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NUMERICAL ANALYSIS OF THE PLANEWAVE DISCRETIZATION OF SOME
ORBITAL-FREE AND KOHN-SHAM MODELS
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Abstract. In this article, we provide a priori error estimates for the spectral and pseudospectral
Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW)
model and for the spectral discretization of the periodic Kohn-Sham model, within the local density
approximation (LDA). These models allow to compute approximations of the electronic ground state
energy and density of molecular systems in the condensed phase. The TFW model is strictly convex
with respect to the electronic density, and allows for a comprehensive analysis. This is not the case
for the Kohn-Sham LDA model, for which the uniqueness of the ground state electronic density is not
guaranteed. We prove that, for any local minimizer Φ0 of the Kohn-Sham LDA model, and under
a coercivity assumption ensuring the local uniqueness of this minimizer up to unitary transform, the
discretized Kohn-Sham LDA problem has a minimizer in the vicinity of Φ0 for large enough energy
cut-offs, and that this minimizer is unique up to unitary transform. We then derive optimal a priori
error estimates for the spectral discretization method.
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1. Introduction

First-principle molecular simulation allows to better understand, or to predict, the properties of matter from
the fundamental laws of quantum mechanics. It is a major tool in chemistry, condensed matter physics, and
materials science, used on a daily basis by hundreds of research groups in academy and industry. It is also
becoming a fruitful approach in molecular biology and nanotechnologies.

In this approach, matter is described as an assembly of nuclei and electrons. At this scale, the equation
that rules the interactions between these constitutive elements is the N -body Schrödinger equation. It can
be considered (except in few special cases notably those involving relativistic phenomena or nuclear reactions)
as a universal model for at least three reasons. First, it contains all the physical information of the system
under consideration, so that any of the properties of this system can be deduced in theory from the Schrödinger
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equation associated to it. Second, the Schrödinger equation does not involve any empirical parameter, except
some fundamental constants of physics (the Planck constant, the mass and charge of the electron, . . . ); it can
thus be written for any kind of molecular system provided its chemical composition, in terms of natures of nuclei
and number of electrons, is known. Third, this model enjoys remarkable predictive capabilities, as confirmed
by comparisons with a large amount of experimental data of various types.

Of course, the N -body time-dependent Schrödinger equation, which is an evolution partial differential equa-
tion in space dimension 3N , where N is the number of particles (nuclei and electrons) in the system, cannot be
solved by brute force numerical methods when N exceeds three or four. In order to deal with larger systems,
approximations have to be resorted to. The Born-Oppenheimer approximation [4], based on the fact that nuclei
are thousands of times heavier than electrons, allows to decouple the nuclear and electronic dynamics, and to
consider that, in most cases, nuclei behave as point-like classical particles, and electrons are in their ground
state. Several methods for computing approximations of electronic ground states have then been proposed,
which can be classified in three groups:

• wavefunction methods, among which the Hartree-Fock and multiconfiguration self-consistent-field (MC-
SCF) models (see [8] for a mathematical introduction);

• methods issued from the density functional theory (DFT);
• quantum Monte Carlo methods [24,25].

DFT currently is the most popular approach for it offers the best compromize between accuracy and compu-
tation cost. The models originating from DFT can be classified into two categories: the orbital-free models and
the Kohn-Sham models. The Thomas-Fermi-von Weizsäcker (TFW) model falls into the first category. It is not
very much used in practice, but is interesting from both a mathematical viewpoint [2,12,27] and a numerical
viewpoint [35]. It indeed serves as a toy model for the analysis of the more complex electronic structure models
routinely used by physicists and chemists, as well as for the development of new numerical methods [17,31]. At
the other extremity of the spectrum, the Kohn-Sham models [15,21] are among the most widely used models in
physics and chemistry, but are much more difficult to deal with.

Throughout this article, we adopt the system of atomic units for which � = 1 (reduced Planck constant),
me = 1 (mass of the electron), e = 1 (elementary charge), 4πε0 = 1 (ε0 being the dielectric permittivity of the
vacuum). In this system of units, the charge of the electron is −1 and the charges of nuclei are positive integers.

Let us first consider an isolated molecular system in vacuo, consisting of M nuclei of charges (z1, . . . , zM ) ∈
(N \ {0})M located at the positions (R1, . . . , RM ) ∈ (R3)M of the physical space, and of N electrons. The
electrostatic potential generated by the nuclei and felt by the electrons is

V nuc(x) = −
M∑
k=1

zk
|x−Rk| · (1.1)

In the TFW model, as well as in any orbital-free model, the ground state electronic density of the system is
obtained by minimizing an explicit functional of the density. For the system under consideration, this model
reads [27]

inf
{
ETFW
0 (ρ), ρ ≥ 0,

√
ρ ∈ H1(R3),

∫
R3
ρ = N

}
, (1.2)

where ETFW
0 (ρ) is the TFW energy functional defined as

ETFW
0 (ρ) :=

CW

2

∫
R3

|∇√
ρ|2 + CTF

∫
R3
ρ5/3 +

∫
R3
ρV nuc +

1
2
D(ρ, ρ),

and where the bilinear form D(·, ·) is the Coulomb energy functional in vacuo:

D(ρ, ρ′) :=
∫

R3

∫
R3

ρ(x) ρ′(y)
|x− y| dxdy = 4π

∫
R3

|k|−2ρ̂(k)∗ ρ̂′(k) dk, (1.3)
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f̂ denoting the Fourier transform of f (normalized in such a way that the Fourier transform is the isometry of
L2(R3)). Here and in the sequel a∗ denotes the complex conjugate of the complex number a. The first two terms
of the TFW energy functional model the kinetic energy of the electrons; CW is a positive real number (CW = 1,
1/5 or 1/9 depending on the context [15]) and CTF is the Thomas-Fermi constant (CTF = 10

3 (3π2)2/3). The
third and fourth terms respectively model the interactions between nuclei and electrons, and the interactions
between electrons.

In the Kohn-Sham model, the electronic state of the closed-shell system with an even number N = 2N of
electrons is described by N Kohn-Sham orbitals Φ = (φ1, . . . , φN )T ∈ (H1(R3))N satisfying the orthonormality
conditions ∫

R3
φiφj = δij ,

and the associated electronic density

ρΦ(x) := 2
N∑
i=1

|φi(x)|2.

The factor 2 in the above expression accounts for the spin. In closed-shell systems, each Kohn-Sham orbital is
indeed occupied by two electrons, one with spin up and one with spin down. The Kohn-Sham ground state is
obtained by solving the minimization problem

inf
{
EKS
0 (Φ), Φ = (φ1, . . . , φN )T ∈ (H1(R3))N ,

∫
R3
φiφj = δij

}
, (1.4)

where the Kohn-Sham energy functional reads

EKS
0 (Φ) :=

N∑
i=1

∫
R3

|∇φi|2 +
∫

R3
V nucρΦ +

1
2
D(ρΦ, ρΦ) + Exc(ρΦ). (1.5)

The first term models the kinetic energy, the second term the interactions between nuclei and electrons, and the
third term the interaction between electrons. The fourth term, called the exchange-correlation functional, is a
correction term, which is essential to describe quantitatively, and sometimes even qualitatively, the physics and
chemistry of the system. The exchange-correlation functional collects the errors made in the approximations
of the kinetic energy and of the interactions between electrons by respectively the first and third terms of the
Kohn-Sham functional. It follows from the Hohenberg-Kohn theorem [20,26,28,33], that there exists an exact
exchange-correlation functional, that is a functional of the electronic density ρ for which solving (1.4) provides
the ground state electronic energy and density of the N -body electronic Schrödinger equation. Unfortunately, no
mathematical expression of the exchange-correlation functional amenable to numerical simulations is known. It
therefore has to be approximated in practice. The local density approximation (LDA) consists in approximating
the exchange-correlation functional by ∫

R3
eLDA
xc (ρ(x)) dx

where eLDA
xc (ρ) is an approximation of the exchange-correlation energy per unit volume in a uniform electron gas

with density ρ. The resulting Kohn-Sham LDA model is well understood from a mathematical viewpoint [1,23].
On the other hand, the existence of minimizers for Kohn-Sham models based on more refined approximations
of the exchange-correlation functional, such as generalized gradient approximations [1] or exact local exchange
potentials [10], still is an open problem.

In the sequel, we will focus on the periodic versions of the TFW and Kohn-Sham LDA models. In the
periodic setting, the simulation domain, sometimes referred to as the supercell, is no longer the whole space
R3, as in (1.2)–(1.4); it is the unit cell Γ of some periodic lattice of R3. In the periodic TFW model, periodic
boundary conditions (PBC) are imposed to the density; in the periodic Kohn-Sham framework, they are imposed
to the Kohn-Sham orbitals (Born-von Karman PBC). Imposing PBC at the boundary of the simulation cell is
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the standard method to compute condensed phase properties with a limited number of atoms in the simulation
cell, hence at a moderate computational cost.

In most applications, the periodic TFW and Kohn-Sham models are discretized in Fourier modes, more
commonly referred to as planewave basis sets in the physics and chemistry literature. This is the reason why we
focus on this particular discretization method in the present work. The TFW ground state density corresponding
to the nuclear potential (1.1) is known to have cusps at the nuclear positions Rk. These singularities reduces
the efficiency of the planewave discretization method. In practice, the singular nuclear potential V nuc defined
by (1.1) is usually replaced with a smoother potential V ion; this amounts to replacing point nuclei with smeared
nuclei. We will see in Section 3 that, not surprisingly, the smoother the potential, the faster the convergence of
the planewave approximation to the exact solution of (1.2). In the Kohn-Sham setting, this issue is addressed in
a more refined way [32], for it is also considered that core electrons are not affected by the chemical environment.
The Kohn-Sham orbitals of the core electrons surrounding each nucleus (for instance the two 1s electrons of the
nuclei of the second row of the periodic table) are frozen to their ground states in the isolated atom. The Kohn-
Sham orbitals of the valence electrons (i.e. of the electrons which are not core electrons and are therefore affected
by the chemical environment) are replaced with pseudo-orbitals, which coincide with the valence Kohn-Sham
orbitals out of a so-called core region surrounding each nucleus, and are smoother than the valence Kohn-Sham
orbitals inside the core region. The resulting model is similar to (1.4), but presents some differences: (i) N now
denotes the number of valence electron pairs, (ii) Φ now denotes the set of the pseudo-orbitals of the valence
electrons, and (iii) the nuclear potential V nuc is replaced by a pseudopotential modeling the Coulomb interaction
between the valence electrons on the one hand, and the nuclei and the core electrons on the other hand. The
pseudopotential consists of two terms: a local component Vlocal (whose associated operator is the multiplication
by the function Vlocal) and a nonlocal component (an operator whose expression is given in Section 4). As a
consequence, the second term in the Kohn-Sham energy functional (1.5) is replaced by

∫
Γ

ρΦVlocal + 2
N∑
i=1

〈φi|Vnl|φi〉.

The pseudopotential approximation has two main advantages: first, it allows to deal with heavy nuclei (for which
core electrons are relativistic) within a non-relativistic framework, and, second, it reduces the computational
cost by reducing the number N of orbitals to be computed and by regularizing these orbitals (hence increasing
the rate of convergence of the planewave approximation). The pseudopotential appoximation gives satisfactory
results in most cases, but sometimes fails. A mathematical analysis of the pseudopotential approximation is
still lacking.

The purpose of this article is to provide an analysis of the Fourier spectral and pseudospectral discretizations
of the periodic TFW and Kohn-Sham LDA models, following our first contribution [6] dealing with simpler non-
linear eigenvalue problems. As far as we know, our results are the first ones presenting the optimal convergence
rate for the ground state energy and eigenpairs, both for the TFW type problems where some papers already
existed, and for the Kohn-Sham problem where no numerical analysis in terms of convergence was available.
Previous contributions in the numerical analysis of electronic structure models are actually very few. In [35],
the convergence of the ground state energy and eigenpair is established for the Galerkin discretization of a
convex TFW model, but no optimal rate of convergence is provided. In [22], the authors have considered the
Thomas-Fermi-Dirac-von Weizsäcker model, that is a non convex model entering in the category of orbital-free
DFT models. Under an hypothesis of ellipticity of the second order derivative of the Lagrangian associated
with the minimization problem, they prove that the discrete problem, based on a P1-Lagrange finite element
approximation has, locally, a unique discrete solution that converges at the optimal rate in the energy norm.
The convergence of the eigenvalue is also obtained, but is not optimal.

More recently, Zhou et al. have analyzed a non-convex orbital-free model [14]; again with an assumption of
local inversibility in the vicinity of the ground states, the convergence of the minimizers of the discrete problem
to the set of the minimizers of the continuous problem is established, but no convergence rate is actually proven.
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All the results mentioned above deal with a priori analysis. The results about a posteriori error analysis are
even more seldom. We refer to [13,29] for the available results in this direction and improvements of the basic
approximation by either postprocessing, or thanks to adaptivity.

This article is organized as follows. In Section 2, we briefly introduce the functional setting used in the
formulation and the analysis of the planewave discretization of periodic orbital-free and Kohn-Sham models.
In Section 3, we provide a priori error estimates for the planewave discretization of the periodic TFW model,
including numerical integration. In Section 4, we deal with the periodic Kohn-Sham LDA model.

2. Basic Fourier analysis for planewave discretization methods

Throughout this article, we denote by Γ the simulation cell, by R the periodic lattice, and by R∗ the
dual lattice. For simplicity, we assume that Γ = [0, L)3 (L > 0), in which case R is the cubic lattice LZ3,
and R∗ = 2π

L Z3. Our arguments can be easily extended to the general case. For k ∈ R∗, we denote by
ek(x) = |Γ|−1/2 eik·x the planewave with wavevector k. The family (ek)k∈R∗ forms an orthonormal basis of

L2
#(Γ,C) :=

{
u ∈ L2

loc(R
3,C) | u R-periodic

}
,

and for all u ∈ L2
#(Γ,C),

u(x) =
∑
k∈R∗

ûk ek(x) with ûk = (ek, u)L2
#

= |Γ|−1/2

∫
Γ

u(x)e−ik·x dx.

In our analysis, we will mainly consider real valued functions. We therefore introduce the Sobolev spaces of real
valued R-periodic functions

Hs
#(Γ) :=

{
u(x) =

∑
k∈R∗

ûk ek(x) |
∑
k∈R∗

(1 + |k|2)s|ûk|2 <∞ and ∀k, û−k = û∗k

}
,

s ∈ R, endowed with the inner products

(u, v)Hs
#

=
∑
k∈R∗

(1 + |k|2)s û∗k v̂k.

For Nc ∈ N, we denote by

VNc =

⎧⎨⎩ ∑
k∈R∗ | |k|≤ 2π

L Nc

ckek | ∀k, c−k = c∗k

⎫⎬⎭ (2.1)

(the constraints c−k = c∗k imply that the functions of VNc are real valued). The norm | · | used in the definition
of VNc is the Euclidian norm. The plane wave ek belongs to VNc if and only if its kinetic energy 1

2 |k|2 is smaller
than the energy cut-off Ec = 2π2

L2 N
2
c . For all s ∈ R, and each v ∈ Hs

#(Γ), the best approximation of v in VNc

for any Hr
#-norm, r ≤ s, is

ΠNcv =
∑

k∈R∗ | |k|≤ 2π
L Nc

v̂kek.
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The more regular v (the regularity being measured in terms of the Sobolev normsHr), the faster the convergence
of this truncated series to v: for all real numbers r and s with r ≤ s, we have for each v ∈ Hs

#(Γ),

‖v − ΠNcv‖Hr
#

= min
vNc∈VNc

‖v − vNc‖Hr
#

≤
(
L

2π

)s−r
N−(s−r)
c ‖v − ΠNcv‖Hs

#

≤
(
L

2π

)s−r
N−(s−r)
c ‖v‖Hs

#
. (2.2)

For Ng ∈ N \ {0}, we denote by φ̂FFT,Ng the discrete Fourier transform on the cartesian grid GNg := L
Ng

Z3 of
the function φ ∈ C0

#(Γ,C), where

C0
#(Γ,C) :=

{
u ∈ C0(R3,C) | u R-periodic

}
.

Recall that if φ =
∑

k∈R∗ φ̂k ek ∈ C0
#(Γ,C), then the discrete Fourier transform of φ is the NgR∗-periodic

sequence φ̂FFT,Ng = (φ̂FFT,Ng

k )k∈R∗ , where

φ̂
FFT,Ng

k =
1
N3
g

∑
x∈GNg∩Γ

φ(x)e−ik·x = |Γ|−1/2
∑
K∈R∗

φ̂k+NgK .

We now introduce the subspaces

W 1D
Ng

=

∣∣∣∣∣∣∣∣
Span

{
eily | l ∈ 2π

L
Z, |l| ≤ 2π

L

(
Ng − 1

2

)}
(Ng odd),

Span
{

eily | l ∈ 2π
L

Z, |l| ≤ 2π
L

(
Ng
2

)}
⊕ C

(
eiπNgy/L + e−iπNgy/L

)
(Ng even),

(W 1D
Ng

∈ C∞
# ([0, L),C) and dim(W 1D

Ng
) = Ng), and W 3D

Ng
= W 1D

Ng
⊗W 1D

Ng
⊗W 1D

Ng
. Note that W 3D

Ng
is a subspace

of Hs
#(Γ,C) of dimension N3

g , for all s ∈ R, and that if Ng is odd,

W 3D
Ng

= Span
{
ek | k ∈ R∗ =

2π
L

Z3, |k|∞ ≤ 2π
L

(
Ng − 1

2

)}
·

It is then possible to define the interpolation projector INg from C0
#(Γ,C) onto W 3D

Ng
by [INg (φ)](x) = φ(x) for

all x ∈ GNg . It holds

∀φ ∈ C0
#(Γ,C),

∫
Γ

INg(φ) =
∑

x∈GNg∩Γ

(
L

Ng

)3

φ(x). (2.3)

The coefficients of the expansion of INg (φ) in the canonical basis of W 3D
Ng

is given by the discrete Fourier
transform of φ. In particular, when Ng is odd, we have the simple relation

INg (φ) = |Γ|1/2
∑

k∈R∗ | |k|∞≤ 2π
L

(
Ng−1

2

) φ̂FFT,Ng

k ek.

It is easy to check that if φ is real-valued, then so is INg(φ).
We will assume in the sequel that Ng ≥ 4Nc + 1. Using the properties of Gauss integration, we then have

for all v4Nc ∈ V4Nc , ∫
Γ

v4Nc =
∑

x∈GNg∩Γ

(
L

Ng

)3

v4Nc(x) =
∫

Γ

INg (v4Nc). (2.4)
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The following lemma collects some technical results which will be useful for the numerical analysis of the
planewave discretization of orbital-free and Kohn-Sham models.

