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ALGEBRAIC THREEFOLDS
WITH TWO EXTREMAL MORPHISMS

ATANAS ILIEV

§0. Introduction

0.1. In [3] Mori gives a description of all extremal rays (extremal morph-
isms) arising on a smooth projective threefold with a numerically non-effective
canonical bundle. Generally speaking, every smooth projective threefold V with
a numerically non-effective canonical class K, admits an extremal morphism
. V— Y The assumption that V admits a non-trivial pair of extremal morph-
isms

Y, —V—75,

imposes strong conditions on V. This is the essence of the Theorem 1.5 of the pre-
sent work. In particular, we obtain a description of the threefolds which admit two
biregular structures of conic bundles over non-singular surfaces S, = Y, and
S, = Y,. By the results of §3 the surfaces S, and S, must be either ruled surfaces
with isomorphic basic curves, or S; = S, = P’

0.2. Remarks

0.2.1. In [b] E. Sato has obtained a description of the threefolds with two
structures of Pl—bundles; this description corresponds to the Case A.a of Theorem
1.5. The second basic result of [5] states that if dim V 2 3 and V admits two
structures of projective space bundles over projective spaces Y, = P' and Y, =
P™ then: either Vis a product V = P! x P" orl=mand V= P(T,).

0.2.2. Every Fano threefold V with po(V) > 2 admits at least two extremal
morphisms. However, in most of the cases V admits a ray of the type E,. Because
of that, there are too many Fano threefolds with p 2 2 in the list of Mori and
Mukai in [4], in contrast to the list of Theorem 1.5 in which are classified only the
strongly primitive ones.
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§1. Definitions and statement of the main theorem

1.1. Everywhere in the present article, we suppose that the threefold Vis a
smooth projective threefold over the field of complex numbers C.

1.2. Definitions

1.2.1. NV = {l-cycles on V}/= @R, where = denotes the numerical
equivalence of cycles. NV is a finite dimensional real vector space, which is dual
to NS(V) @ R, where NS(V) is the Neron-Severi group of V.

1.2.2. (the Picard number of V) = p(V) = dimg (NV).

1.2.3. NE(V) is the closure of the convex cone NE(V), generated by all
the effective 1-cycles from NV (in the metrical topology of the vector space NV).

1.2.4. Let Z € NE(V). The half-line R = R.[z] is called an extremal ray,
if: () — K,.z> 0; (b) for all Z,, Z, € NE(V), the assumption Z, + Z, € R im-
plies Z, € R and Z, € R, cf. [3].

1.2.5. Let R be an extremal ray on V. Then, there exists a unique, up to an

isomorphism, morphism 7 : V— Y corresponding to R, such that: (a) 74,0, = O, ;
(b) if C € Vis an irreducible curve, then [C] € R if and only if dim #(C) = 0,
cf. [3]. The morphism 7 is called a contraction of the extremal ray R, or an
extremal morphism (corresponding to R).

1.3. Description of the extremal morphisms on V (cf. [3])

Let 7: V-—Y be an extremal morphism, and let p(V) = 2. Then 7 can be
one of the following:

1.31. Type E :dim Y =3

The morphism 7 is a contraction of a divisor D on V, and 7 corresponds to
one of the types E|, E,, E,, E,, and E,. In the case E, the morphism 7 is a con-
traction of a ruled surface to a smooth curve, and the threefold Y is smooth. In the
case E, the morphism 7 is a contraction of a divisor D = PZ, with a normal bun-
dle 0,(D) = 0p:(— 1), to a nonsingular point on Y. In the case E, the morphism
7 is a contraction of a quadric D = P' X P!, with a normal bundle 6(— 1, — 1),
to an ordinary double point on Y. Moreover, the fibers P' X ¢ and s X P' are
numerically equivalent on V, for ¢, s € P’ In the case E, the morphism 7 is a
contraction of a quadratic cone D C P® to a double point on Y, and 6,(D) = 0,
® 0ps(— 1). In the case E; the morphism 7 is a contraction of D = P’ to a quad-
ruple point on Y, and 0,(D) = 0p(— 2).

