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Abstract Using a combined dominant condition, we obtain general results concerning the complex
oscillation for a class of homogeneous linear differential equations w^ + A^_2w^k~2S> + • • • + A\w' +
(AQ + A)w = 0 with k ^ 2, which has been investigated by many authors. In particular, we discover that
there exists a unique case that possesses k linearly independent zero-free solutions for these equations,
and we resolve an open problem and simultaneously answer a question of Bank.
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1. Introduction

For convenience in our statement, we first explain the notations used in this paper.
We denote the order of growth of a function g(z) meromorphic in the plane by o-(g),
the exponent of convergence of the zero sequence of g(z) by X(g), and the exponent of
convergence of the sequence of distinct zeros of g(z) by X(g). Other notations of function
theory are standard (see, for example, [11,13]). In addition, following Hayman, the
abbreviation 'n.e.' means 'everywhere except in a set of r with finite linear measure'.

In [3], Bank and Laine proved the following theorem.

Theorem 1.1. Suppose that A(z) is entire and satisfies X(A) < (T(A). Then, for any
solution f ^ 0 of the equation

w" + Aw = 0,

we have X(f) ^ <r(A).

Afterwards, they improved the above result in [4]. If we exchange the condition X(A) <
cr(A) for X(A) < cr(A), then the conclusion in Theorem 1.1 still holds. They resorted to
Hayman's inequality (see [11, p. 60]) in their proof.

For the equations with order k > 2, Bank, Frank and Laine proved the following
theorem in [2].
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Theorem 1.2. Let k > 2, A{z) be entire, and satisfy 7V(r, I/A) = S(r, A). Then, for
any solution f ^ 0 of the equation

w{k) + Aw = 0, (1.1)

we have

where E is a set of r with finite linear measure.

We can easily obtain the following theorem from Theorem 1.2.

Theorem 1.3. Let k > 2, A{z) be entire, and satisfy X(A) < a(A). Then, for any
solution / ^ 0 of equation (1.1), we have X(f) ^ o(A).

If A{z) only satisfies X(A) < a(A), does Theorem 1.3 still hold? This has remained
open.

In this paper, using a combined dominant condition, we obtain general results con-
cerning the complex oscillation for a class of homogeneous linear differential equations
of the form

w^ + Ak-2W^h~2^ -\ h Aiw' + (Ao + A)w = 0, (1.2)

with order k ^ 2, which has been investigated by many authors, and, as a corollary,
we resolve the above open problem under the broader conditions. Let k ^ 2, A(z) be
entire, and satisfy X(A) < <J{A) or N(r, I/A) = S(r,A). Then, for any solution / ^ 0 of
equation (1.1), we have A(/) ^ CF{A) and

lim " 7 7 / > 0,•3f> T(r,A)

where E is a set of r with finite linear measure.
What is the combined dominant condition mentioned above?
To characterize the dominance of a meromorphic function A(z) in the plane with

respect to a non-negative and increasing function R(r) on (0,oo), two conditions have
been used frequently. Either R(r) = S(r, A) = o{T(r, A)} n.e. as r -> oo, or OR < cr(A),
<TR standing for the order of growth of R(r) (see [11, p. 16]). However, they are not
equivalent in general. To unify these practices, we apply the following combined dominant
condition. There exists a constant d < a(A) such that R(r) = S{r, A) + o(rd) as r -> oo.
For using this dominance, we require the following fact, which is easily checked. If at least
one of R(r) = S(r, A) and R(r) = o(rd) as r -^ oo holds, then R(r) = S(r, A) + o(rd) as
r -4 oo must hold; equivalently, if R(r) ^ S(r, A) + o{rd) as r -¥ oo, then R(r) ^ S(r, A)
and R(r) ^ o(rd) as r —> oo must simultaneously hold.

Moreover, it is specially worth mentioning the following discovery as one of our results.
For equation (1.2), there exists a unique case that possesses k linearly independent zero-
free solutions for each A ^ 0.
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To understand the meaning of this result, we need to go back to the works of some
other authors.

