
Proceedings of the Edinburgh Mathematical Society (19%) 39, 581-588 (

PROOF OF A CONJECTURE OF HEATH-BROWN
CONCERNING QUADRATIC RESIDUES

by R. R. HALL

(Received 3rd March 1995)

The conjecture in question is that the proportion of the first n positive integers which are quadratic residues of
an arbitrary prime p is bounded below by a positive. S. This is established here as a corollary of a more
general result concerning multiplicative functions; the problem of the sharp <5 is left open.

1991 Mathematics subject classification. 11 N 37.

1. Introduction

During the British Mathematical Colloquium in Cardiff, 1994, Roger Heath-Brown
informally made the following conjecture. There exists an absolute positive constant S
such that for all primes p and positive integers n, the proportion of the integers not
exceeding n which are quadratic residues (mod p) is at least 5.

I shall prove this here, without determining the best possible value of S, as a corollary
of the following more general result.

Theorem. Let & denote the class of completely multiplicative arithmetic functions f
such that — 1 ^ f(m) ^ 1 for all m. Then

c: = inf{- Y f(m):fey,n^\\>-\. (1)

I have not determined the value of c, but I offer some remarks about this problem in
the second section of the paper. To verify Heath-Brown's conjecture we apply the
theorem with

and this yields (5^(l+c)/2. Since we require / to be (completely) multiplicative we must
define f(p) = 0, that is we do not count the multiples of p as quadratic residues.

The proof of the theorem is short, but depends on two hard lemmas. In each of these
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I state the best result currently known, (which might be important for the evaluation of
c), and then indicate earlier results from the literature which would be sufficient to
prove the theorem in its present form.

Lemma 1. Let g be multiplicative, — 1 ^g(m) ^ 1 for all m. Then

m&x

gim)«XcJ-K £ itlMl,
I p£x P )

where K = .32867... = — cos (j)0 and (j>0 is the (unique) root in (0, n) of the equation
sin (f> — (f>cos <p = n/2. The constant K is sharp.

This is due to Hall and Tenenbaum [5]. (See also [4]). Any of the previous results of
this sort, with a positive but unsharp K, [3, 1, 8] would do for our present application.

Lemma 2. Let h be multiplicative, 0 ̂  h(m) ^ 1 for all m. Then we have

where a. and 0 are absolute positive constants, <T-(£) = Ep(E), p being Dickmaris function,
and

This is a specialization for our purpose of a difficult result of Hildebrand [6], in
which there is a less restricted condition on h; moreover there is an extra variable z at
our disposal. We have put z = 2. We could obtain Heath-Brown's conjecture, but not
our theorem above, with a result of Erdos and Ruzsa [2] on the small sieve, together
with one of the weaker versions of Lemma 1.

Proof of the theorem. We begin by considering Lemma 1, and we see that there
exists an absolute constant T such that whenever the sum over p on the right of (2)
exceeds T, we have

(3)
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Let felF and the positive integer n be given. We notice that we may assume that n
is large since the quantity inside the curly brackets in (1) is ^ — 1+2/n. There are two
cases according to whether or not we have

^ T . (4)

If (4) holds then we apply Lemma 1 with g=f and x = n, when the left-hand inequality
in (3) is all we need. Next suppose that (4) does not hold. In this case we define the
supplementary, completely multiplicative function h by setting

) = max{0,/(p)}, (5)

for all primes p. From the negation of (4) and (5) we have

T. (6)
pin P

We apply Lemma 2, writing S=exp T. This yields

logi)n)}. (7)

Since h is completely multiplicative and 0 ̂  h(p) ̂  1 we have

in which

It follows that there exist absolute constants noeN and beU+ such that provided
n>n0, the right hand side of (7) is not less than b.

Let &={?(f,n) denote the set of primes p^n for which f(p) is negative. We have

X f(m) ^ - n + 2 X /(m) X(m, &) (9)

where x(m, 3P) denotes the characteristic function of the integers free of prime factors in
SP. We have f(m)x(m, &*) = h(m) for m ̂  n so that if n > n0 the right hand side of (9) is at
least (2b— l)/i. Put c1=min{ —l+2/n0, —1/2,26—1}. We have shown that in every case,
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n"1 £ f(m)*clt (10)

which proves our theorem.

2. The value of c

In this section we give an upper bound for c. There are essentially two approaches to
this problem. In the first we specify a fairly small numerical value of n together with
values of f(p) for p^n. For example, we may set n = 3, /(2) = /(3)= — 1, to obtain that
c ^ — 1/3. The method really requires a computer and I have not proceeded very far
with it. The second approach, which is more interesting, depends on the asymptotic
distribution of the primes. We define

= liminf{! £ f(m):feA,(x^oo) (11)

so that c^c0. In view of the oscillatory behaviour of these sums it is possible that this
inequality is strict. We shall prove that c0 ̂  — .656999... in this note.