Lemma 2.1. Let Nc ∈ N∗ and Ng ∈ N∗ such that Ng ≥ 4Nc + 1.

(1) Let V be a function of C0
#(Γ,C) and vNc and wNc be two functions of VNc . Then

∫
Γ

INg (V vNcwNc) =
∫

Γ

INg(V )vNcwNc , (2.5)∣∣∣∣∫
Γ

INg(V |vNc |2)
∣∣∣∣ ≤ ‖V ‖L∞‖vNc‖2

L2
#
. (2.6)

(2) Let s > 3/2, 0 ≤ r ≤ s, and V a function of Hs
#(Γ). Then,

∥∥(1 − INg )(V )
∥∥
Hr

#
≤ Cr,sN

−(s−r)
g ‖V ‖Hs

#
, (2.7)

∥∥Π2Nc(INg (V ))
∥∥
L2

#
≤

(∫
Γ

INg(|V |2)
)1/2

, (2.8)∥∥Π2Nc(INg (V ))
∥∥
Hs

#
≤ (1 + Cs,s)‖V ‖Hs

#
, (2.9)

for constants Cr,s independent of V . Besides if there exists m > 3 and C ∈ R+ such that |V̂k| ≤ C|k|−m
for all k ∈ R∗, then there exists a constant CV independent of Nc and Ng such that

∥∥Π2Nc(1 − INg )(V )
∥∥
Hr

#
≤ CVN

r+3/2
c N−m

g . (2.10)

(3) Let φ be a Borel function from R+ to R such that there exists Cφ ∈ R+ for which |φ(t)| ≤ Cφ(1 + t2)
for all t ∈ R+. Then, for all vNc ∈ VNc ,

∣∣∣∣∫
Γ

INg (φ(|vNc |2))
∣∣∣∣ ≤ Cφ

(
|Γ| + ‖vNc‖4

L4
#

)
. (2.11)

Proof. For z2Nc ∈ V2Nc , it holds INg(V )z2Nc ∈ W2Ng−1
. It therefore follows from the properties of Gauss

integration that

∫
Γ

INg (V z2Nc) =
∑

x∈GNg∩Γ

(
L

Ng

)3

V (x)z2Nc(x)

=
∑

x∈GNg∩Γ

(
L

Ng

)3

(INg (V ))(x)z2Nc (x)

=
∫

Γ

INg (V ) z2Nc . (2.12)
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The function vNcwNc being in V2Nc , (2.5) is proved. Moreover, as |vNc |2 ∈ V4Nc , it holds

∣∣∣∣∫
Γ

INg (V |vNc |2)
∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈GNg∩Γ

(
L

Ng

)3

V (x)|vNc (x)|2
∣∣∣∣∣∣

≤ ‖V ‖L∞

∣∣∣∣∣∣
∑

x∈GNg∩Γ

(
L

Ng

)3

|vNc(x)|2
∣∣∣∣∣∣

= ‖V ‖L∞

∫
Γ

|vNc |2.

Hence (2.6). The estimate (2.7) is proved in [11], p. 272. To prove (2.8), we notice that

‖Π2Nc(INg (V ))‖2
L2

#
≤ ‖INg (V )‖2

L2
#

=
∫

Γ

(INg (V ))∗(INg (V ))

=
∑

x∈GNg∩Γ

(
L

Ng

)3

(INg(V ))(x)∗(INg (V ))(x)

=
∑

x∈GNg∩Γ

(
L

Ng

)3

|V (x)|2

=
∫

Γ

INg(|V |2).

The bound (2.9) is a straightforward consequence of (2.7):

‖Π2Nc(INg (V ))‖Hs
#

≤ ‖INg(V )‖Hs
#
≤ ‖V ‖Hs

#
+ ‖(1 − INg )(V )‖Hs

#
≤ (1 + Cs,s)‖V ‖Hs

#
.

Now, we notice that

Π2Nc(INg (V )) = |Γ|1/2
∑

k∈R∗ | |k|≤ 4π
L Nc

V̂
FFT,Ng

k ek

=
∑

k∈R∗ | |k|≤ 4π
L Nc

( ∑
K∈R∗

V̂k+NgK

)
ek. (2.13)

From (2.13), we obtain

∥∥Π2Nc(1 − INg )(V )
∥∥2

Hs
#

=
∑

k∈R∗ | |k|≤ 4π
L Nc

(1 + |k|2)s
∣∣∣∣∣∣

∑
K∈R∗\{0}

V̂k+NgK

∣∣∣∣∣∣
2

≤
⎛⎝ ∑
k∈R∗ | |k|≤ 4π

L Nc

(1 + |k|2)s
⎞⎠ max
k∈R∗ | |k|≤ 4π

L Nc

∣∣∣∣∣∣
∑

K∈R∗\{0}
V̂k+NgK

∣∣∣∣∣∣
2

.

On the one hand, ∑
k∈R∗ | |k|≤ 4π

L Nc

(1 + |k|2)s ∼
Nc→∞

32π
2s+ 3

(
4π
L

)2s

N2s+3
c ,
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and on the other hand, we have for each k ∈ R∗ such that |k| ≤ 4π
L Nc,∣∣∣∣∣∣

∑
K∈R∗\{0}

V̂k+NgK

∣∣∣∣∣∣ ≤ C
∑

K∈R∗\{0}

1
|k +NgK|m

≤ C C0

(
L

2π

)m
N−m
g ,

where

C0 = max
y∈R3 | |y|≤1/2

∑
K∈Z3\{0}

1
|y −K|m ·

The estimate (2.10) then easily follows. Let us finally prove (2.11). Using (2.3) and (2.4), we have

∣∣∣∣∫
Γ

INg (φ(|vNc |2))
∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈GNg∩Γ

(
L

Ng

)3

φ(|vNc(x)|2)
∣∣∣∣∣∣

≤ Cφ

∣∣∣∣∣∣
∑

x∈GNg∩Γ

(
L

Ng

)3

(1 + |vNc(x)|4)
∣∣∣∣∣∣

= Cφ

∫
Γ

(1 + |vNc |4) = Cφ

(
|Γ| + ‖vNc‖4

L4
#

)
.

This completes the proof of Lemma 2.1. �

3. Planewave approximation of the periodic TFW model

The periodic TFW problem reads as follows:

ITFW = inf
{ETFW(ρ), ρ ∈ RN

}
, (3.1)

where

RN =
{
ρ ≥ 0 | √ρ ∈ H1

#(Γ),
∫

Γ

ρ = N
}

is the set of admissible periodic densities, and where

ETFW(ρ) =
CW

2

∫
Γ

|∇√
ρ|2 + CTF

∫
Γ

ρ5/3 +
∫

Γ

ρV ion +
1
2
DΓ(ρ, ρ).

The last term of the TFW energy models the periodic Coulomb energy: for ρ and ρ′ in H−1
# (Γ),

DΓ(ρ, ρ′) := 4π
∑

k∈R∗\{0}
|k|−2ρ̂∗k ρ̂

′
k.

We make the assumption that V ion is a R-periodic potential such that

∃m > 3, C ≥ 0 s.t. ∀k ∈ R∗, |V̂ ion
k | ≤ C|k|−m. (3.2)
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Note that this implies that V ion is in Hm−3/2−ε(Γ) for all ε > 0, hence in C0
#(Γ) since m− 3/2 − ε > 3/2 for ε

small enough. It is convenient to reformulate the TFW model in terms of v =
√
ρ. It can be easily seen that

ITFW = inf
{
ETFW(v), v ∈ H1

#(Γ),
∫

Γ

|v|2 = N
}
, (3.3)

where
ETFW(v) =

CW

2

∫
Γ

|∇v|2 + CTF

∫
Γ

|v|10/3 +
∫

Γ

V ion|v|2 +
1
2
DΓ(|v|2, |v|2).

Let F (t) = CTFt
5/3 and f(t) = F ′(t) = 5

3CTFt
2/3. The function F is in C1([0,+∞)) ∩ C∞((0,+∞)), is

strictly convex on [0,+∞), and for all (t1, t2) ∈ R+ × R+,

|f(t22)t2 − f(t21)t2 − 2f ′(t21)t
2
1(t2 − t1)| ≤ 70

27
CTF max(t1/31 , t

1/3
2 ) |t2 − t1|2. (3.4)

The first and second derivatives of ETFW are respectively given by

〈ETFW ′
(v), w〉H−1

# ,H1
#

= 2〈HTFW
|v|2 v, w〉,

〈ETFW ′′
(v)w1, w2〉H−1

# ,H1
#

= 2〈HTFW
|v|2 w1, w2〉 + 4DΓ(vw1, vw2) + 4

∫
Γ

f ′(|v|2)|v|2w1w2,

where we have denoted by HTFW
ρ the TFW Hamiltonian associated with the density ρ

HTFW
ρ = −CW

2
Δ + f(ρ) + V ion + V Coulomb

ρ ,

where
V Coulomb
ρ (x) := 4π

∑
k∈R∗\{0}

|k|−2ρ̂kek(x) (3.5)

is the R-periodic Coulomb potential generated by the R-periodic charge distribution ρ. Recall that V Coulomb
ρ

can also be defined as the unique solution in H1
#(Γ) to⎧⎪⎪⎨⎪⎪⎩

−ΔV Coulomb
ρ = 4π

(
ρ− |Γ|−1

∫
Γ

ρ

)
,∫

Γ

V Coulomb
ρ = 0.

Let us recall (see [27] and the proof of Lemma 2 in [6]) that
• (3.1) has a unique minimizer ρ0, and that the minimizers of (3.3) are u and −u, where u =

√
ρ0;

• u is in Hm+1/2−ε
# (Γ) for each ε > 0 (hence in C2

#(Γ) since m+ 1/2 − ε > 7/2 for ε small enough);
• u > 0 on R3;
• u satisfies the Euler equation

HTFW
|u|2 (u) = −CW

2
Δu+

(
5
3
CTFu

4/3 + V ion + V Coulomb
u2

)
u = λu

for some λ ∈ R, (the ground state eigenvalue of HTFW
ρ0 , that is non-degenerate).

The planewave discretization of the TFW model is obtained by choosing:
(1) an energy cut-off Ec > 0 or, equivalently, a finite dimensional Fourier space VNc , the integer Nc being

related to Ec through the relation Nc := [
√

2Ec L/2π],
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(2) a cartesian grid GNg with step size L/Ng where Ng ∈ N∗ is such that Ng ≥ 4Nc + 1,
and by considering the finite dimensional minimization problem

ITFW
Nc,Ng

= inf
{
ETFW
Ng

(vNc), vNc ∈ VNc ,

∫
Γ

|vNc |2 = N
}
, (3.6)

where

ETFW
Ng

(vNc) =
CW

2

∫
Γ

|∇vNc |2 + CTF

∫
Γ

INg (|vNc |10/3) +
∫

Γ

INg(V ion)|vNc |2

+
1
2
DΓ(|vNc |2, |vNc |2),

INg denoting the interpolation operator introduced in the previous section. The Euler equation associated
with (3.6) can be written as a nonlinear eigenvalue problem

∀vNc ∈ VNc ,
〈(

H̃TFW,Ng

|uNc,Ng |2 − λNc,Ng

)
uNc,Ng , vNc

〉
H−1

# ,H1
#

= 0,

where we have denoted by

H̃TFW,Ng
ρ = −CW

2
Δ + INg

(
5
3
CTFρ

2/3 + V ion

)
+ V Coulomb

ρ

the pseudospectral TFW Hamiltonian associated with the density ρ, and by λNc,Ng the Lagrange multiplier of
the constraint

∫
Γ
|vNc |2 = N . We therefore have

−CW

2
ΔuNc,Ng + ΠNc

[(
INg

(
5
3
CTF|uNc,Ng |4/3 + V ion

)
+ V Coulomb

|uNc,Ng |2
)
uNc,Ng

]
= λNc,NguNc,Ng .

Under the condition that Ng ≥ 4Nc + 1, we have for all φ ∈ C0
#(Γ),

∀(k, l) ∈ R∗ ×R∗ s.t. |k|, |l| ≤ 2π
L
Nc,

∫
Γ

INg (φ) e∗k el = φ̂FFT
k−l ,

so that, H̃TFW
uNc,Ng

is defined on VNc by the Fourier matrix[
ĤTFW,Ng

|uNc,Ng |2
]
kl

=
CW

2
|k|2δkl + 5

3
CTF

̂(|uNc,Ng |4/3
)FFT,Ng

k−l + (̂V ion)
FFT,Ng

k−l

+ 4π
̂

(|uNc,Ng |2
)FFT,Ng

k−l
|k − l|2 (1 − δkl) ,

where, by convention, the last term of the right hand side is equal to zero for k = l.
We also introduce the variational approximation of (3.3)

ITFW
Nc

= inf
{
ETFW(vNc), vNc ∈ VNc ,

∫
Γ

|vNc |2 = N
}
. (3.7)

Any minimizer uNc to (3.7) satisfies the elliptic equation

− CW

2
ΔuNc + ΠNc

[
5
3
CTF|uNc |4/3uNc + V ionuNc + V Coulomb

|uNc |2 uNc

]
= λNcuNc , (3.8)

for some λNc ∈ R.

https://doi.org/10.1051/m2an/2011038 Published online by Cambridge University Press

https://doi.org/10.1051/m2an/2011038


352 E. CANCÈS ET AL.
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The following theorem provides optimal a priori error bounds for the planewave discretization of the periodic
TFW model. Note that convergence results (without error estimates) were previously derived by Zhou [35].

Theorem 3.1. For each Nc ∈ N, we denote by uNc a minimizer to (3.7) such that (uNc , u)L2
#

≥ 0 and, for
each Nc ∈ N and Ng ≥ 4Nc + 1, we denote by uNc,Ng a minimizer to (3.6) such that (uNc,Ng , u)L2

#
≥ 0. Then

for Nc large enough, uNc and uNc,Ng are unique, and the following estimates hold true

‖uNc − u‖Hs
#

≤ Cs,εN
−(m−s+1/2−ε)
c , (3.9)

|λNc − λ| ≤ CεN
−(2m−1−ε)
c , (3.10)

γ‖uNc − u‖2
H1

#
≤ ITFW

Nc
− ITFW ≤ C‖uNc − u‖2

H1
#
, (3.11)

‖uNc,Ng − uNc‖Hs
#

≤ CsN
3/2+(s−1)+
c N−m

g , (3.12)

|λNc,Ng − λNc | ≤ CN3/2
c N−m

g , (3.13)

|ITFW
Nc,Ng

− ITFW
Nc

| ≤ CN3/2
c N−m

g , (3.14)

for all −m+ 3/2 < s < m+ 1/2 and ε > 0, and for some constants γ > 0, Cs,ε ≥ 0, Cε ≥ 0, C ≥ 0 and Cs ≥ 0
independent of Nc and Ng.

Remark 3.2. More complex orbital-free models have been proposed in the recent years [34], which are used
to perform multimillion atom DFT calculations. Some of these models however are not well posed (the energy
functional is not bounded from below [3]), and the others are not well understood from a mathematical point
of view. For these reasons, we will not deal with those models in this article.

3.1. A priori estimates for the variational approximation

In this section, we prove the first part of Theorem 3.1, related to the variational approximation (3.7). The
estimates (3.9), (3.10) and (3.11) originate from arguments already introduced in [6]. For brevity, we only recall
the main steps of the proof and leave the details to the reader.

The difference between (3.3) and the problem dealt with in [6] is the presence of the Coulomb termDΓ(|v|2, |v|2),
for which the following estimates are available:

0 ≤ DΓ(ρ, ρ) ≤ C‖ρ‖2
L2

#
, for all ρ ∈ L2

#(Γ), (3.15)

|DΓ(uv, uw)| ≤ C‖v‖L2
#
‖w‖L2

#
, for all (v, w) ∈ (L2

#(Γ))2, (3.16)

|DΓ(ρ, vw)| ≤ C‖ρ‖L2
#
‖v‖L2

#
‖w‖L2

#
, for all (ρ, v, w) ∈ (L2

#(Γ))3, (3.17)

‖V Coulomb
ρ ‖L∞ ≤ C‖ρ‖L2

#
, for all ρ ∈ L2

#(Γ), (3.18)

‖V Coulomb
ρ ‖Hs+2

#
≤ C‖ρ‖Hs

#
, for all ρ ∈ Hs

#(Γ). (3.19)

Note that (3.19) is valid for all s ∈ R. Here and in the sequel, C denotes a non-negative constant which may
depend on Γ, V ion, N and s, but not on the discretization parameters.

Using (3.15), (3.16) and the fact that f ′ > 0 on (0,+∞), we can then show (see the proof of Lemma 1 in [6])
that there exist β > 0, γ > 0 and M ≥ 0 such that for all v ∈ H1

#(Γ),

0 ≤ 〈(HTFW
ρ0 − λ)v, v〉H−1

# ,H1
#
≤M‖v‖2

H1
#
, (3.20)

β‖v‖2
H1

#
≤ 〈(ETFW ′′

(u) − 2λ)v, v〉H−1
# ,H1

#
≤M‖v‖2

H1
#
, (3.21)
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and for all v ∈ H1
#(Γ) such that ‖v‖L2

#
= N 1/2 and (v, u)L2

#
≥ 0,

γ‖v − u‖2
H1

#
≤ 〈(HTFW

ρ0 − λ)(v − u), (v − u)〉H−1
# ,H1

#
. (3.22)

Remarking that

ETFW(uNc) − ETFW(u) = 〈(HTFW
ρ0 − λ)(uNc − u), (uNc − u)〉H−1

# ,H1
#

+
1
2
DΓ(|uNc |2 − |u|2, |uNc |2 − |u|2)

+
∫

Γ

F (|uNc |2) − F (|u|2) − f(|u|2)(|uNc |2 − |u|2), (3.23)

and using (3.22), the positivity of the bilinear form DΓ, and the convexity of the function F , we obtain that

ITFW
Nc

− ITFW = ETFW(uNc) − ETFW(u) ≥ γ‖uNc − u‖2
H1

#
.

For each Nc ∈ N, ũNc = N 1/2ΠNcu/‖ΠNcu‖L2
#

satisfies (ũNc , u)L2
#
≥ 0 and ‖ũNc‖L2

#
= N 1/2, and the sequence

(ũNc)Nc∈N converges to u in Hm+1/2−ε
# (Γ) for each ε > 0. As the functional ETFW is continuous on H1

#(Γ), we
have

‖uNc − u‖2
H1

#
≤ γ−1

(
ITFW
Nc

− ITFW
) ≤ γ−1

(
ETFW(ũNc) − ETFW(u)

) −→
Nc→∞

0.