It was shown in [3, p. 356] that for any non-constant polynomial P(z) there is a
polynomial Q(z) such that the equation

w" + {Q + ep)w = 0

possesses two linearly independent zero-free solutions. Bank and Langley [8] and Bank [1]
again showed that this had led to investigations of the more general equation

w(fc) + (Q + Rep)w = 0, (1.3)

where k ^ 2, R ^ 0 is also a polynomial (see, for example, [1-10,12]). However, as Bank
said (see [1, p. 166]):

To the author's knowledge, no examples have been found of an equation (1.3)
of order k > 2 which possesses a solution / ^ 0 for which A(/) < oo.

However, if we consider the more general equations obtained by allowing middle terms
in (1.3), the situation is far different. In fact, Bank gave a general example of a third-
order equation in [1, §9]: for any non-constant polynomial P(z), there are polynomials
Qo{z) and Qi(z) such that the equation

w'" + Qxw' + (Qo + ep)w = 0

possesses three linearly independent zero-free solutions.
It is a problem whether such an example exists for this class of equations with any order

k > 3. In the present paper we reveal its law, and thus answer this question. We prove
that for any non-constant zero-free entire function A, there is a unique equation (1.2)
with k ^ 2 that possesses k linearly independent zero-free solutions under the condition
that A is dominant. We also simultaneously give the method such that this equation can
be more easily deduced for given k and A ^ 0, and examples in [3, p. 356] and [1, §9]
are only the special cases of this result. In addition, from this fact and other results of
equation (1.2), we can see that there exist no examples of equation (1.3) of order k > 2
that possess a solution / ^ 0 with A(/) < cr(ep). Thus, we also answer, essentially, the
above question of Bank.

2. Main results

Theorem 2.1. Let k ^ 2, A, AQ, •.., Ak-2 be entire functions with A non-constant,
and suppose that there exists a constant d < o{A) such that T(r, Aj) = S(r, A) + o(rd),
j = 0, . . . , k - 2,iV(r, I/A) = S(r, A) + o(rd) as r -> oo. The following assertions hold.

(i) If A has at least one zero, then, for any solution f ^ 0 of the equation

WW + Afc_2u>(fc-2) + • • • + AlW' + (Ao + A)w = 0, (2.1)
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we have X(f) ^ cr{A) and
~ r, IIf)lim Z 'V > 0,rr7$ T(r,A)

where E is a set ofr with finite linear measure.

(ii) If A has no zeros and equation (2.1) possesses a solution / ^ 0 such that N(r, 1//) =
S(r, A) + o(rf) as r —» oo for a constant d\ < <r(A), then (2.1) must be of the form

w^ + £>fc_2(/i>(fe~2) + • • • + £>i (h')w' + (Do(h') - ekh)w = 0, (2.2)

which possesses k linearly independent zero-free solutions

fj = exp jw, f eh^ d« - \(k - l)h(z) + c\, (2.3)

where ekh = —A, Di (h1) are differential polynomials in h' with constant coefficients,
I = 0,... ,k — 2, in particular,

UJ!? = 1 (i.e. u>j are the kth roots of unity), c is constant. For all solutions f ^ 0 of
(2.2) that are not constant multiples of the solutions fj, and for all solutions / ^ 0
in case (2.1) not of the type (2.2), the conclusions in (i) remain valid.

Corollary 2.2. With the hypotheses of Theorem 2.1 for k, A,AQ,...,Ak-2, if
a(Ak-2) 7̂  <T{A'/A), or Ak-2 = 0, or Ak-2 and A'/A are not both polynomials, then, for
any solution / ^ 0 of equation (2.1), we have the conclusions of Theorem 2.1 (i).

Corollary 2.3. With the hypotheses of Theorem 2.1 for A and AQ, but k > 2, for any
solution f ^ 0 of the equation

wik) + (Ao + A)w = 0,

we have the conclusions of Theorem 2.1 (i). These conclusions still hold if k = 2 and
A0 = 0.

Remark 2.4. Corollary 2.3 generalizes the result for k = 2 in [4], and Corollary 2.3
resolves the open problem for k ^ 3 mentioned in § 1 under broader conditions. Moreover,
Corollary 2.3 also essentially answers the question of Bank mentioned in § 1.

