i (CI iV„ CI (TVs nNy)): ze CI TV, P CI 7V„ iV2 G ^ } . 

Let u> e Ci Nx P CI iVv and N G ^ . Then ( r P Cl TV) 3 ffH 
C ! ( i V P Ny)) and by (*), this lat ter set is non-empty. This implies tha t 
w t C\eT = T. Hence 

(CI Nx P CI Ny) C T. 

Now if M t JVX, 

(T P CI M) 2 (CI iV, P CI Nv P Cl A/) 

3 (CI ( i f P iV,) P Cl TV,) 

and this last set is non-empty, so t ha t x t CleT = T. However by (*), 

T C CI Ny U C1(M P iV,) C CI Nyi 

so x G r C CI iV^ and this is impossible. Hence X must be Urysohn. This 
completes the proof. 
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Remark. Note tha t in the above proof we showed tha t if H(X) is H(i) 
and X is Hausdorff, then X must be Urysohn, i.e., we did not employ the 
Hausdorffness of H(X) in this par t of the proof. 

Definition [15]. A space X is said to be seminormal (resp., 6-seminormal) 
if every closed (resp., 0-closed) subset has a neighborhood base consisting 
of regularly open sets. 

LEMMA 3. Let U\, U?, . . . , Un be open subsets of X and let U'z=i Ut Ç U. 
Consider the following: 

(a) each of U, U\, U2, . . . , Uu is regularly open in X; 
(b) °ti = (U, Ui, £/2, • • • , Un) is regularly open in 2X ; 
(c)-f = (U, Uu Uh . . . , Un) C\ H(X) is regularly open in H(X). 

Then (a) implies (b), (b) implies (c) if X is Hausdorff, and either (b) or 
(c) implies U is regularly open in X. 

The proofs are elementary and are omitted. 

T H E O R E M 4. X is seminormal if and only if 2X is semiregular. 

Proof. Let X be seminormal and let F t ( d , . . . , Vn) Ç. 2X . Let IF be 
a regularly open subset of X with F C W Q U 'L i L* and for each /, 
1 ^ i ^ n, let Xi £ F C\ Vi. Then for each i, 1 ^ 1 ^ n, let IF, be a 
regularly open subset of X such tha t xt Ç W* Ç Vt Pi PF. I t follows tha t 

F^W= (W, Wu JT2, . . . , Wn) C (Vu r 2 l . . . , Vn) 

and so {F\ has a base of regularly open subsets of 2X. 
Now suppose 2X is semiregular, F is a closed subset of X\ and i£ is an 

open subset of X containing F. Since 2X is semiregular there exists a 
regularly open subset °tt of 2X with F (z °tt Q (R). Let 

<£/, Z7lf £/2, . . . , Un) 

be a basic open subset of 2X such tha t U 2 U*=i ^r,-, F t (U, U\, . . .,U„) 
Ç ^ . Then 

in t 2
x Cl 2

x ( £ / , £ / ! , . . . ,£/„> = (hit CI C/, int CI £ / , , . . . , int.Cl Un)^
ui/. 

This implies F Ç int Cl [/ Ç i£ and X is seminormal. This completes the 
proof. 

T H E O R E M 5. H{X) is semiregular if and only if X is 6-seminormal. 

Proof. Suppose H(X) is semiregular, A is a 0-closed subset of X, and G 
is an open subset of X containing A. Then (G) C\ H(X) is open in H(X) 
and contains A G H(X). Hence there exists a regular open set 
(U, Uu U2,...,Un)n H{X)) such tha t 

u^u uu 
1 = 1 

^ Ç ((£/, LA, . . . , £/n) H H ( X ) ) Ç (G) H tf(X). 
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Then, by Lemma 3, U is regularly open in X and A Q U Q G. This 
implies t ha t X is 0-seminormal. 

Now suppose X is 0-seminormal. Let A £ H(X) and let ^ = 
( [ / , C/i, . . . , £7W) be a basic open subset of 2 X where £7 3 U"=i Ut and 
i G ^ . Since X is 0-seminormal, there exist regularly open subsets R, 
Rlt R2, . . . , Rn of X such t ha t A C i? C Z7 and 0 ^ # , H ^ C [/< P\ # 
for 1 ^ i ^ n. Then 

^ = (R,RU. . . ,Rn)nH(X) 

is regularly open in H(X) and i Ç i ^ Ç ^ . T h u s H(X) is semiregular. 

COROLLARY 4. If X is seminormal and H(i) then 2X is H(ii). 

Proof. If X is seminormal and H(i), then by Theorems 2 and 4 2A is 
7/(i) and semiregular, hence H (it) by [10, 2.11]. 

COROLLARY 5. 4̂ Hausdorff space X is compact if and only if H(X) is 
minimal Hausdorff. 

Proof. If X is compact and Hausdorff, 2X = H(X) and 2A' is compact . 
T h u s H{X) is minimal Hausdorff. 

On the other hand, if H(X) is minimal Hausdorff, then H(X) is semi-
regular and H(i). But by Theorems 2, 3 and 5, X is Urysohn and minimal 
Hausdorff. Such spaces are compact . 

PROPOSITION 2. If 2X ts H(ii) [R(ii)] then X is H (it) [R(ii)]. 

Proof. Let 2X be H(ii) [R(ii)] and let ^ be an open Regular] filler 
base on X with a unique cluster point x{). By Lemma 2 (d), {x0j is the 
unique cluster point of the open [regular] filter base # " ' on 2X. Since 
2X is II (ii) [R(ii)], J^ ' converges to {x0} and so, by Lemma 2 ( e ) , J ^ 
converges to x(). 

Remarks. (1) Since every countably compact space is feebly compact 
and every feebly compact space is pseudocompact [12, Theorem 2.6], 
J. Keesling's example in [5, p . 765] is a feebly compact space whose 
hyperspace is not feebly compact . J. Ginsburg [3] has shown tha t if 
2X is feebly compact then X is feebly compact and t ha t if X is regular 
and 2X is feebly compact then all finite powers of X are feebly compact . 
(He calls feebly compact spaces ^ -pseudocompact.) Ginsburg has also 
considered the problems of characterizing those spaces whose hyperspace 
is countably compact and those spaces whose hyperspace is pseudo-
compact. 

(2) Dix Pet tey has reported, in a pr ivate communicat ion, t ha t he has 
constructed an inclosed space X such t ha t 2X is not R(i). 

(3) If the empty set is included as an isolated point in 2A\ as is done 
in [5], then whenever 2X is H(ii) it is nonvacuously H(ii). (See [11].) 
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(4) It follows, from Theorem 3, that if KX denotes the generalized, 

//-closed Kate tov extension of a space X [6], then, in general, K(H(X)) ^ 

H(K(X)). For if X is a non-Urysohn //-closed space, H(K(X)) = H(X) 

and so if K(H{X)) = H(X), X must be Urysohn. 

Portions of this paper were submitted (and accepted) for publication 

in this Journal by L. M. Friedler. Other portions were discovered by 

Dickman and Krystock while reading a preprint of Friedler's paper. The 

present paper is a result of the cooperation of the Editors of this Journal 

and the collaboration of the authors. 
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