Let £ be a set of primes, possibly depending on x, and put

/ ( p ) = - l i f p e £ , / ( p ) = + lelse. (12)

In the usual terminology we therefore have

/(m) = ( - i r m £ » . (13)

We shall choose E = {p: xa<p-£x~], with a particular value of a. The limit

\\m- £ /(m),(x-»oo) (14)
X

exists and is an upper bound for c0. It is convenient to write a = l/t where t > l , and to
denote the limit in (14) by R(t). We evaluate the quantity inf{R(t): t>l}, in fact we
show that for all t > 1 we have

)= -.656999... (15)

We require a formula for R(t). It is technically a little easier to deal with the sum

S(x,E)= X (_i)«<«.*> (16)
mSx

in which co{m, E) counts the number of distinct prime factors of m belonging to E\ of
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course the function in (16) does not belong to !F and so we require the following
lemma.

Lemma 3. Let E be an arbitrary set of primes with least element p0, and f(m), S(x, E)
be as defined in (13) and (16). Then we have

) (17)

Proof. We may assume that p0 Sj 3. Let g(m) denote the multiplicative function such
that g(pr) = 0 if pi E and if pe E,

g(p-)=l-{2' + 2(-iy}. (18)

Then we have
(_1 )n(m.£)= £ g(rf)(_!)-("•/".£) (19)

d\m

and so

£ (^) (20)

It follows that

(21)

which leads to the result stated.

Let E = {p:x"<p£x}, with a > 0 fixed. We have p0->co and so by Lemma 3, we may
evaluate the limit in (14) as if S(x,E) appeared instead of the sum on the left. We write,
forfeit,

(22)

We define D0(m; u, v) = 1 so that we have

(_ i r (m.£,= | {-2)"Dk(m;u,v) (23)

in which u=xl", v = x. For l^k^t,
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(24)

where the range of summation in the right-hand sum is as defined in (22), with the
additional restriction that d ̂  x. We assemble (23) and (24), noticing that since 1/t > 0 by
hypothesis, the sums over k are finite. We interpret the sum on the right of (24) as 1
when k = 0 and we obtain, with suitable K,

Our treatment of the inner right-hand sum in (25) is standard and we may omit the
details. We find that for each fixed k,

E l = f*(0+o(l),(x-oo) (26)

in which F0(t) = 1 and for fc^ 1,

Z}} J - \
K'l/t lit lit

I ? ? "r u/v .dxidx2...dxk

T\ I •" J H(t—xx— x2- ••• -xk)
lT\ I J H(txx x2 x k ) .

K • 1 1 1 xtx2...xk (27)

Here H denotes Heaviside's function, H(u) = \ if u^O, H(u) = 0 else. We assemble (25)
and (26) and we see that S(x,E) = (R(t) + o(l))x where

R(t)= £ (-2)kFk(t). (28)

The sum on the right is finite because Ft(r)=0 when k^.t. We have, from (27), (or by an
exercise in Laplace transforms) that
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F » _ , ( t l ) ,
(29)

and we deduce from (28) and (29) that for t> 1,

4 / ? ( t ) 2 K ( t l ) . (30)
at

We set /?(f) = 1 for 0 < t ^ 1. The differential-difference equation (30) is of a familiar type;
perhaps the simplest way to achieve the kind of oscillation result we require is via the
adjoint equation and what Iwaniec [7] refers to as the inner product. The adjoint
equation is

), (31)
ai

and we readily check by differentiation that we have

tR{t)Q(t) - 2 | R(u)Q(u + l)du = constant. (32)
r - l

Equation (31) has the solution Q(t) = t — 2, and we insert this into (32) and set r=l to
find that the constant on the right is zero. Now define R*(t) = max{\R(u)\:t-l^u^t}.
We deduce from (32) that for t ^ 2 we have

t(t-2)\R(t)\^2R*(t)\ (u-l)du = (2t-3)R*{t), (33)
i - i

whence for t>3, \R(t)\ <R*{t). We infer from this that any stationary absolute value of
R(t) in the range t > 3 does not exceed all the previous ones, (we may think of t as time
since we are really concerned here with diffusion equations), so that it will suffice to
consider the maxima and minima of R(t) in the interval [1,3]. From (30), R plainly
decreases throughout [1,2]; indeed in this interval R(t) = 1 — 21og t. For 2<£^3 we
therefore have

R(t) = 1 -21ogt + 4j l o g ( " ~ 1 W (34)
2 u

We see that there is a minimum at t = 1 4- yje, moreover this is the maximum absolute
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value of R on this interval. It is therefore the global minimum of R(t), and numerical
integration gives RmiB = —.656999... as stated above.

I would like to thank the referee for his careful reading of this note, which led to
some corrections.
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