Remark 2.5. For any solution / ^ 0 of the equation

fc-i

fc=0

with Bj(j = 0 , . . . , k — 1) entire and k ^ 2, it is not difficult to check that N(r, 1//) ^
(k-l)TV(r, 1//). Thus, X(f) = X(f), and the estimate of iV(r, l/f)/T{r,A) in the conclu-
sions of Theorem 2.1 (i) is, in fact, equivalent to the estimate of N(r, l/f)/T(r,A).
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3. Lemmas

Prom Lemma 3.3 (Clunie) and its proof in [11], it is easy to get the following lemma.

Lemma 3.1. Let f(z) be a function meromorphic in the plane and satisfying fnP(f) =
<?(/), where P(f) and Q{f) are differential polynomials in f with coefficients bj mero-
morphic in the plane, and the degree ofQ(f) is at most n. Then

m(r,P(f)) = o [ X > M , ) + 5(r,/)|, as r -+ oo,

where S(r, f) = O{log(rT(r, /))} n.e. as r -* oo.

From Theorem 3.9 and its proof in [11], it is not difficult to check that the following
lemma holds.

Lemma 3.2. Let £(z) be a function meromorphic and non-constant in the plane, and
g[z) = £(z)n+Pn_i(£), providing that there exists a constant d < <r(£) such that N(r, £)+
N(r, 1/g) = S(r,£) + o(rd) as r —> oo, where Pn_i(£) is a differential polynomial in £
with degree at most n — \, its coefficients are bj meromorphic in the plane and satisfying
T(r,bj) = S(r,£) + o{rd) as r -> oo. Then g(z) = r/(z)n, where r?(z) =£(z)+a(z), a(z) is
a function meromorphic in the plane and satisfying T(r, a) = S(r, £) + o{rd) as r -^ oo,
and na(z)r](z)n~1 can be obtained by the following method: it is equal to the part with
degree n — 1 in Pn_i(£), but needing to substitute rj for £, r\' for £', etc., in this part.

The following lemma is a generalization of Theorem 3.10 in [11].

Lemma 3.3. Suppose that f(z) is a function meromorphic and non-constant in the
plane, and that k ^ 2, Ao,..., Ak-2 are entire functions, providing that there exists a
constant d < cr(f'/f) such that T(r, Aj) = S{r, f'/f) + o(rd) as r -> oo, j = 0, . . . , k - 2,
and

N(r,f) + N(r,l/f)+N(r,l/Lk(f))=S(r,f'/f) + o(rd), as r -> oo, (3.1)

where

Lk (/) = /<fc> + Afc_2/(
fc-2) + ... + Aof. (3.2)

Then

(i) if f'/f is constant, then f = eaz+b with a, b constants;

(ii) if f'/f is not constant, then we must have

f = dt - i(fc - l)h(z) + c2 j , (3.3)
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with c\, C2 constants, and

- l)(fc - l)}(h'2 - 2h") + Ak-2 = 0, 1

Bk-3 = bk-3(h', Afc_2) + Afe_3 = 0,

Bk-4 = bk-A{ti, Ak-2,Ak-3) + Ak-4 = 0,

Bo =

(3.4)

where bk-j are polynomials in Ak-2, • • • ,^4fc-j+i, h' and derivatives of b! with
constant coefficients, and are linear in Ak-2> • • •, -^fe-j+i {j = 3 , . . . , k), Bk-j (j =
2 , . . . , k) are determined by the following relation:

= f'/f,
=eh+ci

Pk-i(€) is a differential polynomial in £ with degree k — 1, each
coefficient of which is a constant multiple of one of AQ, ..., Ak-2-

(3.5)

In addition, h is entire, cr(h') = a(Ak-2)> b! is a polynomial if and only if Ak-2 is
a polynomial, h' is constant if and only if Ak-2 is constant, and h' = 0 if and only

Proof. Set £(z) = f(z)/f(z).
(i) It is evident.
(ii) £(z) is not constant, so, from lemma 3.5 in [11], we get

- 2)(fc - = g(z), (3.6)

where Pfc_3(̂ ) is a differential polynomial in £ with degree fc - 3, each coefficient of which
is a constant multiple of one of AQ, ..., Ak-2- It follows from (3.1) that

N(r, l / 5 ) = N(r, f/Lk(f)) ^ N(r, f) + N(r, l/Lk(f)) = S(r,£) + o{rd), as r -> oo,

N(r, 0 = N(r, f'/f) = N(r, f) + N(r, 1//) = S(r, £) + o(rd), as r -^ oo.