Hence, (uNc)Nc∈N converges to u in H1
#(Γ), and we also have

λNc = N−1

[
CW

2

∫
Γ

|∇uNc |2 +
∫

Γ

f(|uNc |2)|uNc |2 +
∫

Γ

V ion|uNc |2 +DΓ(|uNc |2, |uNc |2)
]

−→
Nc→∞

N−1

[
CW

2

∫
Γ

|∇u|2 +
∫

Γ

f(|u|2)|u|2 +
∫

Γ

V ion|u|2 +DΓ(|u|2, |u|2)
]

= λ.

As f(|uNc |2)uNc + V ionuNc + V Coulomb
|uNc |2 uNc is bounded in L2

#(Γ), uniformly in Nc, we deduce from (3.8) that
the sequence (uNc)Nc∈N is bounded in H2

#(Γ), hence in L∞(Γ). Now

Δ(uNc − u) = 2C−1
W

[
ΠNc

(
f(|uNc |2)uNc − f(|u|2)u+ V ion(uNc − u) + V Coulomb

|uNc |2 uNc − V Coulomb
|u|2 u

)
− (1 − ΠNc)

(
f(|u|2)u+ V ionu+ V Coulomb

|u|2 u
)
− λNc(uNc − u) − (λNc − λ)u

]
.

Observing that the right-hand side goes to zero in L2
#(Γ) when Nc goes to infinity, we obtain that (uNc)Nc∈N

converges to u in H2
#(Γ), and therefore in C

0,1/2
# (Γ). In addition, we know from Harnack inequality [18] that

u > 0 in R3. Consequently, for Nc large enough, the function uNc (which is continuous and R-periodic) is
bounded away from 0, uniformly in Nc. As f ∈ C∞(0,+∞), one can see by a simple bootstrap argument that
the convergence of (uNc)Nc∈N to u also holds in H

m+1/2−ε
# (Γ) for each ε > 0. The upper bound in (3.11) is

obtained from (3.23), remarking that

0 ≤
∫

Γ

F (|uNc |2) − F (|u|2) − f(|u|2)(|uNc |2 − |u|2)

≤ 35
9
CTF

∫
Γ

max(|uNc |4/3, |u|4/3)|uNc − u|2

≤ 35
9
CTF

(
max
Nc∈N

‖uNc‖L∞

)4/3

‖uNc − u‖2
L2

#
,
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and that

0 ≤ DΓ(|uNc |2 − |u|2, |uNc |2 − |u|2) ≤ C‖|uNc |2 − |u|2‖2
L2

#

≤ 4C
(

max
Nc∈N

‖uNc‖L∞

)2

‖uNc − u‖2
L2

#
.

The uniqueness of uNc for Nc large enough can then be checked as follows. First, (uNc , λNc) satisfies the
variational equation

∀vNc ∈ VNc , 〈(HTFW
|uNc |2 − λNc)uNc , vNc〉H−1

# ,H1
#

= 0.

Therefore λNc is the variational approximation in VNc of some eigenvalue of HTFW
|uNc |2 . As (uNc)Nc∈N converges

to u in L∞(Γ), HTFW
|uNc |2 −HTFW

ρ0 converges to 0 in operator norm. Consequently, the nth eigenvalue of HTFW
|uNc |2

converges to the nth eigenvalue of HTFW
ρ0 when Nc goes to infinity, the convergence being uniform in n. Together

with the fact that the sequence (λNc)Nc∈N converges to λ, the non-degenerate ground state eigenvalue of HTFW
ρ0 ,

this implies that for Nc large enough, λNc is the ground state eigenvalue of HTFW
|uNc |2 in VNc and for all vNc ∈ VNc

such that ‖vNc‖L2
#

= N 1/2 and (vNc , uNc)L2
#
≥ 0,

ETFW(vNc) − ETFW(uNc) = 〈(HTFW
|uNc |2 − λNc)(vNc − uNc), (vNc − uNc)〉H−1

# ,H1
#

+
1
2
DΓ(|vNc |2 − |uNc |2, |vNc |2 − |uNc |2)

+
∫

Γ

F (|vNc |2) − F (|uNc |2) − f(|uNc |2)(|vNc |2 − |uNc |2)

≥ 〈(HTFW
|uNc |2 − λNc)(vNc − uNc), (vNc − uNc)〉H−1

# ,H1
#

≥ γ

2
‖vNc − uNc‖2

H1
#
. (3.24)

It easily follows that for Nc large enough, (3.7) has a unique minimizer uNc such that (uNc , u)L2
#
≥ 0.

Let us now establish the rates of convergence of |λNc − λ| and ‖uNc − u‖Hs
#
. First,

λNc − λ = N−1

[
〈(HTFW

|u|2 − λ)(uNc − u), (uNc − u)〉H−1
# ,H1

#
+
∫

Γ

wNc(uNc − u)
]

(3.25)

with

wNc =
f(|uNc |2) − f(|u|2)

uNc − u
|uNc |2 + V Coulomb

|uNc |2 (uNc + u).

As uNc is bounded away from 0 and f ∈ C∞((0,+∞)), the function wNc is uniformly bounded in Hm−3/2−ε
# (Γ)

(at least for Nc large enough). We therefore obtain that for all 0 ≤ r < m−3/2, there exists a constant Cr ∈ R+

such that for all Nc large enough,

|λNc − λ| ≤ Cr

(
‖uNc − u‖2

H1
#

+ ‖uNc − u‖H−r
#

)
. (3.26)

In order to evaluate the H1
#-norm of the error (uNc − u), we first notice that

∀vNc ∈ VNc , ‖uNc − u‖H1
#
≤ ‖uNc − vNc‖H1

#
+ ‖vNc − u‖H1

#
, (3.27)
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and that

‖uNc − vNc‖2
H1

#
≤ β−1 〈(ETFW ′′

(u) − 2λ)(uNc − vNc), (uNc − vNc)〉H−1
# ,H1

#

= β−1

(
〈(ETFW ′′

(u) − 2λ)(uNc − u), (uNc − vNc)〉H−1
# ,H1

#

+ 〈(ETFW ′′
(u) − 2λ)(u− vNc), (uNc − vNc)〉H−1

# ,H1
#

)
. (3.28)

For all zNc ∈ VNc ,

〈(ETFW ′′
(u) − 2λ)(uNc − u), zNc〉H−1

# ,H1
#

= −2
∫

Γ

[f(|uNc |2)uNc − f(|u|2)uNc − 2f ′(|u|2)|u|2(uNc − u)]zNc

−2DΓ((uNc − u)(uNc + u), (uNc − u)zNc)

−2DΓ((uNc − u)2, uzNc) + 2(λNc − λ)
∫

Γ

uNczNc . (3.29)

On the other hand, we have for all vNc ∈ VNc such that ‖vNc‖L2
#

= N 1/2,∫
Γ

uNc(uNc − vNc) = N −
∫

Γ

uNcvNc =
1
2
‖uNc − vNc‖2

L2
#
.

Using (3.4), (3.17), (3.26) with r = 0 and the above equality, we therefore obtain for all vNc ∈ VNc such that
‖vNc‖L2

#
= N 1/2,

∣∣∣〈(ETFW′′
(u) − 2λ)(uNc − u), (uNc − vNc)〉H−1

# ,H1
#

∣∣∣ ≤C

(
‖uNc − u‖2

H1
#
‖uNc − vNc‖H1

#

+
(
‖uNc − u‖2

H1
#

+ ‖uNc − u‖L2
#

)
‖uNc − vNc‖2

L2
#

)
.

(3.30)

Therefore, for Nc large enough, we have for all vNc ∈ VNc such that ‖vNc‖L2
#

= N 1/2,

‖uNc − vNc‖H1
#
≤ C

(
‖uNc − u‖2

H1
#

+ ‖vNc − u‖H1
#

)
.

Together with (3.27), this shows that there exists N ∈ N and C ∈ R+ such that for all Nc ≥ N ,

∀vNc ∈ VNc s.t. ‖vNc‖L2
#

= N 1/2, ‖uNc − u‖H1
#
≤ C‖vNc − u‖H1

#
.

By a classical argument (see e.g. the proof of Theorem 1 in [6]), we deduce from (2.2) and the above inequality
that

‖uNc − u‖H1
#
≤ C min

vNc∈VNc

‖vNc − u‖H1
#
≤ C1,εN

−(m−1/2−ε)
c , (3.31)

for some constant C1,ε independent of Nc. This completes the proof of the estimate in the H1
#-norm. We

proceed with the analysis of the L2
#-norm.

For w ∈ L2
#(Γ), we denote by ψw the unique solution to the adjoint problem{

find ψw ∈ u⊥ such that
∀v ∈ u⊥, 〈(ETFW′′(u) − 2λ)ψw, v〉H−1

# ,H1
#

= 〈w, v〉H−1
# ,H1

#
,

(3.32)
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where

u⊥ =
{
v ∈ H1

#(Γ) |
∫

Γ

uv = 0
}
.

The function ψw is solution to the elliptic equation

−CW

2
Δψw +

(
V ion + V Coulomb

u2 + f(u2) + 2f ′(u2)u2 − λ
)
ψw + 2V Coulomb

uψw
u

= 2
(∫

Γ

f ′(u2)u3ψw +DΓ(u2, uψw)
)
u+

1
2

(
w − (w, u)L2

#
u
)
,

from which we deduce that if w ∈ Hr
#(Γ) for some 0 ≤ r < m− 3/2, then ψw ∈ Hr+2

# (Γ) and

‖ψw‖Hr+2
#

≤ Cr‖w‖Hr
#
, (3.33)

for some constant Cr independent of w. Let u∗Nc
be the orthogonal projection, for the L2

# inner product, of uNc

on the affine space
{
v ∈ L2

#(Γ) | ∫
Γ
uv = N

}
. One has

u∗Nc
∈ H1

#(Γ), u∗Nc
− u ∈ u⊥, u∗Nc

− uNc =
1

2N ‖uNc − u‖2
L2

#
u,

from which we infer that

‖uNc − u‖2
L2

#
=

∫
Γ

(uNc − u)(u∗Nc
− u) +

∫
Γ

(uNc − u)(uNc − u∗Nc
)

=
∫

Γ

(uNc − u)(u∗Nc
− u) − 1

2N ‖uNc − u‖2
L2

#

∫
Γ

(uNc − u)u

=
∫

Γ

(uNc − u)(u∗Nc
− u) +

1
2N ‖uNc − u‖2

L2
#

(
N −

∫
Γ

uNcu

)
=

∫
Γ

(uNc − u)(u∗Nc
− u) +

1
4N ‖uNc − u‖4

L2
#

= 〈uNc − u, u∗Nc
− u〉H−1

# ,H1
#

+
1

4N ‖uNc − u‖4
L2

#

= 〈(ETFW′′
(u) − 2λ)ψuNc−u, u

∗
Nc

− u〉H−1
# ,H1

#
+

1
4N ‖uNc − u‖4

L2
#

= 〈(ETFW′′
(u) − 2λ)(uNc − u), ψuNc−u〉H−1

# ,H1
#

+
1

4N ‖uNc − u‖4
L2

#

+
1

2N ‖uNc − u‖2
L2

#
〈(ETFW ′′

(u) − 2λ)u, ψuNc−u〉H−1
# ,H1

#

= 〈(ETFW′′
(u) − 2λ)(uNc − u), ψuNc−u〉H−1

# ,H1
#

+
1

4N ‖uNc − u‖4
L2

#

+
2
N ‖uNc − u‖2

L2
#

[∫
Γ

f ′(u2)u3ψuNc−u +DΓ(u2, uψuNc−u)
]
.
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For all ψNc ∈ VNc , it therefore holds

‖uNc − u‖2
L2

#
= 〈(ETFW ′′

(u) − 2λ)(uNc − u), ψuNc−u − ψNc〉H−1
# ,H1

#

+〈(ETFW′′
(u) − 2λ)(uNc − u), ψNc〉H−1

# ,H1
#

+
1

4N ‖uNc − u‖4
L2

#

+
2
N ‖uNc − u‖2

L2
#

[∫
Γ

f ′(u2)u3ψuNc−u +DΓ(u2, uψuNc−u)
]
. (3.34)

Using (3.4), (3.17), (3.26) with r = 0 and (3.30), we obtain that for all ψNc ∈ VNc ∩ u⊥,∣∣∣〈(ETFW ′′
(u) − 2λ)(uNc − u), ψNc〉H−1

# ,H1
#

∣∣∣ ≤C

(
‖uNc − u‖2

H1
#

+ ‖uNc − u‖L2
#

(
‖uNc − u‖2

H1
#

+ ‖uNc − u‖L2
#

))
‖ψNc‖H1

#
.

(3.35)

Let us denote by Π1
VNc∩u⊥ the orthogonal projector on VNc ∩ u⊥ for the H1

# inner product and by ψ0
Nc

=
Π1
VNc∩u⊥ψuNc−u. Noticing that

‖ψ0
Nc

‖H1
#
≤ ‖ψuNc−u‖H1

#
≤ β−1M‖uNc − u‖L2

#
,

we obtain from (3.21), (3.34) and (3.35) that there exists N ∈ N and C ∈ R+ such that for all Nc ≥ N ,

‖uNc − u‖2
L2

#
≤ C

(
‖uNc − u‖L2

#
‖uNc − u‖2

H1
#

+ ‖uNc − u‖H1
#
‖ψuNc−u − ψ0

Nc
‖H1

#

)
.

Lastly, for all v ∈ u⊥ and all Nc ∈ N∗

‖v − Π1
VNc∩u⊥v‖H1

#
≤
(

1 +
N 1/2L5/2

2πNc
∫
Γ u

)
‖v − ΠNcv‖H1

#
, (3.36)

so that, in view of (2.2) and (3.33)

‖ψuNc−u − ψ0
Nc

‖H1
#

≤ C‖ψuNc−u − ΠNcψuNc−u‖H1
#

≤ CN−1
c ‖ψuNc−u‖H2

#

≤ CN−1
c ‖uNc − u‖L2

#
.

Therefore,

‖uNc − u‖L2
#

≤ C

(
‖uNc − u‖2

H1
#

+N−1
c ‖uNc − u‖H1

#

)
≤ C0,εN

−(m+1/2−ε)
c .

By means of the inverse inequality

∀vNc ∈ VNc , ‖vNc‖Hr
#
≤
(

2π
L

)(r−s)
Nc

r−s‖vNc‖Hs
#
, (3.37)
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which holds true for all s ≤ r and all Nc ≥ 1, we obtain that

‖uNc − u‖Hs
#
≤ Cs,εN

−(m−s+1/2−ε)
c for all 0 ≤ s < m+ 1/2. (3.38)

To complete the first part of the proof of Theorem 3.1, we still have to compute the H−r
# -norm of the error

(uNc − u) for 0 < r < m− 3/2. Let w ∈ Hr
#(Γ). Proceeding as above we obtain

∫
Γ

w(uNc − u) = 〈(ETFW ′′
(u) − 2λ)(uNc − u),Π1

VNc∩u⊥ψw〉H−1
# ,H1

#

+ 〈(ETFW ′′
(u) − 2λ)(uNc − u), ψw − Π1

VNc∩u⊥ψw〉H−1
# ,H1

#
+

2
N ‖uNc − u‖2

L2
#

×
[∫

Γ

f ′(u2)u3ψw +DΓ(u2, uψw)
]
− 1

2N ‖uNc − u‖2
L2

#

∫
Γ

uw. (3.39)

Combining (3.21), (3.33), (3.35), (3.36), (3.38) and (3.39), we obtain that there exists a constant C ∈ R+ such
that for all Nc large enough and all w ∈ Hr

#(Γ),

∫
Γ

w(uNc − u) ≤ C′
(
‖uNc − u‖2

H1
#

+Nc
−(r+1)‖uNc − u‖H1

#

)
‖w‖Hr

#

≤ C−r,εN−(m+r+1/2−ε)
c ‖w‖Hr

#
.

Therefore

‖uNc − u‖H−r
#

= sup
w∈Hr

#(Γ)\{0}

∫
Γ

w(uNc − u)

‖w‖Hr
#

≤ C−r,εN−(m+r+1/2−ε)
c , (3.40)

for some constant C−r,ε ∈ R+ independent of Nc. Using (3.26), (3.31) and (3.40), we end up with

|λNc − λ| ≤ CεN
−(2m−1−ε)
c .

3.2. A priori estimates for the full discretization

Let us now turn to the pseudospectral approximation (3.6) of (3.3). First, we notice that

CW

2
‖∇uNc,Ng‖2

L2
#
− ‖V ion‖L∞N ≤ ETFW

Ng
(uNc,Ng ) ≤ ETFW

Ng
(N 1/2|Γ|−1/2) ≤ CTFN 5/3|Γ|−2/3 + ‖V ion‖L∞N ,

from which we infer that uNc,Ng is uniformly bounded in H1
#(Γ). We then see that

λNc,Ng = N−1

[
CW

2

∫
Γ

|∇uNc,Ng |2 +
∫

Γ

INg (V ion|uNc,Ng |2 + f(|uNc,Ng |2)|uNc,Ng |2) +DΓ(|uNc,Ng |2, |uNc,Ng |2)
]
.

Using (2.6), (2.11) and (3.15), we obtain that λNc,Ng also is uniformly bounded. Now,

ΔuNc,Ng = 2C−1
W ΠNc

(INg

(
f(|uNc,Ng |2)uNc,Ng

))
+ 2C−1

W ΠNc

(INg

(
V ionuNc,Ng

))
+ 2C−1

W ΠNc

(
V Coulomb
|uNc,Ng |2uNc,Ng

)
− 2C−1

W λNc,NguNc,Ng , (3.41)

https://doi.org/10.1051/m2an/2011038 Published online by Cambridge University Press

https://doi.org/10.1051/m2an/2011038


NUMERICAL ANALYSIS OF DFT MODELS 359

R
ap

id
e 

N
ot

eH
ighlight

and we deduce from (2.4), (2.6) and (2.8) that

∥∥ΠNc

(INg

(
f(|uNc,Ng |2)uNc,Ng

))∥∥
L2

#
≤

(∫
Γ

(INg(f(|uNc,Ng |2))
)2 |uNc,Ng |2

)1/2

=

⎛⎝ ∑
x∈GNg∩Γ

(
L

Ng

)3

f(|uNc,Ng(x)|2)2|uNc,Ng(x)|2
⎞⎠1/2

≤ 5
3
CTF‖uNc,Ng‖1/3

L∞

⎛⎝ ∑
x∈GNg∩Γ

(
L

Ng

)3

|uNc,Ng(x)|4
⎞⎠1/2

=
5
3
CTF‖uNc,Ng‖1/3

L∞‖uNc,Ng‖2
L4

#
,

and that

‖ΠNc

(INg

(
V ionuNc,Ng

)) ‖L2
#

≤ ‖Π2Nc

(INg

(
V ionuNc,Ng

)) ‖L2
#

≤
(∫

Γ

INg (|V ion|2|uNc,Ng |2)
)1/2

≤ ‖V ion‖L∞N 1/2.