1.3.2. Type C:dimY =2

The variety Y is a smooth projective surface, and 7 corresponds to one of the
types C, or C,. In the case C, the morphism 7 defines a conic bundle 7: V—Y ;
in the case C, the morphism 7 defines a P'-bundle 7 : V— Y.
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1.33. TypeD :dimY =1

The variety Y is a smooth curve, p(V) = p(Y) + 1 = 2, and 7 corresponds
to one of the types D, D, and D,. In the case D, the threefold V has a structure
of a Del Pezzo bundle over the curve Y. In the case D,, V is isomorphic to a P' x
P'-bundle over the curve Y. In the case D, the threefold V is a P*-bundle over Y.

1.4. DeFINITION.  The threefold V is called strongly primitive if there are no ex-
tremal rays of type Ey on V.

1.5. The Main Theorem

THEOREM. Let V be a (smooth, projective) strongly primitive threefold which
admits two extremal morphisms 7, : V—Y, and w,: V—Y,. Then, the following
cases arve possible:

Case 1. The wmorphisms w, and 7, correspond to the type C. Then
2 < p(V) <3 and:

(1.A) Ifp(V) = 3, then

either: (A.a). V=S, X S,, where S, and S, are ruled surfaces over a curve C,

or:  (ADb). V is a two-sheeted covering of S; X S,, where S, S,, and C are

as in (A.a).

(1.B) Ifo(V) = 2, then V is a Fano threefold (see Corollary 2.6.2).

Case 2. The morphism 7, corvesponds to the type C, and the morphism T, corres-
ponds to one of the types D or E. Then V is a Fano threefold (see Covollary 4.2, Corol-
laries 5.3 and 5.4).

Case 3. Let the extremal movphisms Ty, Ty, ... on V be of the type E. Then the
covresponding divisors Dy, D,, ... are mutually disjoint (see §7).

Remark. The rest of the paper is devoted to the proof of Theorem 1.5. Espe-
cially, Case 1 is discussed in §2 and §3. It follows from the considerations in §3
that the double covering 7w :V— S, XS, in case (A.b), has the following
properties:

Let &; be a normalized locally free sheaf of rank 2, over the base curve C,
such that S; = P.(8,), i = 1,2 (see [1, ch. V, §2]). Let ¢, = — deg(det §,), let ¢,
be the general fibre of S;— C, and let b, be the section of S; such that £(b,) =
Opg,) (D), 1 = 1,2. Let p;: S§; X S,— S, be the natural projections, and let C; =
7)), F,=p (@), i=1,2. Then F, and F, are numerically equivalent, i.e.
F,=F,=F for some F € p;(Pic S;) N p; (Pic S,). The branch divisor B C S,
X ¢ S, of 7 is smooth, and B is numerically equivalent to 2.C, + 2.C, + 2¢.F for
some g > 0. Moreover, the threefold V is a standard conic bundle over S; with a
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discriminant curve 4; = 4.b;, + (4q — 2¢,). ¢,, where {i, j} = {1, 2}.

§2. The case (C,0)

2.1. Let 7, and 7, be of type C. Let m, : V— Y, and 7,: V— Y, be the cor-
responding extremal morphisms. In particular, S; = Y, and S, = Y, are smooth
surfaces (see 1.3.2). Denote by f, the general fiber of the morphism 7, k = 1,2.

2.2. PropositioN. If o(V) = 3, then o(V) = 3, and S, and S, arve ruled sur-
faces.

Proof.

2.2.1. Let H be a very ample divisor on S,, and let C € | H| be a smooth
curve. Then (z; C, m, C), = m.f,, where m = (C, C)s, > 0. Therefore, 7, C &
7, (Pic S,); hence, the mapping 7, : 7, C— S, is surjective. Since g(x, C) = — oo,
then £(S,) = — o (here (X) is the Kodaira dimension of X). Similarly ¢(S,) =
— oo, Consequently, there exist morphisms #,:S,— S,, where S,, are ruled
surfaces or P2 As (V) = 3, then p(S,) = 2.

Let, for example, S, , = P? Then the surface S, is rational, and the morphism
h,:S,— S, = P’ is non-trivial; in the opposite case o(V) = p(P") +1 =2,
which contradicts the assumption p(V) = 3. Consequently, there exists a morph-
ism 4, :S,—F, such that h, = k.0, where o : F,— P” is a blowing-up of a
point in P, Therefore, we can always assume that S, and S,, are ruled surfaces
(rational or non-rational).