Hence, adding the hypotheses for Ao,..., Ak-2, the conditions of Lemma 3.2 are satisfied.
Therefore, (3.6) becomes g(z) = r](z)k, where

a(z),
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i.e.

Prom

= \{k-l)r1'{z)h{z), T(r,a)=S(r,0+o(rd), as r -+ co.

2a
1 =

we have

H , / 2a
J f c - 1 r)-a

Substituting them into (3.6) gives

zjV ~ <A k-3(r, - a) = r,k. (3.7)

Expanding the left-hand side of (3.7) and gathering the terms according to the degree of
T?, we get

(3-8)

where

Bk-3 = bk-z{a, Ak-2) + Ak-3,

Bo =

where bk-j are polynomials in Ak-2> • • • i ^fc-j+i) a
coefficients, and are linear in Ak-2, • • • > Ak-j+\, j

(3-9)

derivatives of a with constant
2, ...,k. It is easy to see that
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T(r,Bk-j) = S(r,f) + o(rd) as r -> oo. If k = 2, then Bk-2 = Bo = 0 from (3.8). If
k > 2, applying Lemma 3.1 to (3.8) gives

rfc-3 .,

( i * ^ I

T, Bk—iTI) = Us > 771(7", 5o ) + S[T, 77) ?

= 5(r, £) + o(rd), as r —> oo.

Since

N(r,Bk^2r)) < N(r,Bk-2) +N(r,r)) = N(r,Bk-2) + 0{N(r,g)}
= N(r, 5fe_2) + 0{N(r, 0 } = 5(r ,0 + o(rd), as r -> oo,

we get
T(r,Bk-2r]) =S{r,£) + o{rd), as r -^ oo.

If Sfc_2 ^ 0, then

r( r , rj) = T(r, Bk^2T]/Bk_2) < r(r , -Bfe_2r7) + T(r, 5fe_2) + 0(1)

= S(r,£) + o(rd), as r -> oo.

Thus
T(r, ^) = T(r, i\ - a) = S(r, f) + o(rd), as r -> oo.

This gives
^( r >0 = °(rd) n-e-> as r —̂  oo.

From fact (A) in [3, §2, p. 353], this implies that <r(£) < d, and the contradiction
with assumption occurs. Hence, we must have Bk-2 = 0. We can successively prove
Bfc_3 = • • • = Bo = 0 using the same reasoning. Calculating (3.7) directly gives

Bk-2 = \[k{k+l))(-^—-a'

It can be changed into the form

Setting h' = 2a/(k — 1), noting that Bk-2 = 0, gives

i'2 - 2h") + Ak_2 = 0. (3.10)

Firstly, from (3.10) we can see that h' is entire, and so is h. Otherwise, assume z0 is a pole
of h'. It is easy to check from (3.10) that ZQ must be a simple pole of h', and the principal
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part of Laurent expansion of h! at ZQ is —2/{z — ZQ). From this, n' /n = 2a/{k — 1) = h'
and / ' / / = V — \{k - l)h', we can obtain

where B(z) is holomorphic in the neighbourhood of ZQ, do is a non-zero constant. Thus,
/ has an essential singularity at z0. This contradicts that / is meromorphic. Secondly,
it follows from (3.10) that a(h') = a{Ak-2)- In fact, on the one hand, we can easily
get a(Ak-2) < a(h') from (3.10) and fact (A) in [3, §2, p. 353]. On the other hand,
applying Lemma 3.1 to (3.10) gives ro(r, h!) = 0{m(r, Ak-2) + S(r, h')}. Thus, T(r, ti) =
O{T(r, Ak-2)} n.e. as r -> 00. We get a(h!) ^ a(Ak-2) from this and fact (A) in [3, §2,
p. 353]. Thus, cr(h') = (r(J4fc_2). Thirdly, if Ak-2 is a polynomial, applying Lemma 3.1 to
(3.10) gives m(r,ti) = O{logr + S(r,h')} or T{r,ti) = O{logr} n.e. as r -¥ 00. Hence,
h! is also a polynomial. Conversely, it is clear that if hi is a polynomial, then Ak-2 is
also a polynomial from (3.10). Fourthly, under the situation that both of h' and Ak-2
are polynomials, calculating (3.10) directly gives: b! is constant if and only if Ak-2 is
constant, and h' = 0 if and only if Ak-2 = 0.