Besides, using (3.18),

‖ΠNc

(
V Coulomb
|uNc,Ng |2uNc,Ng

)
‖L2

#
≤ ‖V Coulomb

|uNc,Ng |2uNc,Ng‖L2
#
≤ N 1/2‖V Coulomb

|uNc,Ng |2‖L∞ ≤ N 1/2‖uNc,Ng‖2
L4

#
.

As uNc,Ng is uniformly bounded in H1
#(Γ), and therefore in L4

#(Γ), we get

‖uNc,Ng‖H2
#

=
(
‖uNc,Ng‖2

L2
#

+ ‖ΔuNc,Ng‖2
L2

#

)1/2

≤ C
(
1 + ‖uNc,Ng‖1/3

L∞

)
≤ C

(
1 + ‖uNc,Ng‖1/3

H2
#

)
.

Therefore uNc,Ng is uniformly bounded in H2
#(Γ), hence in L∞(R3).

Returning to (3.41) and using (2.9), (3.2), and a bootstrap argument, we conclude that uNc,Ng is in fact
uniformly bounded in H7/2+ε

# (Γ).
Next, using (3.24),

γ

2
‖uNc,Ng − uNc‖2

H1
#

≤ ETFW(uNc,Ng) − ETFW(uNc)

= ETFW
Ng

(uNc,Ng) − ETFW
Ng

(uNc) +
∫

Γ

((1 − INg )(V ))(|uNc,Ng |2 − |uNc |2)

+
∫

Γ

(1 − INg )(F (|uNc,Ng |2) − F (|uNc |2))

≤
∫

Γ

((1 − INg )(V ))(|uNc,Ng |2 − |uNc |2) +
∫

Γ

(1 − INg )(F (|uNc,Ng |2) − F (|uNc |2)).

Let g(t, t′) = F (t′2)−F (t2)
t′−t . For Nc large enough, uNc is uniformly bounded away from zero; besides, both uNc

and uNc,Ng are uniformly bounded in H7/2+ε
# (Γ). Therefore, g(uNc , uNc,Ng) is uniformly bounded in H7/2+ε

# (Γ).
This implies that the Fourier coefficients of g(uNc , uNc,Ng) go to zero faster that |k|−7/2, which in turn implies,
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using (2.5) and (2.10), that

∣∣∣∣∫
Γ

(1 − INg )(F (|uNc,Ng |2) − F (|uNc |2))
∣∣∣∣ =

∣∣∣∣∫
Γ

(1 − INg )
(
g(uNc , uNc,Ng)

)
(uNc,Ng − uNc)

∣∣∣∣
≤ ∥∥ΠNc

(
(1 − INg )

(
g(uNc , uNc,Ng)

))∥∥
L2

#
‖uNc,Ng − uNc‖L2

#

≤ CN3/2
c N−7/2

g ‖uNc,Ng − uNc‖L2
#
. (3.42)

On the other hand,

∣∣∣∣∫
Γ

((1 − INg )(V ))(|uNc,Ng |2 − |uNc |2)
∣∣∣∣ ≤ ‖Π2Nc((1 − INg )(V ))‖L2

#
‖uNc,Ng + uNc‖L∞‖uNc,Ng − uNc‖L2

#

≤ CN3/2
c N−m

g ‖uNc,Ng − uNc‖L2
#
.

Therefore,

‖uNc,Ng − uNc‖H1
#

≤ CN3/2
c N−7/2

g . (3.43)

We then deduce from (3.43) and the inverse inequality (3.37) that (uNc,Ng)Nc,Ng≥4Nc+1 converges to u in H2
#(Γ),

and therefore in L∞(R3). It follows that for Nc large enough, uNc,Ng is bounded away from zero, which, together
with (3.41), implies that (uNc,Ng)Nc,Ng≥4Nc+1 is bounded in Hm+1/2−ε

# (Γ). The estimates (3.42) and (3.43) can
therefore be improved, yielding

∣∣∣∣∫
Γ

(1 − INg)(F (|uNc,Ng |2) − F (|uNc |2))
∣∣∣∣ ≤ CN3/2

c N−(m+1/2−ε)
g ‖uNc,Ng − uNc‖L2

#
,

and

‖uNc,Ng − uNc‖H1
#
≤ CN3/2

c N−m
g .

We deduce (3.12) from the inverse inequality (3.37). For Nc large enough, uNc,Ng is bounded away from
zero, so that f(|uNc,Ng |2) is uniformly bounded in H

m+1/2−ε
# (Γ). Therefore, the kth Fourier coefficient of

(V ion + f(|uNc,Ng |2)) is bounded by C|k|−m where the constant C does not depend on Nc and Ng. Using the
equality

λNc,Ng − λNc = N−1

[
〈(HTFW

|uNc |2 − λNc)(uNc,Ng − uNc), (uNc,Ng − uNc)〉H−1
# ,H1

#

−
∫

Γ

(1 − INg)(V ion + f(|uNc,Ng |2))|uNc,Ng |2

+DΓ(|uNc,Ng |2, |uNc,Ng |2 − |uNc |2) +
∫

Γ

(f(|uNc,Ng |2) − f(|uNc |2))|uNc,Ng |2
]
,

(3.12) and (3.17), we obtain (3.13). A similar calculation leads to (3.14).
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Lastly, we have for all vNc ∈ VNc ,

ETFW
Ng

(vNc) − ETFW
Ng

(uNc,Ng) = 〈(H̃TFW
uNc,Ng

− λNc,Ng)(vNc − uNc,Ng), (vNc − uNc,Ng)〉H−1
# ,H1

#

+
1
2
DΓ(|vNc |2 − |uNc,Ng |2, |vNc |2 − |uNc,Ng |2)

+
∑

x∈GNg∩Γ

(
L

Ng

)3 (
F (|vNc(x)|2) − F (|uNc(x)|2)

− f(|uNc(x)|2)(|vNc(x)|2 − |uNc(x)|2)
)

≥ 〈(H̃TFW
uNc,Ng

− λNc,Ng)(vNc − uNc,Ng), (vNc − uNc,Ng)〉H−1
# ,H1

#
. (3.44)

As uNc,Ng converges to u in H2
#(Γ), the operator H̃TFW,Ng

|uNc,Ng |2 − HTFW
ρ0 converges to zero in operator norm.

Reasoning as in the proof of the uniqueness of uNc , we obtain that for Nc large enough and Ng ≥ 4Nc + 1, we
have for all vNc ∈ VNc such that ‖vNc‖L2

#
= N 1/2 and (vNc , uNc)L2

#
≥ 0,

〈(H̃TFW
uNc,Ng

− λNc,Ng)(vNc − uNc,Ng), (vNc − uNc,Ng)〉H−1
# ,H1

#
≥ γ

2
‖vNc − uNc,Ng‖2

H1
#
.

Thus the uniqueness of uNc,Ng for Nc large enough is proven.

4. Planewave approximation of the periodic Kohn-Sham LDA model

The periodic Kohn-Sham LDA model with norm-conserving pseudopotentials [32] leads to the constrained
optimization problem

IKS = inf
{
EKS(Φ), Φ ∈ M}

, (4.1)
where

M =
{

Φ = (φ1, . . . , φN )T ∈ (H1
#(Γ))N |

∫
Γ

φiφj = δij

}
,

N being the number of valence electron pairs in the simulation cell, and where

EKS(Φ) =
N∑
i=1

∫
Γ

|∇φi|2 +
∫

Γ

ρΦVlocal + 2
N∑
i=1

〈φi|Vnl|φi〉 + J(ρΦ) + ELDA
xc (ρΦ). (4.2)

The density ρΦ associated with Φ, the Coulomb energy J(ρΦ) and the LDA exchange-correlation energy
ELDA

xc (ρΦ) are respectively defined as

ρΦ(x) = 2
N∑
i=1

|φi(x)|2,

J(ρΦ) =
1
2
DΓ(ρΦ, ρΦ) = 2π

∑
k∈R∗\{0}

|k|−2|(̂ρΦ)k|2,

ELDA
xc (ρΦ) =

∫
Γ

eLDA
xc (ρc(x) + ρΦ(x)) dx,

where ρc ≥ 0 is the nonlinear core correction and where eLDA
xc (ρ) is an approximation of the exchange-correlation

energy per unit volume in a uniform electron gas with charge density ρ [15].
The local and nonlocal contributions to the pseudopotential model the interactions between valence electrons

on the one hand, and nuclei and core electrons on the other hand. The local contribution is represented
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by a function Vlocal ∈ C0
#(Γ) (and therefore defines a bounded self-adjoint operator on L2

#(Γ)); the nonlocal
contribution is represented by the bounded self-adjoint operator Vnl defined on L2

#(Γ) by

Vnlφ =
M∑
j=1

(ξj , φ)L2
#
ξj ,

where the functions ξj are regular enough functions of L2
#(Γ). In all that follows, we will assume that

∃m > 3, C ≥ 0 s.t. ∀k ∈ R∗, | ̂(Vlocal)k| ≤ C|k|−m (4.3)

and that

∀1 ≤ j ≤M, ∀ε > 0, ξj ∈ H
m−3/2−ε
# (Γ). (4.4)

Troullier-Martins pseudopotentials [32] constitute a popular class of pseudopotentials for which the Fourier
coefficients ̂(Vlocal)k decay as |k|−m with m = 5.

The exact LDA exchange-correlation function (defined as the exchange-correlation energy per unit volume in
a uniform electron gas) cannot be made explicit in terms of usual functions. Although this function is smooth
(C∞) on the open set (0,+∞), DFT simulation softwares make use of approximate functions which are C∞

on (0, ρ∗) ∪ (ρ∗,+∞) but only C1,1 in the neighborhood of the density ρ∗ := 3/(4π) (atomic units) [15]. In
order not to deteriorate the convergence rate of the pseudospectral approximation, it is better to resort to more
regular approximations of the exact LDA exchange-correlation function (see [7]). We will assume here that

the function ρ �→ eLDA
xc (ρ) is in C1([0,+∞)) ∩ C3((0,+∞)), (4.5)

eLDA
xc (0) = 0,

deLDA
xc

dρ
(0) = 0, (4.6)

and that there exists 0 < α ≤ 1 and C ∈ R+ such that

∀ρ ∈ R+ \ {0} ,
∣∣∣∣d2eLDA

xc

dρ2
(ρ)

∣∣∣∣+ ∣∣∣∣ρd3eLDA
xc

dρ3
(ρ)

∣∣∣∣ ≤ C(1 + ρα−1). (4.7)

Note that the Xα exchange-correlation functional (eXαxc (ρ) = −CXρ
4/3, where CX > 0 is a given constant)

satisfies the assumptions (4.5)–(4.7) with α = 1/3. These assumptions are also satisfied by the exact exchange-
correlation functional [15]. Lastly, we assume that

ρc ∈ H
m−3/2−ε
# (Γ). (4.8)

It is easy to prove that under assumptions (4.3)–(4.8), (4.1) has a minimizer Φ0 = (φ0
1, . . . , φ

0
N )T with density

ρ0 = ρΦ0 . Indeed, any minimizing sequence of (4.1) then is bounded in H1
#(Γ) and therefore converges (up

to extraction) weakly in H1
#(Γ) and strongly in L1

#(Γ) ∩ L6−ε
# (Γ). This allows one to pass to the limit in the

orthonormality constraints and to the limit inferior in the energy, and conclude to the existence of a minimizer.
We refer the reader to [9], Chapter 2, for a pedagogical introduction to these techniques. The situation is more
difficult when the Kohn-Sham problem is set on the whole space R3. In this case, the Kohn-Sham problem
does not always have a minimizer, for some charge can escape to infinity. Such a loss of compactness of the
minimizing sequences is observed for very negative ions. On the other hand, it is known that for neutral or
positively charged molecular systems, the Kohn-Sham LDA problem set on the whole space R3 does have a
minimizer [1,23].
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Let us introduce the Kohn-Sham Hamiltonian

HKS
ρ0 = −1

2
Δ +

(
Vlocal + V Coulomb

ρ0 +
deLDA

xc

dρ
(ρc + ρ0)

)
+ Vnl = h+ Vρ0 ,

where

h = −1
2
Δ + Vlocal + Vnl, (4.9)

and

Vρ0 = V Coulomb
ρ0 +

deLDA
xc

dρ
(ρc + ρ0), (4.10)

where V Coulomb· is defined by (3.5).
We notice that EKS′(Φ0) = 4HKS

ρ0 Φ0 in (H−1
# (Γ))N and thus the Euler equations associated with the mini-

mization problem (4.1) read

∀1 ≤ i ≤ N, HKS
ρ0 φ

0
i =

N∑
j=1

λ0
ijφ

0
j , (4.11)

where the N × N matrix Λ0
N = (λ0

ij), which is the Lagrange multiplier of the matrix constraint
∫
Γ φiφj = δij ,

is symmetric. Equations (4.11) also read
− Δφ0

i = fi, (4.12)

where

fi = 2

⎛⎝ N∑
j=1

λ0
ijφ

0
j −

(
Vlocal + V Coulomb

ρ0 +
deLDA

xc

dρ
(ρc + ρ0)

)
φ0
i − Vnlφ

0
i

⎞⎠ . (4.13)

The regularity assumptions on Vlocal, eLDA
xc , ρc and on the functions ξj imply that each fi is in L2

#(Γ), which
by elliptic regularity implies in turn that the minimizer Φ0 is in (H2

#(Γ))N .
In order to obtain more regularity on Φ0, and thereby convergence estimates of the planewave approximation

in stronger Sobolev norms, we need to make additional assumptions on the function eLDA
xc . Basically, we need

to choose eLDA
xc regular enough for deLDA

xc
dρ (ρc +ρΦ) to be in Hq

#(Γ) if Φ in (Hq
#(Γ))N , for 3/2 < q < m−3/2. We

will also establish estimates in negative Sobolev norms, for the proofs of which we will need d3eLDA
xc
dρ3 (ρc + ρΦ) to

be in Hq
#(Γ). Some of our results will therefore be established under the additional assumptions

eLDA
xc ∈ Cnm,αm((0,+∞)) where

∣∣∣∣ nm = [m] + 1 and αm = m− [m] + 1/2 if 0 ≤ m− [m] ≤ 1/2,
nm = [m] + 2 and αm = m− [m] − 1/2 if 1/2 < m− [m] < 1, (4.14)

(where [m] denotes the integer part of m) and

eLDA
xc ∈ Cnm,αm([0,+∞)) or ρc + ρ0 > 0 in R3. (4.15)

Recall that for all q > 3/2, Hq
#(Γ) is an algebra and that for all q > 3/2, all g ∈ C [q],q−[q]+ε(R) and all

v ∈ Hq
#(Γ), g(v) ∈ Hq

#(Γ) (see [30]). The condition eLDA
xc ∈ Cnm,αm([0,+∞)) is not satisfied for usual LDA

exchange-correlation functionals. On the other hand, it is of course satisfied for the Hartree (also called reduced
Hartree-Fock) model, for which eLDA

xc = 0. The condition ρc + ρ0 > 0 in R3 seems to be satisfied in practice,
but we were not able to establish it rigourously.

By a bootstrap argument on (4.12)–(4.13), we easily infer from (3.19)–(4.14)–(4.15) that Φ0 is actually
in (Hm+1/2−ε

# (Γ))N for any ε > 0.
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In fact, (4.1) has an infinity of minimizers since any unitary transform of the Kohn-Sham orbitals Φ0 is also
a minimizer of the Kohn-Sham energy. This is a consequence of the following invariance property:

∀Φ ∈ M, ∀U ∈ U(N), UΦ ∈ M and EKS(UΦ) = EKS(Φ), (4.16)

where U(N) is the group of the real unitary matrices:

U(N) =
{
U ∈ RN×N | UTU = 1N

}
,

1N denoting the identity matrix of rank N . This invariance can be exploited to diagonalize the matrix of the
Lagrange multipliers of the orthonormality constraints (see e.g. [15]), yielding the existence of a minimizer (still
denoted by Φ0) with same density ρ0, such that

HKS
ρ0 φ

0
i = ε0iφ

0
i , (4.17)

for some ε01 ≤ ε02 ≤ . . . ≤ ε0N .

Remark 4.1. The Kohn-Sham Hamiltonian HKS
ρ0 is an unbounded self-adjoint operator on L2

#(Γ), bounded
below, with compact resolvent. Its spectrum therefore is purely discrete. More precisely, it is composed of an
increasing sequence of eigenvalues going to infinity, each of these eigenvalues being of finite multiplicity. It is
not known whether ε01, . . . , ε0N are the lowest eigenvalues (counted with their multiplicities) of HKS

ρ0 (Aufbau
principle). However, it seems to be most often (though not always) the case in practice. On the other hand,
the Aufbau principle is always satisfied for the extended Kohn-Sham model, for which the first order optimality
conditions read⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HKS
ρ0 φ

0
i = ε0iφ

0
i ,

ρ0(x) = 2
+∞∑
i=1

ni|φ0
i (x)|2,∫

Γ

φ0
iφ

0
j = δij , 1 ≤ i, j < +∞,

ni = 1 if ε0i < εF, ni = 0 if ε0i > εF, 0 ≤ ni ≤ 1 if ε0i = εF,

+∞∑
i=1

ni = N,

where εF is the Fermi level (see [8], Sect. 15 for details). In this article, we focus on the standard Kohn-Sham
model with integer occupation numbers. We do not need to assume that the Aufbau principle is satisfied, but
our analysis requires some coercivity assumption on the second order condition at Φ0 (see (4.20)).

For each Φ = (φ1, . . . , φN )T ∈ M, we denote by

TΦM =
{

(ψ1, . . . , ψN )T ∈ (H1
#(Γ))N | ∀1 ≤ i, j ≤ N,

∫
Γ

φiψj + ψiφj = 0
}

the tangent space to M at Φ, and we also define

Φ⊥⊥ =
{

Ψ = (ψ1, . . . , ψN )T ∈ (H1
#(Γ))N | ∀1 ≤ i, j ≤ N,

∫
Γ

φiψj = 0
}
.