Let S,, = P(8)), let £(b;,) = Op,y(1), and let ¢, be the general fiber of
Sor k = 1,2 (see the Remark after Theorem 1.5). Let

Num S, = Zb, ® Zo, ® O Z, ,

where ¢, ; are the exceptional curves of ,, and b, and ¢, are the preimages of b,,
and ¢, on S, k=1,2. Let m = p(V) — 1. Obviously o(S,) =m=m, + 2,

k=1,2.
Let C, = ”:k b, C, = 751* ¢, Ciyp = ”;k i Dy = 75: b,, D, = 75; ®2 Dy =
T, &:; G0=12,...m—2). If ,: V—S, is a conic bundle, then Pic V=

7, Pic S, + ZK,; if 7, : V— S, is a P'-bundle, then Pic V= =, Pic S, + ZL,,
where L, corresponds to a section of 7. In both cases

2. Pic VS x) Pic S, + ZK,,

i.e. the divisors D; (resp. C;) are linear combinations, with integer or half-integer
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coefficients, of the divisors C; (resp. D;) and K, (in the numerical sense). There-
fore, there exists a system of equations of the form:

2.2.2. C, + Zj dij D, = —d, K,
Zj ¢; C;+ Dy = —¢; Ky,

where the numbers 2d;;, 2d;, 2c,;, and 2¢; are integer.

Let D= (), C= (¢;),d=d,,...,d,)', c=(c,...,c, and let E be
the unit matrix of rank . By the adjunction formula K.f, = — 2, k = 1,2; and
from 2.2.2 we conclude that C,.f, = 2d;, D,.f; = 2c,. The integers 2d, and 2¢; are
non-negative; they can be interpreted as follows:

If d, =0, then C, € x, Pic S, ;

if d; > 0, then d; = the degree of the covering m,: C;— S, ;

(similarly — for ¢;). Further, from 2.2.2 we derive:

(—e¢,+ 2¢,d).Ky=D;, — 2,,¢,d,;D;, i =1,2, . . . m. Therefore, from
the formula connecting Pic V and Pic S,, we obtain that the both sides of the last
equation are equal to zero, in the numerical sense. Hence, C.D = E, and Cd = c.
These matrix equations will be used in the proof of Proposition 2.3.

2.2.3. Let C,C, = r,f, DD, = 0,f,, k; = K,C,D,. After multiplying the
first m equations from 2.2.2 by C,D; we obtain the following system:

2.24. Ry, =24, 2 dy 0,; t dy ki + 114:2¢; =0,

By the choice of the curves b,, ¢, &, the numbers 7,;, and §,; satisfy the follow-
ing conditions:

225 @7y =—0<0,0;=—¢<0,123;
D) 7y =7 =0,;,=0,=0,123;
© 7= 0, =0,7,= — e, 0, = — &,

where — ¢, = (b, b)s, = (by,, byo)s,,, k= 1,2.
2.2.6. Lemma. Ifd,= 0, thend; = -+ = d,, = 0 (similarly — for ¢)).

Proof. Every &;; is a component of some degenerating fiber ¢,; = ¢, of h,,
¢,; being a linear combination with integer coefficients of exceptional curves
and the preimage of some fiber of S, ,. Let, for example, ¢, = 2, , 4,&,,, where
A, 2 0 and ¢, is the proper preimage of some fiber of S,, over which we take
blowing-ups. Then

227, 0=2d,= Cyf, = A, T, e1ofy + Zpo1 An-2d,,,

Hence, 2d;,, = Ci,.f, = 7r1* e f; = 0.
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2.2.8. Lemma. Ifm=p(V) — 123, thenIl_, c;d;, = 0.

Let us look at the equations R, = 0, k 2 2, and Ry, = 0, k 2 2 (see 2.2.4).
We shall give a proof of 2.2.8 on an example, which is not diffevent from the general
case.