From 77'/n = ft', we get
rj = eh+Cl.

This is the third formula in (3.5). And, from / ' / / = 77 - \{k - l)h', we get (3.3). Noting
that Bo = --- = Bk-3 = 0 and a = \(k - l)h', we get (3.4) from (3.10) and (3.9). The
proof is completed. •

Lemma 3.4. Let k ^ 2 and A, AQ, . . . , Ak-2 be entire functions with A non-constant.
And suppose that there exits a constant d < cr{A) such that T(r,Aj) = S(r, A) + o(rd),
j = 0, . . . , k - 2, ~N(r, I/A) = S{r, A) + o{rd) as r -> 00. If the equation

WK + Ak-2W{k-2) + ••• + Am/ + (A) + A)w = 0 (3.11)

possesses a solution / ^ 0, providing that there exits a constant d\ < a {A) such that
N(r, 1//) = S(r, A) + o(rdl) as r -t 00, then we must have

/ = expjw I eh{t) dt - \{k - l)h(z) + c2j , (3.12)

with u)k = 1 (i.e. w is a kth root of unity), c2 constant, and the coefficients Ao,..., Ak-2
in (3.11) must satisfy (3.4), A must be zero-free and

A = -ekh, kti = A'I A. (3.13)

Moreover, equation (3.11) is determined uniquely by (3.13) and (3.4) (i.e. by A or h'),
and it possesses k linearly independent zero-free solutions given by (3.12).
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Proof. Clearly, we can assume that d\ > d without loss of generality. Substituting /
for w in (3.11), we get

Lk(f) = -fA, (3.14)

where Lk(f) is denned in (3.2). Hence,

N(r,l/Lk{f))=N(r,l/(fA))

= S{r,A) + o(rdl), as r ->• oo. (3.15)

In addition, from [11, Lemma 3.5], setting £ = / ' / / , we have

e + Pk-i{0, (3-16)

where Pk-i (£) is a differential polynomial in £ with degree k — 1, each coefficient of which
is a constant multiple of one of AQ, ... ,Ak-2- Combining (3.14) and (3.16) gives

tk+Pk-i(S) = -A. (3.17)

It is easy to get, from (3.17),

fc~2

k-2

j=0

= O{T(r,£)+S{r,A) + rdl}n.e., as r -> oo,

or

T(r,A) = O{T(r,0 + rd l} n.e., as r -^ oo. (3.18)

On the other hand, applying Lemma 3.1 to (3.17) gives

r, Aj) + m(r, A) + S(r,£) \
j=0 >

= O{m(r,A) +rdl +S(r,£)} n.e., as r -»• oo.

Since (note that / is entire)

N(r,0 = N(r, / ' / / ) = N(r, 1//) = S(r, A) + o(rd>) n.e., as r -> oo,

we get
T(r,£) = O{m(r, A) + rdl + S(r, £)} n.e., as r -» oo,
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or

T{r,£) = 0{T(r,A)+rdl} n.e., as r -> 00. (3.19)

It is easy to see that CT(£) = a(A) from (3.18), (3.19) and fact (A) in [3, §2, p. 353].
Hence, we get from (3.18), the assumptions of this lemma and (3.15), and, noting that
/ is entire,

T(r, Ai) = S(r, f'/f) + o(rd>), j = 0,..., k - 2,

N(r, /) + N{r, 1//) + N(r, l/Lk(f)) = S(r, f'/f) + o(rd>) n.e., as r -» oo.