Let us recall (see e.g. Lem. 4 in [16,29]) that

TΦM = AΦ ⊕ Φ⊥⊥,

where A =
{
A ∈ RN×N | AT = −A} is the space of the N ×N antisymmetric real matrices.
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Since the problem we are considering is a minimization problem, the second order condition further states

∀W ∈ TΦ0M, aΦ0(W,W ) ≥ 0,

where for all Ψ = (ψ1, . . . , ψN )T and Υ = (υ1, . . . , υN)T in (H1
#(Γ))N ,

aΦ0(Ψ,Υ) =
1
4
EKS′′(Φ0)(Ψ,Υ) −

N∑
i=1

ε0i

∫
Γ

ψiυi (4.18)

=
N∑
i=1

〈(HKS
ρ0 − ε0i )ψi, υi〉H−1

# ,H1
#

+ 4
N∑

i,j=1

DΓ(φ0
iψi, φ

0
jυj)

+ 4
N∑

i,j=1

∫
Γ

d2eLDA
xc

dρ2
(ρc + ρ0)φ0

iψiφ
0
jυj . (4.19)

It follows from the invariance property (4.16) that

aΦ0(Ψ,Ψ) = 0 for all Ψ ∈ AΦ0.

This leads us, as in [29], to make the assumption that aΦ0 is positive definite on Φ0,⊥⊥ , so that, as in Proposition 1
in [29], aΦ0 is coercive on Φ0,⊥⊥ (for the H1

# norm). Thus, in all what follows, we assume that there exists a
positive constant cΦ0 such that

∀Ψ ∈ Φ0,⊥⊥, aΦ0(Ψ,Ψ) ≥ cΦ0‖Ψ‖2
H1

#
. (4.20)

In the linear framework (J = 0 and ELDA
xc = 0 in (4.2)), (4.17) and (4.18) respectively read

hφ0
i = ε0iφ

0
i

and

aΦ0(Ψ,Ψ) =
N∑
i=1

〈(h− ε0i )ψi, υi〉H−1
# ,H1

#
.

It follows that in the linear framework, the coercivity condition (4.20) is satisfied if and only if (i) (ε01, . . . , ε
0
N)

are the lowest N eigenvalues (including multiplicities) of the linear self-adjoint operator h = − 1
2Δ +Vlocal +Vnl

and (ii) there is a gap cΦ0 > 0 between the lowest N th and (N + 1)st eigenvalues of h.
Let us now turn to discretization issues. The planewave approximation of (4.1) reads

IKS
Nc,Ng

= inf
{
EKS
Ng

(ΦNc), ΦNc ∈ V NNc
∩M

}
, (4.21)

where

EKS
Ng

(Φ) =
N∑
i=1

∫
Γ

|∇φi|2 +
∫

Γ

ρΦVlocal + 2
N∑
i=1

〈φi|Vnl|φi〉 + J(ρΦ) +
∫

Γ

INg(eLDA
xc (ρc + Π2NcρΦ)). (4.22)

Here Nc is a given positive integer, equal to [
√

2Ec L/2π], Ec denoting the so-called cut-off energy, and Ng ≥
4Nc+1 is the number of integration points per direction used to evaluate the exchange-correlation contribution.
The energy EKS

Ng
(Φ) is defined for each Φ ∈ M. For Φ ∈ V NNc

∩M, Π2NcρΦ = ρΦ, so that on this set, EKS
Ng

differs
from EKS only by the presence of the Fourier interpolation operator INg in the exchange-correlation functional.
Let us mention that in practice, the terms involving the local and nonlocal components of the pseudopotential are
also computed by some interpolation procedure. However, these terms are calculated using spherical harmonics
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and a very fine one dimensional radial grid, so that the resulting integration error is usually much smaller than
the interpolation error on the exchange-correlation term. Note that, in addition, the pseudopotential gives rise
to linear contributions that can be computed very accurately once and for all (and not at each iteration of the
self-consistent field (SCF) algorithm – see [8], Sects. 28–30 for a mathematical introduction to SCF algorithms).
We postpone the analysis of (4.21) to a forthcoming article [7], and focus here on the variational approximation

IKS
Nc

= inf
{
EKS(ΦNc), ΦNc ∈ V NNc

∩M}
(4.23)

of (4.1). The unitary invariance of the Kohn-Sham model must be taken into account in the derivation of
optimal a priori error estimates. One way to take this invariance into account is to work with one-particle
density matrices (see e.g. [8], Sect. 15). The discretized problem is then set on a Grassmann manifold [16]. An
alternative is to define for each Φ ∈ M the set

MΦ :=
{

Ψ ∈ M | ‖Ψ − Φ‖L2
#

= min
U∈U(N)

‖UΨ − Φ‖L2
#

}
,

and to use the fact that all the local minimizers of (4.23) are obtained by unitary transforms from the local
minimizers of

IKS
Nc

= inf
{
EKS(ΦNc), ΦNc ∈ V NNc

∩MΦ0
}
. (4.24)

The main result of this section is the following.

Theorem 4.2. Assume that (4.3)–(4.8) hold. Let Φ0 be a local minimizer of (4.1) satisfying (4.20). Then there
exist r0 > 0 and N0

c such that for Nc ≥ N0
c , (4.24) has a unique local minimizer Φ0

Nc
in the set{

ΦNc ∈ V NNc
∩MΦ0 | ‖ΦNc − Φ0‖H1

#
≤ r0

}
.

Besides,

‖Φ0
Nc

− Φ0‖Hs
#
≤ CsN

−(2−s)
c ‖ΠNcΦ

0 − Φ0‖H2
#
, (4.25)

|ε0i,Nc
− ε0i | →

Nc→∞
0, (4.26)

γ‖Φ0
Nc

− Φ0‖2
H1

#
≤ IKS

Nc
− IKS ≤ C‖Φ0

Nc
− Φ0‖2

H1
#
, (4.27)

for all 0 ≤ s ≤ 2, and for some constants γ > 0, Cs ≥ 0, and C ≥ 0 independent of Nc, where the ε0i,Nc
’s are the

eigenvalues of the symmetric matrix Λ0
Nc

, the Lagrange multiplier of the matrix constraint
∫
Γ
φi,Ncφj,Nc = δij.

In addition, if we assume that (4.14) and (4.15) are satisfied, then the following estimates hold:

‖Φ0
Nc

− Φ0‖Hs
#

≤ Cs,εN
−(m−s+1/2−ε)
c , (4.28)

|ε0i,Nc
− ε0i | ≤ CεN

−(2m−1−ε)
c , (4.29)

for all −m+ 3/2 < s < m+ 1/2 and ε > 0, and for some constants Cs,ε ≥ 0 and Cε ≥ 0 independent of Nc.

4.1. Some technical lemmas

For Φ = (φ1, . . . , φN )T ∈ (H1
#(Γ))N and Ψ = (ψ1, . . . , ψN )T ∈ (H1

#(Γ))N , we denote by MΦ,Ψ the N × N
matrix with entries

[MΨ,Φ]ij =
∫

Γ

ψiφj .

The following lemma is useful for the analysis of (4.24). We recall that if A and B are symmetric N ×N real
matrices, the notation A ≤ B means that xTAx ≤ xTBx for all x ∈ RN .
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Lemma 4.3.

(1) Let Φ ∈ M and Ψ ∈ M. If MΨ,Φ is invertible, then UΨ,Φ = MT
Ψ,Φ(MΨ,ΦM

T
Ψ,Φ)−1/2 is the unique

minimizer to the problem minU∈U(N) ‖UΨ − Φ‖L2
#
.

(2) Let Φ ∈ M. Then

MΦ =
{
(1N −MW,W )1/2Φ +W |W ∈ Φ⊥⊥, 0 ≤MW,W ≤ 1N

}
where 1N denotes the identity matrix of rank N .

(3) Let Φ = (φ1, . . . , φN )T ∈ M. If Nc ∈ N is such that

dim(span(ΠNcφ1, . . . ,ΠNcφN )) = N,

then the unique minimizer of the problem minΦNc∈V N
Nc

∩M ‖ΦNc − Φ‖L2
#

is

πM
Nc

Φ =
(
MΠNcΦ,ΠNcΦ

)−1/2 ΠNcΦ. (4.30)

In addition, πM
Nc

Φ ∈ V NNc
∩MΦ,

‖πM
Nc

Φ − Φ‖L2
#
≤

√
2‖ΠNcΦ − Φ‖L2

#
, (4.31)

and for all Nc large enough,

‖πM
Nc

Φ − Φ‖H1
#
≤ ‖Φ‖H1

#
‖ΠNcΦ − Φ‖2

L2
#

+ ‖ΠNcΦ − Φ‖H1
#
. (4.32)

(4) Let Nc such that dim(VNc) ≥ N and ΦNc ∈ V NNc
∩M. Then

V NNc
∩MΦNc =

{
(1N −MWNc ,WNc

)1/2ΦNc +WNc |WNc ∈ V NNc
∩ Φ⊥⊥

Nc
, 0 ≤MWNc ,WNc

≤ 1N
}
.

Proof.

Step 1: proof of the first statement. In order to simplify the notation, we set M = MΨ,Φ. For each U ∈ U(N),

‖UΨ − Φ‖2
L2

#
= 2N − 2Tr (MU).

Any critical point U of the problem
max

U∈RN×N |UTU=1N

Tr (MU) (4.33)

satisfies an Euler equation of the form ΛUT = M for some symmetric matrix Λ. Besides, Tr (MU) = Tr (Λ)
and Λ2 = MMT . Any maximizer U of (4.33) therefore satisfies M = (MMT )1/2UT . Consequently, if M
is invertible, the maximizer of (4.33) is unique and reads UΨ,Φ = MT (MMT )−1/2. It also follows from the
definition of the matrix M (recall that M = MΨ,Φ) that Ψ = MΦ +W with W ∈ Φ⊥⊥. Thus,

UΨ,ΦΨ = MT (MMT )−1/2MΦ + W̃

with W̃ = UΨ,ΦW ∈ Φ⊥⊥.
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Step 2: proof of the second statement. Each Ψ ∈ (H1
#(Γ))N can be written as Ψ = MΦ+W with M = MΨ,Φ ∈

RN×N and W ∈ Φ⊥⊥. A simple calculation leads to∫
Γ

ψiψj = [MMT ]ij + [MW,W ]ij .

Hence Ψ = MΦ + W ∈ M if and only if MMT + MW,W = 1N . In addition, Ψ ∈ MΦ if and only if Ψ ∈ M
and UΨ,Φ = MT (MMT )−1/2 = 1N , that is to say if and only if M is symmetric, 0 ≤ MW,W ≤ 1N and
M = (1N −MW,W )1/2.

Step 3: proof of (4.30) . Let (χμ)1≤μ≤dim(VNc ) be an orthonormal basis of VNc (for the L2
# inner product) and

let C̃ ∈ Rdim(VNc )×N be the matrix with entries

C̃μ,i =
∫

Γ

φiχμ.

Note that
ΠNcφi =

dim(VNc )∑
μ=1

C̃μ,iχμ. (4.34)

For all ΦNc = (φNc,1, . . . , φNc,N)T ∈ V NNc
∩M, each φNc,i can be expanded as

φNc,i =
dim(VNc )∑
μ=1

Cμiχμ, (4.35)

where the matrix C = [Cμi] ∈ Rdim(VNc )×N satisfies the constraint CTC = 1N . The expansions (4.34) and (4.35)
can be recast into the more compact forms

ΠNcΦ = C̃TX and ΦNc = CTX ,

where we have denoted by X = (χ1, . . . , χdim(VNc ))
T . A simple calculation then leads to

‖ΦNc − Φ‖2
L2

#
= 2N − 2Tr (C̃TC). (4.36)

Reasoning as in Step 1, we obtain that the unique solution to the problem

max
C∈R

dim(VNc
)×N |CTC=1N

Tr (C̃TC)

is C = C̃(C̃T C̃)−1/2. Note that the rank of the matrix C̃ is N provided that dim(VNc) is large enough so that
the matrix C̃T C̃ is invertible provided that dim(VNc) is large enough. As a consequence, the unique solution to
the problem minΦNc∈V N

Nc
∩M ‖ΦNc − Φ‖L2

#
is πM

Nc
Φ = (C̃T C̃)−1/2C̃TX = (C̃T C̃)−1/2ΠNcΦ. It is then easy to

check that C̃T C̃ = MΠNcΦ,ΠNcΦ. Hence (4.30) holds.

Step 4: proof of the fact that πM
Nc

Φ ∈ MΦ. For all U ∈ RN×N such that UTU = 1N ,

‖UπM
Nc

Φ − Φ‖2
L2

#
= 2(N − Tr (UM1/2

ΠNcΦ,ΠNcΦ)),

and the same argument as above leads to the result that this quantity is minimized for

U = M
1/2
ΠNcΦ,ΠNcΦ(M1/2

ΠNcΦ,ΠNcΦM
1/2
ΠNcΦ,ΠNcΦ)−1/2 = 1N .

Therefore, πM
Nc

Φ ∈ MΦ.
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Step 5: proof of (4.31). We infer from (4.36) that

‖πM
Nc

Φ − Φ‖2
L2

#
= 2N − 2Tr

(
(C̃T C̃)1/2

)
= 2Tr

(
1N − (C̃T C̃)1/2

)
.

Besides, an easy calculation leads to

‖ΠNcΦ − Φ‖2
L2

#
= Tr

(
1N − C̃T C̃

)
.

Using the fact that

0 ≤
(
1N − (C̃T C̃)1/2

)
≤
(
1N − (C̃T C̃)1/2

)(
1N + (C̃T C̃)1/2

)
= 1N − C̃T C̃,

we obtain
‖πM

Nc
Φ − Φ‖2

L2
#

= 2Tr
(
1N − (C̃T C̃)1/2

)
≤ 2Tr

(
1N − C̃T C̃

)
= 2‖ΠNcΦ − Φ‖2

L2
#
.

Hence (4.31) holds.

Step 6: proof of (4.32). We have

‖πM
Nc

Φ − Φ‖H1
#

≤ ‖πM
Nc

Φ − ΠNcΦ‖H1
#

+ ‖ΠNcΦ − Φ‖H1
#

= ‖((MΠNcΦ,ΠNcΦ)−1/2 − 1N )ΠNcΦ‖H1
#

+ ‖ΠNcΦ − Φ‖H1
#

≤ ‖(MΠNcΦ,ΠNcΦ)−1/2 − 1N‖F‖ΠNcΦ‖H1
#

+ ‖ΠNcΦ − Φ‖H1
#

≤ ‖(MΠNcΦ,ΠNcΦ)−1/2 − 1N‖F‖Φ‖H1
#

+ ‖ΠNcΦ − Φ‖H1
#
,

where ‖ · ‖F denotes the Frobenius norm. We then notice that

MΠNcΦ,ΠNcΦ = 1N −MΠNcΦ−Φ,ΠNcΦ−Φ.

Consequently, for Nc large enough,

‖(MΠNcΦ,ΠNcΦ)−1/2 − 1N‖F ≤ ‖MΠNcΦ−Φ,ΠNc Φ−Φ‖F ≤ ‖ΠNcΦ − Φ‖2
L2

#
.

Therefore (4.32) is proved.
Lastly, the fourth assertion easily follows from the second one. �

It follows from Lemma 4.3 that for all Φ ∈ M, any Ψ ∈ MΦ reads as

Ψ = Φ + S(W )Φ +W, (4.37)

where W ∈ Φ⊥⊥ with 0 ≤MW,W ≤ 1N , where and S(W ) = (1N −MW,W )1/2−1N is a N×N symmetric matrix.
Likewise, at the discrete level, for all ΦNc ∈ V NNc

∩M, any ΨNc ∈ V NNc
∩MΦNc reads as

ΨNc = ΦNc + S(WNc)ΦNc +WNc , (4.38)

where WNc ∈ V NNc
∩ Φ⊥⊥

Nc
satisfies 0 ≤ MWNc ,WNc

≤ 1N . The parametrizations (4.37) and (4.38) of MΦ and
V NNc

∩MΦNc are going to play essential roles in our analysis. The following lemma collects a few useful properties
of the function W �→ S(W ).
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Lemma 4.4. Let
K =

{
W ∈ (L2

#(Γ))N | 0 ≤MW,W ≤ 1N
}
,

and S : K → RN×N
S (the space of the symmetric N ×N real matrices) defined by

S(W ) = (1N −MW,W )1/2 − 1N .

The function S is continuous on K and differentiable on the interior
◦
K of K. In addition,

∀W ∈ K, ‖S(W )‖F ≤ ‖W‖2
L2

#
, (4.39)

and for all (W1,W2, Z) ∈ K ×K × (L2
#(Γ))N such that ‖W1‖L2

#
≤ 1

2 and ‖W2‖L2
#
≤ 1

2 ,

‖S(W1) − S(W2)‖F ≤ 2(‖W1‖L2
#

+ ‖W2‖L2
#
)‖W1 −W2‖L2

#
, (4.40)

‖(S′(W1) − S′(W2)) · Z‖F ≤ 4‖W1 −W2‖L2
#
‖Z‖L2

#
, (4.41)

‖(S′′(W1)(Z,Z)‖F ≤ 4‖Z‖2
L2

#
. (4.42)

Proof. Diagonalizing MW,W and using the properties of the function t �→ (1 − t)1/2 − 1, we see that S is

continuous on K and differentiable on
◦
K, and that

‖S(W )‖F ≤ ‖MW,W ‖F ≤ ‖W‖2
L2

#
.

Hence (4.39). As

S(W ) +
1
2
S(W )2 = −1

2
MW,W ,

we have for all W ∈ ◦
K,

S′(W ) · Z +
1
2

[S(W )(S′(W ) · Z) + (S′(W ) · Z)S(W )] = −1
2

[MW,Z +MZ,W ] .

Denoting by A = S′(W ) · Z, we deduce from the above equality that

‖A‖2
F + Tr (A2S(W )) ≤ ‖A‖F‖MW,Z‖F ≤ ‖A‖F‖W‖L2

#
‖Z‖L2

#
.

As |Tr (A2S(W ))| ≤ ‖A‖2
F‖S(W )‖2 ≤ ‖A‖2

F‖S(W )‖F ≤ ‖A‖2
F‖W‖2

L2
#
, where ‖S(W )‖2 = supx∈RN\{0}

|S(W )x|
|x|

is the matrix norm of S(W ) associated with the Euclidian norm | · | of RN , we finally obtain the inequality

‖A‖F(1 − ‖W‖2
L2

#
) ≤ ‖W‖L2

#
‖Z‖L2

#
, (4.43)

which straightforwardly leads to (4.40) under the conditions ‖W1‖L2
#
≤ 1

2 and ‖W2‖L2
#
≤ 1

2 . Lastly,

(S′(W2) − S′(W1)) · Z +
1
2

[S(W2)((S′(W2) − S′(W1)) · Z) + ((S′(W2) − S′(W1)) · Z)S(W2)]

+
1
2

[(S′(W1) · Z)(S(W2) − S(W1)) + (S(W2) − S(W1))(S′(W1) · Z)] = −1
2

[MW2−W1,Z +MZ,W2−W1 ] ,

https://doi.org/10.1051/m2an/2011038 Published online by Cambridge University Press

https://doi.org/10.1051/m2an/2011038


NUMERICAL ANALYSIS OF DFT MODELS 371

R
ap

id
e 

N
ot

eH
ighlight

so that still under the conditions ‖W1‖L2
#
≤ 1

2 and ‖W2‖L2
#
≤ 1

2 ,

‖(S′(W2) − S′(W1)) · Z‖F ≤ 28
9
‖W2 −W1‖L2

#
‖Z‖L2

#
.

Hence (4.41). Lastly, taking W2 = W1 + tZ in (4.41) and letting t go to zero, we obtain (4.42). �

Lemma 4.5. Let Φ0 be a local minimizer of (4.1) satisfying (4.20). Then aΦ0 defines a continuous bilinear
form on (H1

#(Γ))N × (H1
#(Γ))N , and there exists N∗

c such that for all Nc ≥ N∗
c ,

‖πM
Nc

Φ0 − Φ0‖H1
#
≤ 1, (4.44)

aΦ0(πM
Nc

Φ0 − Φ0, πM
Nc

Φ0 − Φ0) ≥ cΦ0

2
‖πM

Nc
Φ0 − Φ0‖2

H1
#
, (4.45)

∀W ∈ [πM
Nc

Φ0]⊥⊥, aΦ0(W,W ) ≥ cΦ0

2
‖W‖2

H1
#
. (4.46)

In the sequel, we denote by CΦ0 the continuity constant of aΦ0 , i.e.