ExampLE. m = 4; ie. from 2.2.5 we have 05, 0, 0,3 # 0, 0,3 = 0,,,= 0.
For definiteness, we may assume that d;; = — 2 and 6, = 1; therefore 0, = — 1.
The surface S, is obtained from S,, after blowing-up a point not lying on the base
section, and a second blowing-up with a centre lying on the first exceptional di-
visor. The equations R, = 0 and R, = 0, k = 2, take the form:

2.29. Ry = —2¢, + (— 2d,, + d,).2d, = — d,k,,
R, = (—2d,+d,).2d = —dk, k=34
Ry = (= 2dyy + dy,) .2d, = — dikyy, k= 2,3,4

From 2.2.9 we easily derive that either d, = 0 (and hence, according to Lemma
2.26,d,= -+ =d, = 0), or the assumption d; # 0 implies ¢; = 0.

2.2.10. LemMa. Ifp(V) = 3, then o(V) = 3.

Proof. According to Lemma 2.2.8, if m 2 3, then I, , ¢;d; = 0. Let, for ex-
ample, ¢, = 0. Then D, € 7, Pic S,. Hence D, = m; C, where C € Pic S, and
(C, O, =7 €L Then — qf,= (Dy, D)), = (z C, ) C), = rf,, where g;>0
(i.e. g; ¥ 0) — a contradiction. Therefore m = (V) —1 = 2, and the Proposition
2.2 is proved.

2.3. PropositioN. Let o(V) =3. Then w, ¢, € m, PicS, and =, ¢, €
n’;k Pic S, where @, is the general fiber of the ruled surface S,, k = 1,2.

Proof. For convenience, we shall change the notation. As m = 2, the system
2.2.2 takes the form:

2.3.1. - C, + gC, + d,F, = rK,
—F + bC, + aF, = ¢K,

£C, t+ dFf, — G = 1K,

b,C, + a,F, - F, = ¢K,

where F, = 71',?(,0,6, C, = 7[: b,, k = 1,2, and all the coefficients are either inte-
gers, or half-integers.
The equality C.D = E (see 2.2.2) implies g, = ea,, d, = — ed,, b, = — ¢b,,
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and @, = eg,, where ¢ = (g,a, — b,d,)”". From Cd = ¢ and D¢ = d (ibid.) we
obtain:

2.3.2. ¢, ta,e, + by, =0
v, T dyc, + g1, =0
¢+ ac,+ br,=0
r, +dc,+ gr,=0.

After multiplying both sides of the equalities 2.3.1 by f, and f, we obtain F.f, =
2¢,, Fofy, = 2¢,, Cf, = 27, and Cyfy = 27,  The system 2.2.5 for 7,; and §;; takes
the form:

C12 = - elfl’ sz = ezfz’ C1F1 =fu
CF,=f, F'=F'=0.

We divide the proof in several cases:
Case 1. S| and S, are rational.

Cram. In Case 1, the equality ¢,c,#,7, = O 1is fulfilled.

Proof of the Claim. Assume that c,c,7,7, # 0; and let ¢ < 0. From the equa-
tion ¢, K, F,C, = 2a,c, — 2b,e,c,, we get K,F,C,= 2a, — 2bje,; therefore
c,(2a, — 2be,) = ¢,K,F,C, = — 2¢, + 2b,7,. By 2.3.2, 2¢, + 2a,c, = — 2b,7,,
where b, = — €b,. Hence:

2.3.3. (2e — 2) byr, = 2b,e,c,.

From ¢ <0, 7,> 0, ¢, >0, and ¢, 2 0, we get that b, = 0; in particular b, =
— eb, = 0. Thus, from ¢, K, F\F, = 2b,c, and ¢, > 0, we obtain that K, F,F, = 0.
Then, from 7K, F\F, =0 and »K,F\F, = 0, we conclude that — 2¢, + 2 g,c, =
0 and — 2¢, + 2 g,¢, = 0. Therefore g, > 0, g, > 0, and g,.2, = 1.

From K,F,C,= 2a,, and from the equations of the type R, =0 for
7,K,F,C, we obtain:

2.3.4. (dl - g2)7'2 = 2@2()‘,

where a, = eg,, 8, = €a,, &, > 0, g, > 0, and ¢ < 0. In that case, the equation
2.3.4 contradicts the assumption that ¢, > 0 and 7, > 0.