Therefore, the conditions of Lemma 3.3 are satisfied, and, noting that / ' / / is not constant
from (3.18), (3.3) and (3.4) hold. Prom (3.5) we get

Lk(f)/f = ek(h+c>\ (3.20)

If we set u = eCl is a fcth root of unity, i.e. wk = 1, then we get (3.12) from (3.3), and
(3.20) becomes

Lk{f)/f = ekh. (3.21)

Thus, (3.12) provided k linearly independent zero-free solutions for the equation (3.21).
Combining (3.14) and (3.21) gives

ekh = -A.

Hence (3.13) holds. The proof of Lemma 3.4 is completed. D

4. Proofs of main results

Proof of Theorem 2.1. (i) If A has at least one zero, then, from Lemma 3.4, for any
solution / ^ 0 of the equation (2.1), there must not exist any constant di < a(A) such
that N(r, 1/f) = S(r, A)+o{rdl) as r -> oo. Therefore, we must have N(r, 1//) ^ S(r, A),
and there must not exist any constant d\ < a(A) such that N(r, 1/f) = o(rdl) as r -4 oo.
Prom these, we obtain, respectively,

where E is a set of r with finite linear measure.
(ii) If A has no zeros, then, from Lemma 3.4, for any solution / ^ 0 of every equation

(2.1), except the equation (2.2), there must not also exist any constant d\ < cr(A) such
that N(r, 1/f) = S(r, A) + o(rdi) as r -> oo. The remainder of reasoning is the same as
in (i). For any solution / ^ 0 of the exceptional equation (2.2) that is not a constant
multiple of some fj, the proof is the same. D
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Proof of Corollary 2.2. Prom (3.13), for the exceptional equation (2.2), we must
have that A ^ 0, a(h') = a(A'/A), h! = 0 if and only if A' = 0, hi is a polynomial
if and only if A'/A is a polynomial. Thus, from Lemma 3.3, the equations that satisfy
the conditions of Corollary 2.2 cannot be the exceptional equation (2.2). And, therefore,
Corollary 2.2 holds from Theorem 2.1. •

Proof of Corollary 2.3. Since Ak-2 = 0, Corollary 2.3 holds from Corollary 2.2. •

Remark 4.1. Prom (3.7) (combining (3.4)), we can more easily give the exceptional
equation (2.2) determined uniquely by A (or h') with any order k. See the following
examples.

(1) For k = 2, (2.2) is just the equation

w"-{\(hl2-2h") + e2h}w = 0,

which possesses two linearly independent zero-free solutions (2.3), i.e.

i>2 = exp j ± I" eh^ dt - \h{z) + c\.

Setting h = <p — log 2, c = — \ log 2, we get the example in [3, p. 356].

(2) For k = 3, (2.2) is just the equation

w'" - (ti2 - 2h")w' + {h'" - h'h" - e3h)w = 0,

which possesses three linearly independent zero-free solutions (2.3), i.e.

j j e"« d* - h{z) + c\,

where w? = 1, j = 1,2,3. Setting h = | P + 7ri, Uj = —Kj, c = 0, we get the
example in [1, §9].

(3) For k = 4, (2.2) is just the equation

«,(4) _ !(ft'2 _ 2h")w" + 5(/i'" - h'h")w'

+ (±h'4 - lhl2h" - %h'ti" + \h!12 + §/i<4> - e4*)™ = 0,

which possesses four linearly independent zero-free solutions (2.3), i.e.

fj = expjwj ( eh{t) dt - \h[z) + c\,

where u>j = 1, j — 1 , . . . , 4.
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5. A problem

We can see that, from Theorem 2.1, the problems of complex oscillation for equation (1.2),
under the assumptions in this theorem and that of A(z) being of infinite order of growth,
are completely resolved. Now, the remaining problem is whether there exists an equation
of the form of (1.2) satisfying the conditions in Theorem 2.1 with A{z) finite order of
growth which possesses a solution / ^ 0 with a(A) ^ A(/) < oo. Concerning this
problem, Bank, Langley and others have performed several important works to find the
conditions such that any solution / ^ 0 of the equation

w{k) + Qfc_2^(fe~2) + • • • + Qiw' + (Qo + Rep)w = 0

satisfies A(/) = oo, where k ^ 2, Qo,..., Qk—2, R and P are polynomials with R ^ 0
and P non-constant (see, for example, [1,7,8,12]).
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