∀(Ψ,Ψ′) ∈ ((H1
#(Γ))N )2, |aΦ0(Ψ,Ψ′)| ≤ CΦ0‖Ψ‖H1

#
‖Ψ′‖H1

#
. (4.47)

Proof. Estimate (4.44) immediately results from the closeness of πM
Nc

Φ0 to Φ0. Using the fact that πM
Nc

Φ0 ∈ MΦ0

(see Lem. 4.3, point 3), we get
πM
Nc

Φ0 − Φ0 = S(W )Φ0 +W (4.48)

with W ∈ [Φ0]⊥⊥, from which we derive, using (4.39), that

aΦ0(πM
Nc

Φ0 − Φ0, πM
Nc

Φ0 − Φ0) = aΦ0(W,W ) + 2aΦ0(W,S(W )Φ0) + aΦ0(S(W )Φ0,S(W )Φ0)

≥ cΦ0‖W‖2
H1

#
− 2CΦ0‖W‖H1

#
‖Φ0‖H1

#
‖W‖2

L2
#
− CΦ0‖W‖4

L2
#
‖Φ0‖2

H1
#

≥
(
cΦ0 − 2CΦ0‖W‖L2

#
‖Φ0‖H1

#
− CΦ0‖W‖2

L2
#
‖Φ0‖2

H1
#

)
‖W‖2

H1
#
.

As by (4.31), ‖πM
Nc

Φ0 − Φ0‖L2
#

goes to zero when Nc goes to infinity, so does ‖W‖L2
#
. Using again (4.39), we

deduce from (4.48) that ‖W‖H1
#

∼
Nc→∞

‖πM
Nc

Φ0 − Φ0‖H1
#
. Hence (4.45).

Finally, for each W ∈ [πM
Nc

Φ0]⊥⊥, W ′ = W − MW,Φ0Φ0 belongs to [Φ0]⊥⊥. Remarking that MW,Φ0 =
MW,Φ0−πM

Nc
Φ0 , we derive

‖MW,Φ0‖F = ‖MW,Φ0−πM
Nc

Φ0‖F ≤ ε(Nc)‖W‖L2
#
,

where ε(Nc) = ‖Φ0 − πM
Nc

Φ0‖L2
#
→ 0 when Nc goes to infinity. Therefore,

‖W −W ′‖H1
#
≤ ε(Nc)‖Φ0‖H1

#
‖W‖H1

#
.

As
aΦ0(W,W ) = aΦ0(W ′,W ′) + 2aΦ0(W ′,W −W ′) + aΦ0(W −W ′,W −W ′),

we obtain

aΦ0(W,W ) ≥ cΦ0‖W ′‖2
H1

#
− 2CΦ0‖W ′‖H1

#
‖W −W ′‖H1

#
− CΦ0‖W −W ′‖2

H1
#
≥ cΦ0

2
‖W‖2

H1
#

for Nc large enough. �
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Lemma 4.6. There exists C ≥ 0 such that

• for all (Υ1,Υ2,Υ3) ∈
(
(H1

#(Γ))N
)3

,

∣∣∣(EKS′′(Φ0 + Υ1) − EKS′′(Φ0)
)

(Υ2,Υ3)
∣∣∣ ≤ C

(
‖Υ1‖αH1

#
+ ‖Υ1‖2

H1
#

)
‖Υ2‖H1

#
‖Υ3‖H1

#
,

• for all (Υ1,Υ2,Υ3) ∈
(
(H2

#(Γ))N
)3

,

∣∣∣(EKS′′(Φ0 + Υ1) − EKS′′(Φ0)
)

(Υ2,Υ3)
∣∣∣ ≤ C

(
‖Υ1‖αL2

#
+ ‖Υ1‖1/2

L2
#
‖Υ1‖3/2

H1
#

)
‖Υ2‖L2

#
‖Υ3‖H2

#
.

Assume in addition that (4.14) and (4.15) hold. Then, for all (q, r, s) ∈ R3
+ such that 3/2 < q < m − 3/2,

s > 3/2 and r ≤ min(q, s), there exist η > 0 and C ≥ 0 such that
• for all (Υ1,Υ2,Υ3) ∈ (Hq

#(Γ))N × (H−r
# (Γ))N × (Hs

#(Γ))N such that ‖Υ1‖Hq
#
≤ η,∣∣∣(EKS′′(Φ0 + Υ1) − EKS′′(Φ0)

)
(Υ2,Υ3)

∣∣∣ ≤ C ‖Υ1‖Hq
#
‖Υ2‖H−r

#
‖Υ3‖Hs

#
. (4.49)

Proof. Let us define by

rΦ0(Υ1,Υ2,Υ3) =
(
EKS′′(Φ0 + Υ1) − EKS′′(Φ0)

)
(Υ2,Υ3).

Splitting rΦ0 (Υ1,Υ2,Υ3) in its Coulomb and exchange-correlation contributions, we obtain

rΦ0 (Υ1,Υ2,Υ3) = rCoulomb
Φ0 (Υ1,Υ2,Υ3) + rxc

Φ0(Υ1,Υ2,Υ3)

with

rCoulomb
Φ0 (Υ1,Υ2,Υ3) = 16

N∑
i,j=1

(
DΓ(φ0

i υ1,i, υ2,jυ3,j) +DΓ(φ0
i υ2,i, υ1,jυ3,j) +DΓ(φ0

i υ3,i, υ1,jυ2,j)
)

+ 16
N∑

i,j=1

DΓ(υ1,iυ2,i, υ1,jυ3,j) + 8
N∑

i,j=1

DΓ(υ2
1,i, υ2,jυ3,j) (4.50)

and

rxc
Φ0(Υ1,Υ2,Υ3) = rxc,1

Φ0 (Υ1,Υ2,Υ3) + rxc,2
Φ0 (Υ1,Υ2,Υ3),

where

rxc,1
Φ0 (Υ1,Υ2,Υ3) = 4

∫
Γ

(
deLDA

xc

dρ
(ρc + ρΦ0+Υ1) −

deLDA
xc

dρ
(ρc + ρΦ0)

)( N∑
i=1

υ2,iυ3,i

)
, (4.51)

rxc,2
Φ0 (Υ1,Υ2,Υ3) = 16

∫
Γ

[
d2eLDA

xc

dρ2
(ρc + ρΦ0+Υ1)

(
N∑
i=1

(φ0
i + υ1,i)υ2,i

)(
N∑
i=1

(φ0
i + υ1,i)υ3,i

)

−d
2eLDA

xc

dρ2
(ρc + ρΦ0)

(
N∑
i=1

φ0
i υ2,i

)(
N∑
i=1

φ0
i υ3,i

)]
. (4.52)
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Using (3.17), we obtain that there exists a constant C ≥ 0, such that for all (Υ1,Υ2,Υ3) ∈
(
(H1

#(Γ))N
)3

,

|rCoulomb
Φ0 (Υ1,Υ2,Υ3)| ≤ C

(
‖Υ1‖L2

#
+ ‖Υ1‖2

H1
#

)
‖Υ2‖H1

#
‖Υ3‖H1

#
. (4.53)

Let s1 ∈ R+ and s3 ≥ s2 ≥ 0. Using (4.7), we get∣∣∣∣deLDA
xc

dρ
(s1 + s3) − deLDA

xc

dρ
(s1 + s2)

∣∣∣∣ =
∣∣∣∣∫ 1

0

d2eLDA
xc

dρ2
(s1 + s2 + t(s3 − s2))(s3 − s2) dt

∣∣∣∣
≤ C

∫ 1

0

(1 + (s1 + s2 + t(s3 − s2))α−1)(s3 − s2) dt

= C

[
(s3 − s2) +

∫ s1+s3

s1+s2

sα−1 ds
]

= C
[
(s3 − s2) + α−1 ((s1 + s3)α − (s1 + s2)α)

]
≤ C

[
(s3 − s2) + α−1(s3 − s2)α

]
,

by concavity of the function t �→ tα. Besides,

|ρΦ0+Υ1 − ρΦ0 | = 2

∣∣∣∣∣
N∑
i=1

(2φ0
i υ1,i + υ2

1,i)

∣∣∣∣∣ ≤ C
(
ρ
1/2
Υ1

+ ρΥ1

)
.

We thus obtain∣∣∣∣deLDA
xc

dρ
(ρc + ρΦ0+Υ1) −

deLDA
xc

dρ
(ρc + ρΦ0)

∣∣∣∣ ≤ C
(|ρΦ0+Υ1 − ρΦ0 | + α−1|ρΦ0+Υ1 − ρΦ0 |α) ≤ C

[
ρ
α/2
Υ1

+ ρΥ1

]
,

from which we infer

|rxc,1
Φ0 (Υ1,Υ2,Υ3)| ≤ C

∫
Γ

(
ρ
α/2
Υ1

+ ρΥ1

)
ρ
1/2
Υ2

ρ
1/2
Υ3
. (4.54)

Introducing the function
Φ(t) = Φ0 + tΥ1,

we can rewrite rxc,2
Φ0 (Υ1,Υ2,Υ3) as

rxc,2
Φ0 (Υ1,Υ2,Υ3) = 16

∫
Γ

[
d2eLDA

xc

dρ2
(ρc + ρΦ(1))

(
N∑
i=1

φi(1)υ2,i

)(
N∑
i=1

φi(1)υ3,i

)

−d
2eLDA

xc

dρ2
(ρc + ρΦ(0))

(
N∑
i=1

φi(0)υ2,i

)(
N∑
i=1

φi(0)υ3,i

)]

= 16
∫

Γ

∫ 1

0

[
d2eLDA

xc

dρ2
(ρc + ρΦ(t))

(
N∑
i=1

φi(t)υ2,i

)(
N∑
i=1

υ1,iυ3,i

)

+
d2eLDA

xc

dρ2
(ρc + ρΦ(t))

(
N∑
i=1

υ1,iυ2,i

)(
N∑
i=1

φi(t)υ3,i

)

+ 2
d3eLDA

xc

dρ3
(ρc + ρΦ(t))

(
N∑
i=1

φi(t)υ1,i

)(
N∑
i=1

φi(t)υ2,i

)(
N∑
i=1

φi(t)υ3,i

)]
dt.
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Thus, using again (4.7), we obtain

|rxc,2
Φ0 (Υ1,Υ2,Υ3)| ≤ C

∫
Γ

∫ 1

0

(1 + (ρc + ρΦ(t))α−1)ρ1/2
Φ(t)ρ

1/2
Υ1
ρ
1/2
Υ2
ρ
1/2
Υ3

dt

≤ C

∫
Γ

∫ 1

0

(1 + ρα−1
Φ(t))ρ

1/2
Φ(t)ρ

1/2
Υ1
ρ
1/2
Υ2
ρ
1/2
Υ3

dt.

Now, for all 0 < α ≤ 1/2,

∫ 1

0

ρ
α−1/2
Φ(t) dt = 2α−1/2

∫ 1

0

(
N∑
i=1

φ0
i
2

+ 2t
N∑
i=1

φ0
i υ1,i + t2

N∑
i=1

υ2
1,i

)α−1/2

dt

= 2α−1/2

∫ 1

0

⎛⎜⎝ N∑
i=1

φ0
i
2 −

(∑N
i=1 φ

0
i υ1,i

)2

∑N
i=1 υ

2
1,i

+

(
t+

∑N
i=1 φ

0
i υ1,i∑N

i=1 υ
2
1,i

)2( N∑
i=1

υ2
1,i

)⎞⎟⎠
α−1/2

dt

≤ 2α−1/2

∫ 1

0

∣∣∣∣∣t+
∑N

i=1 φ
0
i υ1,i∑N

i=1 υ
2
1,i

∣∣∣∣∣
2α−1( N∑

i=1

υ2
1,i

)α−1/2

dt ≤ 1
α2α+1/2

ρ
α−1/2
Υ1

.

As, in addition, 0 ≤ ρΦ(t) ≤ 2
(
ρΦ0 + t2ρΥ1

)
, we obtain, for all 0 < α ≤ 1,

|rxc,2
Φ0 (Υ1,Υ2,Υ3)| ≤ C

∫
Γ

(
ρ
min(α,1/2)
Υ1

+ ρΥ1

)
ρ
1/2
Υ2

ρ
1/2
Υ3
. (4.55)

Collecting (4.53), (4.54) and (4.55), we obtain the first statement using the Sobolev embedding of H1
#(Γ) in

Lp#(Γ) for all 1 ≤ p ≤ 6 and Hölder inequality.
In order to obtain the second statement, we use (3.17) and the Sobolev embedding of H2

#(Γ) in L∞
# (Γ) to

obtain

|rCoulomb
Φ0 (Υ1,Υ2,Υ3)| ≤ C

(
‖Υ1‖L2

#
+ ‖Υ1‖2

L2
#

)
‖Υ2‖L2

#
‖Υ3‖H2

#
. (4.56)

Likewise,

|rxc
Φ0 (Υ1,Υ2,Υ3)| ≤ C

∫
Γ

(
ρ
α/2
Υ1

+ ρΥ1

)
ρ
1/2
Υ2

ρ
1/2
Υ3

≤ C

((∫
Γ

ραΥ1

)1/2

+
(∫

Γ

ρ2
Υ1

)1/2
)

‖Υ2‖L2
#
‖Υ3‖H2

#

≤ C

((∫
Γ

ρΥ1

)α/2
+
(∫

Γ

ρΥ1

)1/4(∫
Γ

ρ3
Υ1

)1/4
)

‖Υ2‖L2
#
‖Υ3‖H2

#

≤ C
(
‖Υ1‖αL2

#
+ ‖Υ1‖1/2

L2
#
‖Υ1‖3/2

H1
#

)
‖Υ2‖L2

#
‖Υ3‖H2

#
. (4.57)

The second statement immediately follows from (4.56) and the above estimate.
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In order to prove the third statement, we first notice that for all σ > 3/2 and all 0 ≤ r ≤ σ, Hσ
#(Γ) is an

ideal of Hr
#(Γ), which implies, in particular, that for all r ≥ 0 and all σ > 3/2,

∀f ∈ H
max(r,σ)
# (Γ), ∀g ∈ H−r

# (Γ), fg ∈ H−r
# (Γ) and ‖fg‖H−r

#
≤ Cr,σ‖f‖Hmax(r,σ)

#
‖g‖H−r

#
, (4.58)

for some constant Cr,σ ≥ 0 independent of f and g. Using (3.19) and the above property, we obtain that there
exists a constant Cr,σ ≥ 0 such that

|DΓ(uv, wz)| ≤
∣∣∣∣∫

Γ

V Coulomb
uv wz

∣∣∣∣ ≤ ‖V Coulomb
uv ‖Hr

#
‖wz‖H−r

#

≤ Cr‖uv‖Hr−2
#

‖wz‖H−r
#

≤ C‖u‖
H

max(r−2,σ)
#

‖v‖
H

max(r−2,σ)
#

‖w‖
H

max(r,σ)
#

‖z‖H−r
#
,

for all (u, v, w, z) ∈ H
max(r−2,σ)
# (Γ)×H

max(r−2,σ)
# (Γ)×H

max(r,σ)
# (Γ)×H−r

# (Γ). It then follows from (4.53) that

|rCoulomb
Φ0 (Υ1,Υ2,Υ3)| ≤ C

(
‖Υ1‖Hq

#
+ ‖Υ1‖2

Hq
#

)
‖Υ2‖H−r

#
‖Υ3‖Hs

#
.

If (4.14) holds and eLDA
xc ∈ Cnm,αm([0,+∞)), then for any η > 0, all Υ1 ∈ (Hq

#(Γ))N such that ‖Υ1‖Hq
#
≤ η and

all t ∈ [0, 1], the functions d2eLDA
xc
dρ2 (ρc + ρΦ0+tΥ1) and d3eLDA

xc
dρ3 (ρc + ρΦ0+tΥ1) are bounded in Hq

#(Γ), uniformly in
Υ1 and t. The same holds if (4.14) is satisfied, if ρc + ρ0 > 0 in R3 (which implies that there exists β > 0 such
that ρc + ρ0 ≥ β since ρc + ρ0 is continuous and periodic), and if ‖Υ1‖Hq

#
≤ η, with η small enough to ensure

ρc + ρΦ0+tΥ1 ≥ β/2 for all t ∈ [0, 1]. Reasoning as above, we then infer from (4.51), (4.52) and (4.58) that

|rxc
Φ0 (Υ1,Υ2,Υ3)| ≤ C‖Υ1‖Hq

#
‖Υ2‖H−r

#
‖Υ3‖Hs

#
,

which completes the proof of Lemma 4.6. �

Lemma 4.7. Let Φ0 be a local minimizer of (4.1) satisfying (4.20). Then there exists C ≥ 0 such that for all
Ψ ∈ M,

EKS(Ψ) = EKS(Φ0) + 2aΦ0(Ψ − Φ0,Ψ − Φ0) +R(Ψ − Φ0), (4.59)

with
|R(Ψ − Φ0)| ≤ C

(
‖Ψ − Φ0‖2+α

H1
#

+ ‖Ψ − Φ0‖4
H1

#

)
. (4.60)

Proof. As the optimality condition (4.17) also reads [EKS′(Φ0)]i = 4HKS
ρ0 φ

0
i = 4ε0iφ

0
i in H−1

# (Γ), we have for all
Ψ ∈ M,

EKS(Ψ) = EKS(Φ0) + 〈EKS′(Φ0),Ψ − Φ0〉H−1
# ,H1

#
+

1
2
EKS′′(Φ0)(Ψ − Φ0,Ψ − Φ0)

+
∫ 1

0

(EKS′′(Φ0 + s(Ψ − Φ0)) − EKS′′(Φ0))(Ψ − Φ0,Ψ − Φ0) (1 − s) ds

= EKS(Φ0) + 4
N∑
i=1

ε0i

∫
Γ

φ0
i (ψi − φ0

i ) +
1
2
EKS′′(Φ0)(Ψ − Φ0,Ψ − Φ0)

+
∫ 1

0

(EKS′′(Φ0 + s(Ψ − Φ0)) − EKS′′(Φ0))(Ψ − Φ0,Ψ − Φ0) (1 − s) ds.
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Using the equality (φ0
i , ψi − φ0

i )L2
#

= (φ0
i , ψi)L2

#
− 1 = − 1

2‖ψi − φ0
i ‖L2

#
, we obtain

EKS(Ψ) = EKS(Φ0) − 2
N∑
i=1

ε0i

∫
Γ

(ψi − φ0
i )

2 +
1
2
EKS′′(Φ0)(Ψ − Φ0,Ψ − Φ0)

+
∫ 1

0

(EKS′′(Φ0 + s(Ψ − Φ0)) − EKS′′(Φ0))(Ψ − Φ0,Ψ − Φ0) (1 − s) ds

= EKS(Φ0) + 2aΦ0(Ψ − Φ0,Ψ − Φ0) +R(Ψ − Φ0),

where

R(Υ) =
∫ 1

0

(EKS′′(Φ0 + sΥ) − EKS′′(Φ0))(Υ,Υ) (1 − s) ds.