Let ¢ <0 and ¢;c,77, = 0. In particular, if #, =1 then 2¢,c, = nK,F,C, = 0.
Therefore, either ¢, = 0, or ¢, = 0. If ¢, =0, then S, = P' x P’ and we can
assume that b, < S is a fiber (cf. 2.2.1).

Let ¢, = 0, but ¢, > 0. Then 2.3.2 implies that ¢, + b7, = 0, i.e. b, < 0. But,
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from the equations 0 = ¢, K, F,C, = — 2¢, + 2b,; and b, = — eb;, € <0, we
obtain that b, > 0, which is impossible.

CoroLLarY. Ife <0, and S, and S, are rational, then ¢; = ¢, = 0.

If ¢ > 0, we come to a contradiction in the same way. The Claim is proved.
Proceeding in a similar way, from the above Claim and from 2.3.2, we obtain the
following

COROLLARY. In the Case 1 we have ¢; = ¢, = 0.
Then, from 2.3.1, we obtain that F, € 7, Pic S, and F, € =, Pic S,.

Case 2. S, or S, is non-rational.

Let, for example, S, be an irregular ruled surface and let g,: S,— C, g,: S,
— C’ be the corresponding representations of the surfaces S, and S, as
P'_bundles over the curves C and C’, where g(C) = g > 1. Then the general fi-
bers of | L,| = gm,: V= Cand | L,| = g,m, : V— C’ are rational surfaces.

Let |L,| # |L,|. Then f=1L, |L1 is a curve on L, and (f, f), = L,L,L, = 0.
Hence, the restriction lel ]Ll : L= C defines, on the rational surface L,, a struc-
ture of bundle with rational curves as fibers and with a non-rational base C,
which is impossible. Therefore C’ = C, and the diagram

V.
/ K
S, S;
X /
C
where g(C) = g > 1, is commutative. Evidently, in this case 7, ¢, € 7, Pic S,

and 7r2* Y, € 71'1* Pic S,. The Proposition 2.3 is proved.

2.4. CoroLLARY. If o(V) = 3, then the equation 2.3.2 take the form:
/K, = — C,— C, + dF,

where F, = F,=F & 7r1* Pic S; N 7[2* Pic S,, the numbers 27 and 2d ave integer,
and r > 0.
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The Corollary is a direct consequence from Proposition 2.3, and from the
first and the third equations of 2.3.1. Note that from the two other equations of
2.3.1 we obtain that b, = b, = 0 and @, = @, = 1. Then, the former two equa-
tions give e = — 1.

2.5. CoroLLaRY. If p(V) = 3, then there exists a curve C such that the dia-

gram
\%
/ K
Sl /52
k gz
Cl

~ C’

1S commutative.

Proof. For S, and S, — non-rational, the Corollary is proved in 2.3, Case 2.

Let S; and S, be rational ruled surfaces. By Proposition 2.3, we have n;k N
€ ) Pic S, and n; @, € 7, Pic S,. Consequently, there are correctly defined
morphisms A = g, mm, g, :C’ — C and A = g, g : C— C’, where
2:S,—C=P and g,:S5,— C’' = P define structures of ruled surfaces on S,
and S,. Therefore 4 € Aut P': and if we replace g, by A.g,, we shall obtain the
commutative diagram from above.

2.6. Case p(V) = 2

Let us consider the case p(V) < 3. Then o(V) = 2, and there are on V two
extremal rays R, and R, of type C. As p(V) = dimg(NV) = 2, then R, and R,
form a base of the two-dimensional real vector space NV. Let R, = R,[/,] and R,
= R,[l]. Since R, and R, are extremal rays in the two-dimensional cone
NE(V) € NV, and since K,.l, <0, K,.I, <0, then K,.Z<0 for any Z €
NE(V). By the Kleiman’s criterion we derive that — K, is ample, i.e. Vis a Fano
threefold.

2.6.1. CoroLLary. If o(V) = 2 and (x,, 7,) is of type (C, C), then V is a
Fano threefold.

2.6.2. COROLLARY (see [4]). In the conditions of 2.6.1, the threefold V is one of
the following:

https://doi.org/10.1017/50027763000004669 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004669

124 ATANAS ILIEV

(1) a divisor of bidegree (2,2) in P? x P*;

(2) a divisor of bidegree (2,1) in P x p? ;

(3) a divisor of bidegree (1,1) in P? x PZ;

(4) a two-sheeted covering of a divisor D of bidegree (1,1) in P? X P? with a
branch divisor B € | — K, |.

§3. Construction of threefolds of type (C, C) with p = 3,

Let V be of type (C, C), and let 7, : V—S,, m,: V—S,, C, etc., be as in §2.
It follows from the considerations in §2 that there exists a commutative diagram
of natural morphisms:

3.1.

where p, and p, are the natural projections, and degnw =1 or degnw = 2 (see
2.5).

We shall consider the case deg # = 2. In this setting, we shall obtain numer-
ical formulae for the branch divisor of the double covering 7.

3.2. Let f, be the (general) fiber of 7,, and let g, be the (general) fiber of R,,
k = 1,2. Evidently 0, = P! for any o0,, k = 1,2. Let &, b,, ¢\, C,, k= 1,2, and
F,=F,=F be as in the Remark after Theorem 1.5. Let ¢, = det(§,), ¢, =
— deg(ey) ; and let C,y = °C,, Cpy = 7°C,, F,, = F,, = F, be the divisors on
V, in the sense indicated in Corollary 2.4, i.e. Fy, = n°p*(x) = n*F (where F =
p*(@), 2 € C). 1t is easy to see that:

33. K., = —2C, —2C,+ (¢, + ¢, + k)F, where k = K. is the cano-
nical divisor of C. The branch divisor B of 7 has the form:

34. B =2qC, + 2¢,C, + 2¢F, where g, and g, are integers, and 2qF is
used in the sense that 2qF = p*(q) for the divisor q on C.

We claim that ¢, = ¢, = 1.

In fact, as p, : S, X S,— S, is a P'-bundle, then Pic(S, X, S,) = p; Pic S,

*

@ ZC, (since C, is an 1-section of p,). Therefore Pic(S, X.S,) = ZC, D g,
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(Pic C) ® ZC,, in sense that g, (Pic C). F=p) g¥(Pic C) = p*(Pic C). As
71 f,— 0, is a two-sheeted covering for the general f, =~ P' and 7(f) = 0, = P,
then it has two branch points. Therefore deg(B |01) = deg(B |02) =2, ie. 2=
deg(B |01) = (2¢,C, + 24,C, + 2¢F).0, = 2¢,C,0, = 2q, ; similarly — for gq,. As
V' is smooth, then B is smooth, and we derive:

CorOLLARY,  The (smooth) branch divisor B of T has the form
B =2C, +2C, + 2qF

for some divisor g on C, where 2qF = p™*(2q).

3.5. In the context of the situation, we shall derive some necessary numeric-
al conditions for B.

The general surface C,, = n*C1 is smooth, and it is a two-sheeted covering
of C, with a branch divisor B |cl = (2C, + 2C, + 29F) |, = 2C, + 2(¢ + 90,
where C,, = C,.C,, and (Cy;, Cp)¢, = C,C,C, = ~ ¢,0,C; = — e, Therefore,
for the existence of a (smooth) effective divisor C,, C C,, one must have 2(g —

1
e) = 2e,if e, 0,0r 2(g — ¢) > 5

g = deg(q). The same restrictions are available for C, and ¢;, and we derive:

2e, = ¢, if e, < 0 (see [1, Ch. V, §2]); here

CorOLLARY. Let B, e,, and e, be as in 3.2—3.4. Then for ¢ = deg(q) we have:

(@ g=e t+e if ¢20,¢,20;

(b) 2¢>2¢e,+¢, if ¢>0,¢,<0;
(c)2g = e, +2e if ¢<0,e,20;

(d) 2q = max{2e, + ¢,, ¢, + 2¢,} if ¢ <0, e, <O.

3.6. The canonical divisor Ky, and the surfaces C,, and C,,

3.6.1. It follows from the preceding that

K,=—C,,— Cy + (¢, + &, + t + q)F,. Therefore, by the adjunction for-
mula

K., = — Cuy— (e, + &+ +0)f, where Cp,, = Cyy.C,y. Evidently, the
self-intersection number of Cp,, in C;, is equal to — 2, and Cy.f; = 2.
Therefore K .K. = (8 —8g) — (4g — 4e; — 2¢,), where ¢ = deg(q) and
g=g(0).