The estimate (4.60) then straightforwardly follows from the first statement of Lemma 4.6. �

4.2. Existence of a discrete solution

In this subsection, we derive, for Nc large enough, the existence of a unique local minimum of the discretized
problem (4.24) in the neighborhood of πM

Nc
Φ0.

For this purpose, we use the parametrization (4.38) of the manifold V NNc
∩MπM

Nc
Φ0

and introduce

BNc :=
{
WNc ∈ V NNc

∩ [πM
Nc

Φ0]⊥⊥ | 0 ≤MWNc ,WNc ≤ 1
}
,

and ENc the energy functional defined on BNc by

ENc(W
Nc) = EKS

(
πM
Nc

Φ0 + S(WNc)πM
Nc

Φ0 +WNc
)
. (4.61)

According to the fourth assertion of Lemma 4.3, the mapping

C : BNc → V NNc
∩MπM

Nc
Φ0

WNc �→ πM
Nc

Φ0 + S(WNc)πM
Nc

Φ0 +WNc

defines a global map of V NNc
∩MπM

Nc
Φ0

such that C(0) = πM
Nc

Φ0. Therefore the minimizers of

inf
{
EKS(ΦNc), ΦNc ∈ V NNc

∩MπM
Nc

Φ0
}

(4.62)

are in one-to-one correspondence with those of the minimization problem

inf
{ENc(W

Nc), WNc ∈ BNc

}
. (4.63)

In a first stage, we prove that for Nc large enough, (4.63) has a unique solution in some neighborhood of 0. As
a consequence (4.62) has a unique solution in the vicinity of πM

Nc
Φ0 (for Nc large enough). In a second stage,

we make use of the unitary invariance (4.16) to prove that for Nc large enough, (4.24) has a unique solution in
the vicinity of Φ0.

Lemma 4.8. There exist r > 0 and N0
c such that for all Nc ≥ N0

c , the functional ENc has a unique critical
point WNc

0 in the ball {
WNc ∈ V NNc

∩ [πM
Nc

Φ0]⊥⊥ | ‖WNc‖H1
#
≤ r

}
.
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Besides, WNc
0 is a local minimizer of (4.63) and we have the estimate

‖WNc
0 ‖H1

#
≤ 32C3

Φ0

c3Φ0

‖πM
Nc

Φ0 − Φ0‖H1
#
. (4.64)

Proof. We infer from Lemma 4.7 that

ENc(W
Nc) = EKS

(
Φ0 + (πM

Nc
Φ0 − Φ0) + S(WNc)πM

Nc
Φ0 +WNc

)
= EKS

(
Φ0
)

+R
(
(πM
Nc

Φ0 − Φ0) + S(WNc)πM
Nc

Φ0 +WNc
)

+ 2aΦ0

(
(πM
Nc

Φ0 − Φ0) + S(WNc)πM
Nc

Φ0 +WNc , (πM
Nc

Φ0 − Φ0) + S(WNc)πM
Nc

Φ0 +WNc
)

= EKS
(
Φ0
)

+ 2aΦ0(WNc ,WNc) + 4aΦ0

(
WNc , (πM

Nc
Φ0 − Φ0)

)
+ 2aΦ0(πM

Nc
Φ0 − Φ0, πM

Nc
Φ0 − Φ0) + RNc(W

Nc),

where

RNc(WNc) = 2aΦ0(S(WNc)πM
Nc

Φ0,S(WNc)πM
Nc

Φ0)

+ 4aΦ0(S(WNc)πM
Nc

Φ0, (πM
Nc

Φ0 − Φ0) +WNc)

+ R
(
(πM
Nc

Φ0 − Φ0) + S(WNc)πM
Nc

Φ0 +WNc
)
.

Thus,

∀WNc ∈ BNc , ENc(W
Nc) = ENc(0) + 2aΦ0(WNc ,WNc) + 4aΦ0

(
WNc , (πM

Nc
Φ0 − Φ0)

)
+ RNc(W

Nc) −RNc(0). (4.65)

It follows from Lemma 4.7, (4.39) and the continuity of aΦ0 on (H1
#(Γ))N that

∀WNc ∈ BNc , |RNc(W
Nc)| ≤ CR

(
‖WNc‖2+α

H1
#

+ ‖WNc‖8
H1

#
+ ‖πM

Nc
Φ0 − Φ0‖2+α

H1
#

+ ‖πM
Nc

Φ0 − Φ0‖4
H1

#
+ ‖πM

Nc
Φ0 − Φ0‖H1

#
‖WNc‖2

H1
#

)
,

for a constant CR ≥ 0 independent of Nc. Let us introduce for Nc ≥ 0 and r > 0 the ball

BNc(r) =
{
WNc ∈ V NNc

∩ [πM
Nc

Φ0]⊥⊥ | aΦ0(WNc ,WNc) < r2aΦ0(πM
Nc

Φ0 − Φ0, πM
Nc

Φ0 − Φ0)
}
.

We deduce from Lemma 4.5, that for all r > 0 and all Nc ≥ N∗
c , we have

∀WNc ∈ ∂BNc(r),
√

cΦ0

2CΦ0
r‖πM

Nc
Φ0 − Φ0‖H1

#
≤ ‖WNc‖H1

#
≤
√

2CΦ0

cΦ0
r‖πM

Nc
Φ0 − Φ0‖H1

#
.

Let r0 = 2(2CΦ0/cΦ0)5/2. For all r > r0, there exists Nc,r ≥ N∗
c such that

∀Nc ≥ Nc,r, ∂BNc(r) ⊂ BNc and ∀WNc ∈ ∂BNc(r), ‖WNc‖H1
#
≤ 1.
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Therefore, for all r > r0 and all Nc ≥ Nc,r we have ∂BNc(r) ⊂ BNc and

∀WNc ∈ ∂BNc(r),

ENc(W
Nc) ≥ ENc(0) + cΦ0‖WNc‖2

H1
#
− 4CΦ0‖WNc‖H1

#
‖πM

Nc
Φ0 − Φ0‖H1

#

− CR

(
‖WNc‖2+α

H1
#

+ ‖WNc‖8
H1

#
+ 2‖πM

Nc
Φ0 − Φ0‖2+α

H1
#

+ 2‖πM
Nc

Φ0 − Φ0‖4
H1

#
+ ‖πM

Nc
Φ0 − Φ0‖H1

#
‖WNc‖2

H1
#

)
≥ ENc(0) + cΦ0‖WNc‖2

H1
#
− 4CΦ0‖WNc‖H1

#
‖πM

Nc
Φ0 − Φ0‖H1

#

− 5CR

(
‖WNc‖2+α

H1
#

+ ‖πM
Nc

Φ0 − Φ0‖2+α
H1

#

)
≥ ENc(0) +

c2Φ0

2CΦ0
r(r − r0)‖πM

Nc
Φ0 − Φ0‖2

H1
#

− 5CR

(
1 +

(
2CΦ0

cΦ0

)1+α/2

r2+α
)
‖πM

Nc
Φ0 − Φ0‖2+α

H1
#
.

As ‖πM
Nc

Φ0 − Φ0‖H1
#

goes to zero when Nc goes to infinity, we finally obtain that for all r > r0, there exists
some N ′

c,r ≥ N∗
c such that for all Nc ≥ N ′

c,r,

∂BNc(r) ⊂ BNc and ∀WNc ∈ ∂BNc(r), ENc(W
Nc) > ENc(0).

This proves that for each Nc ≥ N ′
c,2r0 , ENc has a minimizer WNc

0 in the ball BNc(2r0). In particular,

‖WNc
0 ‖H1

#
≤ 32C3

Φ0

c3Φ0

‖πM
Nc

Φ0 − Φ0‖H1
#
. (4.66)

Let WNc
1 be a critical point of ENc such that ‖WNc

1 ‖L2
#
≤ 1

2 . We denote by δWNc = WNc
1 −WNc

0 ,

Φ̃0
Nc

= πM
Nc

Φ0 + S(WNc
0 )πM

Nc
Φ0 +WNc

0 ,

Φ̃1
Nc

= πM
Nc

Φ0 + S(WNc
1 )πM

Nc
Φ0 +WNc

1 .

As both WNc
0 and WNc

1 are critical points of ENc , we have

E ′
Nc

(WNc
0 ) · (WNc

1 −WNc
0 ) = 0,

E ′
Nc

(WNc
1 ) · (WNc

0 −WNc
1 ) = 0,

so that (
E ′
Nc

(WNc
1 ) − E ′

Nc
(WNc

0 )
)
· (WNc

1 −WNc
0 ) = 0.

Using the expression (4.65) for ENc , we can rewrite this equality as

aΦ0(δWNc , δWNc) = bNc

Φ0 (WNc
0 ,WNc

1 , δWNc) + dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc
1 , δWNc),
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where

bNc

Φ0 (WNc

0 ,WNc

1 , δWNc) = − aΦ0((S(WNc

1 ) − S(WNc

0 ))πM
Nc

Φ0, (S′(WNc

1 ) · δWNc)πM
Nc

Φ0 + δWNc)

− aΦ0(((S′(WNc
1 ) − S′(WNc

0 )) · δWNc)πM
Nc

Φ0, (πM
Nc

Φ0 − Φ0)

+ S(WNc
0 )πM

Nc
Φ0 +WNc

0 ) − aΦ0((S′(WNc
1 ) · δWNc)πM

Nc
Φ0, δWNc)

and

dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc
1 , δWNc) =

1
4

[
R′(Φ̃0

Nc
− Φ0) · ((S′(WNc

0 ) · δWNc)πM
Nc

Φ0 + δWNc)

−R′(Φ̃1
Nc

− Φ0) · ((S′(WNc
1 ) · δWNc)πM

Nc
Φ0 + δWNc)

]
.

Using Lemma 4.4 and (4.66), we obtain that there exists C̃Φ0 (depending only on Φ0) and Ñc such that for all
Nc ≥ Ñc,

|bNc

Φ0 (WNc
0 ,WNc

1 , δWNc)| ≤ C̃Φ0

(
‖πM

Nc
Φ0 − Φ0‖H1

#
+ ‖WNc

1 ‖L2
#

)
‖δWNc‖2

H1
#
.

On the other hand, remarking that for all Ψ ∈ M and all δΨ ∈ TΨM,

R′(Ψ − Φ0) · δΨ = EKS′(Ψ) · δΨ − 4aΦ0(Ψ − Φ0, δΨ),

and introducing the path (Ψ(t))t∈[0,1], drawn on the manifold M and connecting Φ̃0
Nc

and Φ̃1
Nc

, defined as

Ψ(t) = Φ0 + S(tWNc
1 + (1 − t)WNc

0 )πM
Nc

Φ0 + tWNc
1 + (1 − t)WNc

0 ,

we obtain

dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc
1 , δWNc) =

1
4

[
EKS′(Ψ(0)) · Ψ′(0) − EKS′(Ψ(1)) · Ψ′(1)

]
− aΦ0(Ψ(0) − Φ0,Ψ′(0)) + aΦ0(Ψ(1) − Φ0,Ψ′(1))

= −
∫ 1

0

[
1
4
EKS′′(Ψ(t))(Ψ′(t),Ψ′(t)) +

1
4
EKS′(Ψ(t)) · Ψ′′(t)

− aΦ0(Ψ′(t),Ψ′(t)) − aΦ0(Ψ(t) − Φ0,Ψ′′(t))
]

dt.

As Ψ(t) = (ψ1(t), . . . , ψN (t))T ∈ M for all t ∈ [0, 1], we have for all 1 ≤ i ≤ N and all t ∈ [0, 1],∫
Γ

ψ′
i(t, x)

2 dx = −
∫

Γ

ψi(t, x)ψ′′
i (t, x) dx,

so that

1
4
EKS′(Φ0) · Ψ′′(t) − aΦ0(Ψ′(t),Ψ′(t)) =

N∑
i=1

ε0i

∫
Γ

φ0
iψ

′′
i (t) −

1
4
EKS′′(Φ0)(Ψ′(t),Ψ′(t)) +

N∑
i=1

ε0i

∫
Γ

ψ′
i(t)

2

= −
N∑
i=1

ε0i

∫
Γ

(ψi(t) − φ0
i )ψ

′′
i (t) − 1

4
EKS′′(Φ0)(Ψ′(t),Ψ′(t)).
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Consequently,

dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc
1 , δWNc) = −

∫ 1

0

[
1
4

(
EKS′′(Ψ(t)) − EKS′′(Φ0)

)
(Ψ′(t),Ψ′(t))

+
1
4

(
EKS′(Ψ(t)) − EKS′(Φ0)

)
· Ψ′′(t)

−
N∑
i=1

ε0i

∫
Γ

(ψi(t) − φ0
i )ψ

′′
i (t) − aΦ0(Ψ(t) − Φ0,Ψ′′(t))

]
dt.

Using Lemma 4.6, we obtain

|dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc
1 , δWNc)| ≤ C

∫ 1

0

[ (
‖Ψ(t) − Φ0‖αH1

#
+ ‖Ψ(t) − Φ0‖2

H1
#

)
‖Ψ′(t)‖2

H1
#

+ ‖Ψ(t)− Φ0‖H1
#
‖Ψ′′(t)‖H1

#

]
dt.

As

Ψ′(t) = (S′(tWNc
1 + (1 − t)WNc

0 ) · δWNc)πM
Nc

Φ0 + δWNc ,

Ψ′′(t) = (S′′(tWNc
1 + (1 − t)WNc

0 )(δWNc , δWNc))πM
Nc

Φ0,

we obtain that there exists some constant C ∈ R+ such that for Nc large enough,

|dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc
1 , δWNc)| ≤ C

(
‖πM

Nc
Φ0 − Φ0‖αH1

#
+ ‖WNc

1 ‖αH1
#

)
‖δWNc‖2

H1
#
.

Thus,

cΦ0

2
‖δWNc‖2

H1
#

≤ |aΦ0(δWNc , δWNc)|
= |bNc

Φ0 (WNc
0 ,WNc

1 , δWNc) + dΦ0(Φ̃0
Nc
, Φ̃1

Nc
,WNc

0 ,WNc
1 , δWNc)|

≤ C
(
‖πM

Nc
Φ0 − Φ0‖αH1

#
+ ‖WNc

1 ‖αH1
#

)
‖δWNc‖2

H1
#
.

This proves that there exists a constant r > 0 such that for all Nc large enough, ‖WNc
1 ‖H1

#
≤ r implies

δWNc = 0. Hence the result. �

As the mapping BNc(2r0) �WNc �→ πM
Nc

Φ0 +S(WNc)πM
Nc

Φ0 +WNc defines a local map of V NNc
∩MπM

Nc
Φ0

in
the neighborhood of πM

Nc
Φ0, we obtain that Φ̃0

Nc
= πM

Nc
Φ0 +S(WNc

0 )πM
Nc

Φ0 +WNc
0 is the unique local minimizer

of

inf
{
EKS(ΦNc), ΦNc ∈ V NNc

∩MπM
Nc

Φ0
}
,

in the vicinity of πM
Nc

Φ0. Besides,

‖Φ̃0
Nc

− Φ0‖H1
#

≤ ‖Φ̃0
Nc

− πM
Nc

Φ0‖H1
#

+ ‖πM
Nc

Φ0 − Φ0‖H1
#

≤ ‖S(WNc
0 )πM

Nc
Φ0 +WNc

0 ‖H1
#

+ ‖πM
Nc

Φ0 − Φ0‖H1
#

≤ C‖ΠNcΦ
0 − Φ0‖H1

#
,
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for a constant C independent of Nc. We then have

‖MΦ̃0
Nc
,Φ0 − 1N‖F ≤ ‖Φ̃0

Nc
− Φ0‖L2

#
≤ C‖ΠNcΦ

0 − Φ0‖H1
#
.

Let Φ0
Nc

= UΦ̃0
Nc
,Φ0Φ̃0

Nc
, where UΦ̃0

Nc
,Φ0 = MT

Φ̃0
Nc
,Φ0(MΦ̃0

Nc
,Φ0M

T
Φ̃0

Nc
,Φ0)

−1/2. Then for each Nc ≥ N ′
c,2r0 , Φ0

Nc
is

the unique local minimizer of (4.24) in the set{
ΦNc ∈ V NNc

∩MΦ0 | ‖ΦNc − Φ0‖H1
#
≤ r0

}
,

for some constant r0 > 0 independent of Nc, and it satisfies

‖Φ0
Nc

− Φ0‖H1
#
≤ C‖ΠNcΦ

0 − Φ0‖H1
#
, (4.67)

for some C ∈ R+ independent of Nc.
As Φ0

Nc
∈ MΦ0

, we can decompose Φ0
Nc

as

Φ0
Nc

= Φ0 + S0
Nc

Φ0 +W 0
Nc
, (4.68)

where S0
Nc

= S(W 0
Nc

) and W 0
Nc

∈ Φ0,⊥⊥ (note that W 0
Nc

/∈ V NNc
in general). As by (4.39) and (4.67),

‖S0
Nc

‖F ≤ ‖W 0
Nc

‖2
L2

#
, (4.69)

‖S0
Nc

‖2
F + ‖W 0

Nc
‖2
L2

#
= ‖S0

Nc
Φ0 +W 0

Nc
‖2
L2

#
= ‖Φ0

Nc
− Φ0‖2

L2
#

−→
Nc→∞

0, (4.70)

we have, for Nc large enough,

1
2
‖W 0

Nc
‖L2

#
≤ ‖Φ0

Nc
− Φ0‖L2

#
≤ 2‖W 0

Nc
‖L2

#
, (4.71)

1
2
‖W 0

Nc
‖H1

#
≤ ‖Φ0

Nc
− Φ0‖H1

#
≤ 2‖W 0

Nc
‖H1

#
. (4.72)

The discrete solution Φ0
Nc

satisfies the Euler equations

∀ΨNc ∈ V NNc
, 〈HKS

ρ0Nc

φ0
i,Nc

, ψi,Nc〉H−1
# ,H1

#
=

N∑
j=1

[λ0
Nc

]ij(φ0
j,Nc

, ψj,Nc)L2
#
,

where ρ0
Nc

= ρΦ0
Nc

and where the N × N matrix Λ0
Nc

is symmetric (but generally not diagonal). Of course, it
follows from the invariance property (4.16) that (4.24) has a local minimizer of the form UΦ0

Nc
with U ∈ U(N)

for which the Lagrange multiplier of the orthonormality constraints is a diagonal matrix.