3.6.2. From the Corollary in 3.5, we obtain 4¢ — 2e¢; — 2¢, 2 0; similarly
for Cpy. From K. = — Cyy lcw + Qg —2—¢ —e,+ q.f, we conclude that
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hy: Cy— (Ciy)min is a composition of o-processes with centers lying on the
curve h,(C,,y); here (Cyy) iy is some (relatively) minimal model of C,y,.

3.6.3. For F,=n"p"(), € C, we have similarly: Ke = (= Cy—
Cyy). Fy and K . Kp = 4. The surface Fy is obtained from P? after blowing-up
of five points.

3.7. Examples of Fano threefolds of type (C, C)

3.7.1. Let degmw = 2. Then V is of type (C,, C)), and K, = — C,;, — C,y
+ Qg—2+qg—e —e).F, Let, moreover, V be a Fano threefold. Then
K,C,,C,, = 4g + 2¢ — 4 < 0; in particular g = 0 and ¢ < 1. Therefore (see the
Corollary in 3.5) 12 g2 e, + ¢, (since ¢; = 0, ¢, = 0).

Let ¢, > ¢, and let ¢, = 1, ¢, = 0. Then B¢, = 2C, |, is not a reducible di-
visor, which is impossible. Therefore ¢, = ¢, = 0 and K, = — C,;, — C,, — F}.
The manifold V is a two-sheeted covering of S, X S, = (P' X P,) ><,,5(P,,l X
Pl) ~ P' x P' x P' with a branch divisor B = 2C, + 2C, + 2F of multidegree
(2,2,2).

3.7.2. Let degmr =1 Then V=S, X.S, and K,= —2C, —2C,+
(2¢—2—¢,—¢,).F, where K,C,C,=2g— 2+ ¢, + ¢, and K,” = 24.Q2g — 2).
If V is a Fano threefold, then KV3 <0, hence g =0. Therefore K,C,C,
=e¢ te —2<0, wheree, 2 0, ¢, 20.

Let ¢, > ¢,, and let, for example, ¢, =1, ¢, = 0. Then V=F, X (P’ x PY),
and K,= —2C, —2C,— 3F, K,C,C,= — 1, K, = — 48, K,0, = K,0,= — 2.
On the other hand, — K, |, = 20, + 20,, — K, Ic1 = 2C, 'cl + ¢,, and — K, lcz
= 2C, |C2 + 3¢, are ample divisors on the surfaces F = P' X P', C, = P' x P,
and C, = F,. Since K,.C,, = — 1, and C,, = C, N C, is a rational curve, then
there exists an extremal ray R, = R, [C,,] (see [3]). As (C, |cl, C, lcl) = 0, then
C, |Cl moves in C; as one of the rulings of the quadric D = C, = P' x P' The
restriction of the normal bundle Ny on Cy, has a degree — 1. In fact N y |Clz =
0., (C)RO.,=0.(—0) B0, =0 (—1), where C,, = P'. Therefore, we
can contract C, along C,, (see [2, p.1020], or [3]); that is, there is an extremal ray
of type E, on V, i.e. Vis not strongly primitive (see 1.4 and 0.2.2).

Let ¢, = ¢, = 0. Then V= (P' X P,) X (P, X P") = P' X P' X P', and
— K, =2C, + 2C, + 2F is a divisor of multidegree (2,2,2) in P* X P' x P".

3.8. The discriminant curves for 7, and 7,

Let 4, and 4, be the discriminant curves of m, and 7, Then 4, = 4b, +
(49 — 2¢,)p, on S, and 4, = 4b, + (4q — 2¢,) @, on S,. These numerical equali-
ties follow immediately from the formula — 4. Ky = m,(— K,)* + A, connecting
the discriminant curve 4 of a conic bundle 7 : V— S with the canonical bundles
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of Vand S.

§4. The Case (C, D)

4.1. Let the extremal morphism 7, be of the type C, and let 7, be of the type
D. In particular o(V) = 2 (see 1.3.3). In just the same way as in 2.6 we obtain
that Vis a Fano threefold. :

4.2. COROLLARY. Let the pair (&), m,) be of the type (C, D). Then V is one of
the following (see [4]):
(1) V=P x P';
(2) a two-sheeted covering 7 : V— P* X P' with a branch divisor B < P* X P!
of bidegree (4,2),
(3) a two-sheeted covering ™ : V— P? x P with a branch divisor B < P> x P!
of bidegree (2,2).

§5. The Case (C, E)

Let 7, be of type C, and 7, be of type E. We have to prove that if V is
strongly primitive, then V must be a Fano threefold. We shall consider separately
the cases E,, E;, E,, and E; (see 1.3.1 and 1.4).

5.1. The cases (C, E,) and (C, Ey)

Let m, belongs to one of the types E, or Es. In particular, the morphism 7, is
a contraction of a divisor D =~ P?in Vto a point (see 1.3.1). The morphism 7,
maps D = P? onto S,. Actually, in the opposite case m, contracts D, because
7, (= a contracting of D) is an extremal morphism. But 7, is also an extremal
morphism, hence 7, coincides with 7, — a cootradiction. Therefore 7,(D) = S,
and S, = P°.

5.2. The cases (C, E,) and (C, E,)

Let 7, belongs to one of the types E, or E,. Just as above, the fact that 7; and
7, are different extremal morphisms, implies that the morphism 7; maps the quad-
ric D C V, corresponding to 7, (see 1.3.1), onto the surface S;. As S, is smooth, it
must be either P’ (in the cases E, and E,) or P'x p! (in the case E,).

Let S, = P' X P'. Let ¢, and ¢, be the rulings of S,, and let 0, =s X P'=
P'xt= @, be the rulings of D = P' x P'. Since (m, l: ¢, I; ¢)p=0,1=
1,2, then m, I; ¢; = m;@;, where m; is a positive integer. Therefore (m, |: ¢y,
T |y 9)p = (m@,, myp,), = mym, On the other hand, the last equals to m =
deg(rm|,). But ¢, and ¢, are numerically equivalent on V; therefore 0 = (pl.n;k &,
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= @, 1, ¢, = m,. In particular, deg w = m = m;m, = 0, which is impossible.
Consequently, in the cases (C, E,) and (C, E,) the surface S, is isomorphic to
P

5.3. CoROLLARY. Let 7, be of the type C and m, be of the type E (E,, E,, E,, or
E,). Then V is a Fano threefold.

Proof. In fact, we obtained that in all cases S; = P? (see 5.1 and 5.2). There-
fore p(V) = p(P®) + 1 =2, and V admits two different extremal morphisms. It
follows that V is a Fano threefold (see 2.6).

5.4. COROLLARY (see [4]). Let V, m, 7, etc., be as in 5.3. Then V is one of the
following :

(1) V=P(0,D 0p(1)), in the case (C, E,) ;

(2) V=P0pD 0p:(2), in the case (C, Ey) ;

(3) V is a two-sheeted covering of Y= P(Op. D Op:(1)) with a branch divisor
B & | — Ky|, in the cases (C, E) and (C, E,).

§6. The case (D, D)

6.1. Let 7, and m, be both of the type D (see 1.3.3). Let S, = ﬁ;k(x), x €
C, and S, = 7, (x), x € C,, where m,: V— C,, k = 1,2, are the corresponding
extremal morphisms. As (V) = p(C,) + 1 =2, then S, is represented in the
form S, = a.S, + b.K,, for some rational a, b. In particular, K5 = (K, + S)
s, = /b .(— a.S,+ b+ 1).S) ;. Hence

Ko Ks = (1/69.((b+ 1.5, — a.5)".S, =0,

since S;.5; = S,.5, = 0. On the other hand, the divisor — K must be ample,
since S, is a Del Pezzo surface, P’ or P' x P (see 1.3.3). We come to a contra-
diction.

6.2. CoroLLARY.  There are no manifolds for which T, and T, are both of type D.

§7. The case (E, E,...,E)

Let V admits morphisms 7, 7, . . .,7, of the type E, and let V be strongly
primitive. Let D,, D,,...,D, be the corresponding divisors on V, which 7, 7,,...,7,
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contract (see 1.3.1). Then, by [4, p. 124 (8.1)], the divisors D; are mutually dis-
joint. Consequently, the contractions x; carry out independently.
Theorem 1.5 is proved.
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