4.3. A priori error estimates

We are now in position to derive a priori estimates for ‖Φ0
Nc

− Φ0‖Hs
#

and (Λ0
Nc

− Λ0), where we recall that
Λ0 = diag(ε01, . . . , ε

0
N).
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Proof of the estimates of the first statement of Theorem 4.2.

Using (2.2), (4.67) and the inverse inequality (3.37), we obtain for each s ≥ 1 such that Φ0 ∈
(
Hs

#(Γ)
)N

and
each 1 ≤ r ≤ s,

‖Φ0
Nc

− Φ0‖Hr
#

≤ ‖Φ0
Nc

− ΠNcΦ
0‖Hr

#
+ ‖ΠNcΦ

0 − Φ0‖Hr
#

≤ CN r−1
c ‖Φ0

Nc
− ΠNcΦ

0‖H1
#

+ ‖ΠNcΦ
0 − Φ0‖Hr

#

≤ CN r−1
c

(
‖Φ0

Nc
− Φ0‖H1

#
+ ‖Φ0 − ΠNcΦ

0‖H1
#

)
+ ‖ΠNcΦ

0 − Φ0‖Hr
#

≤ CN r−1
c ‖ΠNcΦ

0 − Φ0‖H1
#

+ ‖ΠNcΦ
0 − Φ0‖Hr

#

≤ CN−(s−r)
c ‖ΠNcΦ

0 − Φ0‖Hs
#
. (4.73)

In particular, for s = 2 and r = 3/2+ ε with 0 < ε < 1/2, we obtain that Φ0
Nc

converges to Φ0 in (H3/2+ε
# (Γ))N ,

hence in (L∞
# (Γ))N .

We then proceed as in (3.25) and remark that

λ0
ij,Nc

− λ0
ij = 〈HKS

ρ0Nc

φ0
i,Nc

, φ0
j,Nc

〉H−1
# ,H1

#
− 〈HKS

ρ0 φ
0
i , φ

0
j 〉H−1

# ,H1
#

= 〈HKS
ρ0 (φ0

i,Nc
− φ0

i ), (φ
0
j,Nc

− φ0
j )〉H−1

# ,H1
#

+ ε0i

∫
Γ

φ0
i (φ

0
j,Nc

− φ0
j ) + ε0j

∫
Γ

φ0
j (φ

0
i,Nc

− φ0
i )

+
∫

Γ

V Coulomb
φ0

i,Nc
φ0

j,Nc

(ρ0
Nc

− ρ0)

+
∫

Γ

(
deLDA

xc

dρ
(ρc + ρ0

Nc
) − deLDA

xc

dρ
(ρc + ρ0)

)
φ0
i,Nc

φ0
j,Nc

. (4.74)

As, from (4.68),

ε0i

∫
Γ

φ0
i (φ

0
j,Nc

− φ0
j ) + ε0j

∫
Γ

φ0
j (φ

0
i,Nc

− φ0
i ) = (ε0i + ε0j)[S

0
Nc

]ij ,

we easily obtain, using the convergence of Φ0
Nc

to Φ0 in (H1
#(Γ) ∩ L∞

# (Γ))N ,

‖Λ0
Nc

− Λ0‖F −→
Nc→∞

0, (4.75)

which implies (4.26). For W ∈ (L2
#(Γ))N , we introduce the adjoint problem{

find ΨW ∈ Φ0,⊥⊥ such that
∀Z ∈ Φ0,⊥⊥, aΦ0(ΨW , Z) = (W,Z)L2

#
, (4.76)

the solution of whom exists and is unique by the coercivity assumption (4.20). Clearly,

‖ΨW ‖H1
#
≤ C‖W‖L2

#
. (4.77)

Remarking that ΨW satisfies
−ΔΨW = L(W ),

where L is a bounded linear operator on L2
#(Γ), we obtain

‖ΨW ‖H2
#
≤ C‖W‖L2

#
,
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and therefore

‖ΨW − ΠNcΨW ‖L2
#
≤ CN−2

c ‖W‖L2
#
, (4.78)

‖ΨW − ΠNcΨW ‖H1
#
≤ CN−1

c ‖W‖L2
#
. (4.79)

Denoting by Ψ = ΨΦ0
Nc

−Φ0 and using (4.68), we get

‖Φ0
Nc

− Φ0‖2
L2

#
= (Φ0

Nc
− Φ0,Φ0

Nc
− Φ0)L2

#

= (Φ0
Nc

− Φ0, S0
Nc

Φ0)L2
#

+ (Φ0
Nc

− Φ0,W 0
Nc

)L2
#

= (Φ0
Nc

− Φ0, S0
Nc

Φ0)L2
#

+ aΦ0(Ψ,W 0
Nc

)

= (Φ0
Nc

− Φ0, S0
Nc

Φ0)L2
#
− aΦ0(Ψ, S0

Nc
Φ0) + aΦ0(Ψ,Φ0

Nc
− Φ0)

= (Φ0
Nc

− Φ0, S0
Nc

Φ0)L2
#
− aΦ0(Ψ, S0

Nc
Φ0) + aΦ0(Ψ − ΠNcΨ,Φ

0
Nc

− Φ0)

+ aΦ0(ΠNcΨ,Φ
0
Nc

− Φ0). (4.80)

From the definition (4.18), the last term in the above expression reads

aΦ0(ΠNcΨ,Φ
0
Nc

− Φ0) =
1
4
EKS′′(Φ0)(ΠNcΨ,Φ

0
Nc

− Φ0) −
N∑
i=1

N∑
j=1

λ0
ij

∫
Γ

(φ0
j,Nc

− φ0
j )ΠNcψi,

so that from the definition of the continuous and discrete eigenvalue problems

4aΦ0(ΠNcΨ,Φ
0
Nc

− Φ0) = EKS′′(Φ0)(ΠNcΨ,Φ
0
Nc

− Φ0) − EKS′(Φ0
Nc

)(ΠNcΨ) +EKS′(Φ0)(ΠNcΨ)

+ 4
N∑
i=1

N∑
j=1

(λ0
ij,Nc

− λ0
ij)

∫
Γ

φ0
j,Nc

ΠNcψi. (4.81)

The definition of ΠNc and the fact that Ψ ∈ Φ0,⊥⊥ yields∫
Γ

φ0
j,Nc

ΠNcψi =
∫

Γ

(φ0
j,Nc

− φ0
j)ψi,

which finally provides the estimate

‖Φ0
Nc

− Φ0‖2
L2

#
= (Φ0

Nc
− Φ0, S0

Nc
Φ0)L2

#
− aΦ0(Ψ, S0

Nc
Φ0) + aΦ0(Ψ − ΠNcΨ,Φ

0
Nc

− Φ0)

− 1
4

(
EKS′(Φ0

Nc
)(ΠNcΨ) − EKS′(Φ0)(ΠNcΨ) − EKS′′(Φ0)(Φ0

Nc
− Φ0,ΠNcΨ)

)
+

N∑
i=1

N∑
j=1

(λ0
ij,Nc

− λ0
ij)

∫
Γ

(φ0
j,Nc

− φ0
j )ψi. (4.82)

Using the second statement of Lemma 4.6, (4.69), (4.71), (4.77), and (4.79), we infer

‖Φ0
Nc

− Φ0‖L2
#

≤ C

(
‖Φ0

Nc
− Φ0‖2

L2
#

+N−1
c ‖Φ0

Nc
− Φ0‖H1

#
+ ‖Φ0

Nc
− Φ0‖1+α

L2
#

+ ‖Φ0
Nc

− Φ0‖3/2

L2
#
‖Φ0

Nc
− Φ0‖3/2

H1
#

+ ‖Λ0
Nc

− Λ0‖F‖Φ0
Nc

− Φ0‖L2
#

)
. (4.83)
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We thus obtain, using (4.67), (4.75) and the above estimate, that asymptotically, when Nc goes to infinity,

‖Φ0
Nc

− Φ0‖L2
#
≤ C N−1

c ‖ΠNcΦ
0 − Φ0‖H1

#
.

Together with (4.73), this straightforwardly leads to (4.25). Finally, (4.27) is an obvious consequence of
Lemma 4.7, (4.20), (4.47), and (4.67).

Proof of the second statement of Theorem 4.2.
To proceed further, we need to make an assumption on the regularity of the exchange-correlation potential.

In the sequel, we assume that (4.14) and (4.15) hold. As previously mentioned in the proof of Lemma 4.6,
assuming that the function ρc + ρ0 is positive everywhere is equivalent to assuming that there exists a constant
η > 0 such that for all x ∈ R3, ρc(x) + ρ0(x) ≥ η. Besides, we know that the convergence of Φ0

Nc
to Φ0 holds

in H2
#(Γ), hence in L∞

# (Γ). As a consequence, for all x ∈ R3 and all Nc large enough, ρc(x) + ρ0
Nc

(x) ≥ η/2.

Using a bootstrap argument on (4.12)–(4.13), we obtain that Φ0 is in (Hm+1/2−ε
# (Γ))N for any ε > 0.

Reasoning as in (4.73), we obtain that for each s ≥ 1 such that Φ0 ∈
(
Hs

#(Γ)
)N

and each 0 ≤ r ≤ s, there
exists a constant C such that

‖Φ0
Nc

− Φ0‖Hr
#
≤ C N−(s−r)

c ‖ΠNcΦ
0 − Φ0‖Hs

#
. (4.84)

As Φ0 then is in (Hm+1/2−ε
# (Γ))N for any ε > 0, and we deduce from (4.84) that (4.28) holds true for all

0 ≤ s < m+ 1/2.
Then, following the same lines as in the proof of (3.26), we obtain the estimates∣∣∣∣∫

Γ

V Coulomb
φ0

i,Nc
φ0

j,Nc

(ρ0
Nc

− ρ0)
∣∣∣∣ ≤ C‖ρ0

Nc
− ρ0‖H−r

#
,

and ∣∣∣∣∫
Γ

(
deLDA

xc

dρ
(ρc + ρ0) − deLDA

xc

dρ
(ρc + ρ0

Nc
)
)
φ0
i,Nc

φ0
j,Nc

∣∣∣∣ ≤ c‖ρ0
Nc

− ρ0‖H−r
#
,

valid for all 0 ≤ r < m− 3/2. Using these estimates in (4.74), we are lead to

|λ0
ij,Nc

− λ0
ij | ≤ C

(
‖Φ0 − Φ0

Nc
‖2
H1

#
+ ‖ρ0

Nc
− ρ0‖H−r

#

)
.

Now,

‖ρ0
Nc

− ρ0‖H−r
#

= sup
w∈Hr

#(Γ)

∫
Γ

(ρ0
Nc

− ρ0)w

‖w‖Hr
#

·

Noticing that

ρ0
Nc

− ρ0 =
N∑
i=1

|φ0
i,Nc

|2 −
N∑
i=1

|φ0
i |2 =

N∑
i=1

(φ0
i,Nc

− φ0
i )(φ

0
i,Nc

+ φ0
i ),

we deduce from (4.58) that
‖ρ0
Nc

− ρ0‖H−r
#

≤ C‖Φ0
Nc

− Φ0‖H−r
#
, (4.85)

since Φ0
Nc

converges, therefore is uniformly bounded in Hmax(r,2)
# (Γ). Thus

‖Λ0
Nc

− Λ0‖F ≤ C
(
‖Φ0

Nc
− Φ0‖2

H1
#

+ C‖Φ0
Nc

− Φ0‖H−r
#

)
. (4.86)
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The derivation of estimates for ‖Φ0
Nc

−Φ0‖H−r
#

follows exactly the same lines as the derivation of the L2 estimate:
starting from the definition

‖Φ0
Nc

− Φ0‖H−r
#

= sup
W∈(Hr

#(Γ))N

(W,Φ0
Nc

− Φ0)L2
#

‖W‖Hr
#

,

and remarking that the solution ΨW to the adjoint problem (4.76) satisfies

‖ΨW ‖Hr+2
#

≤ C‖W‖Hr
#
, (4.87)

we proceed as in (4.80)-(4.82) to get

(W,Φ0
Nc

− Φ0)L2
#

= (W,S0
Nc

Φ0)L2
#

+ (W,W 0
Nc

)L2
#

= (W,S0
Nc

Φ0)L2
#

+ aΦ0(ΨW ,W
0
Nc

)

= (W,S0
Nc

Φ0)L2
#
− aΦ0(ΨW , S

0
Nc

Φ0) + aΦ0(ΨW ,Φ0
Nc

− Φ0)

= (W,S0
Nc

Φ0)L2
#
− aΦ0(ΨW , S

0
Nc

Φ0) + aΦ0(ΨW − ΠNcΨW ,Φ0
Nc

− Φ0)

−1
4

(
EKS′(Φ0

Nc
)(ΠNcΨW ) − EKS′(Φ0)(ΠNcΨW ) − EKS′′(Φ0)(Φ0

Nc
− Φ0,ΠNcΨW )

)
+

N∑
i=1

N∑
j=1

(λ0
ij,Nc

− λ0
ij)

∫
Γ

(φ0
j,Nc

− φ0
j )ψW,i, (4.88)

that yields, using (4.69), (4.71), (4.87), and the third statement of Lemma 4.6 with q = max(r, 2) and s = r+2,

‖Φ0
Nc

− Φ0‖H−r
#

≤ C

(
‖Φ0

Nc
− Φ0‖2

L2
#

+N−1−r
c ‖Φ0

Nc
− Φ0‖H1

#
+ ‖Φ0

Nc
− Φ0‖H−r

#
‖Φ0

Nc
− Φ0‖

H
max(r,2)
#

+ ‖Λ0
Nc

− Λ0‖F‖Φ0
Nc

− Φ0‖H−r
#

)
, (4.89)

where ‖Φ0
Nc

− Φ0‖
H

max(r,2)
#

converges to zero thanks to (4.84) since max(r, 2) < m + 1/2. The proof of (4.28)

follows and then we get easily from (4.86) that

‖Λ0
Nc

− Λ0‖F ≤ CεN
−(2m−1−ε)
c . (4.90)

Hence (4.29).
Note that the regularity assumption we have made on eLDA

xc is certainly not optimal. A local regularity in
a Sobolev type norm much less stringent than (4.14) should be sufficient to lead to a Hölder type estimate in
Lemma 4.6 of the form∣∣∣(EKS′′(Φ0 + Υ1) − EKS′′(Φ0)

)
(Υ2,Υ3)

∣∣∣ ≤ C ‖Υ1‖βHq
#
‖Υ2‖H−r

#
‖Υ3‖Hs

#
,

for some β > 0, an inequality weaker that (4.49), but sufficient to drive the same rate of convergence for
‖Φ0

Nc
−Φ0‖H−r

#
. Such a Hölder property, which does not seem to be available in the literature, would generalize

the Lipschitz property of composition operators acting between Sobolev spaces recently proven in [5]. These
considerations go far beyond the purpose of this paper.
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Figure 1. Errors ‖Φ0
Nc

−Φ0‖H1
#

(up left), ‖Φ0
Nc

−Φ0‖L2
#

(up right), |IKS
Nc

− IKS| (bottom left)
and ‖Λ0 − Λ0

Nc
‖F (bottom right) as functions of Ec for H2 (in logarithmic scales).

4.4. Numerical results

In order to evaluate the quality of the error bounds obtained in Theorem 4.2, we have performed numerical
tests using the Abinit software [19] (freely available online, cf. http://www.abinit.org), whose main program
allows one to find the total energy, charge density and electronic structure of systems (molecules and periodic
solids) within DFT, using pseudopotentials and a planewave basis.

We have run simulation tests with the Hartree functional (i.e. with eLDA
xc = 0), for which there is no

numerical integration error. In this particular case, the problems (4.21) (solved by Abinit) and (4.23) (analyzed
in Thm. 4.2) are identical.

For Troullier-Martins pseudopotentials, the parameter m in Theorem 4.2 is equal to 5. Therefore, we expect
the following error bounds (as functions of the cut-off energy Ec = 1

2

(
2πNc

L

)2
)

‖Φ0
Nc

− Φ0‖H1
#

≤ C1,εE
−2.25+ε
c , (4.91)

‖Φ0
Nc

− Φ0‖L2
#

≤ C2,εE
−2.75+ε
c , (4.92)

|ε0i,Nc
− ε0i | ≤ C3,εE

−4.5+ε
c , (4.93)

0 ≤ IKS
Nc

− IKS ≤ C4,εE
−4.5+ε
c . (4.94)

The first tests were performed with the Hydrogen molecule (H2). The nuclei were clamped at the points with
cartesian coordinates r1 = (−0.7; 0; 0) and r2 = (0.7; 0; 0) (in Bohrs). The simulation cell was a cube of side
length L = 10 Bohrs. The so-obtained numerical errors are plotted in log-scales in Figure 1. The second series of
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Nc

−Φ0‖H1
#

(up left), ‖Φ0
Nc

−Φ0‖L2
#

(up right), |IKS
Nc

− IKS| (bottom left)
and ‖Λ0 − Λ0

Nc
‖F (bottom right) as functions of Ec for N2 (in logarithmic scales).

tests were performed with the Nitrogen molecule (N2). The nuclei were clamped at positions r1 = (−0.55; 0; 0)
and r2 = (0.55; 0; 0) (in Angstroms), and the simulation cell was a cube of side length L = 6 Angstroms. The
numerical errors for N2 are plotted in Figure 2. The reference values for Φ0, ε0i and IKS for both H2 and N2 are
those obtained for a cut-off energy equal to 500 Hartrees.

These results are in good agreement with the a priori error estimates (4.91)–(4.94) for both the H2 and N2

molecules.
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