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SEMIGROUPS WHOSE IDEMPOTENTS FORM A SUBSEMIGROUP

JEAN-CAMILLE BIRGET, STUART MARGOLIS

AND JOHN RHODES

We prove that if the "type-II-construct" subsemigroup of a finite semigroup S is
regular, then the "type-II" subsemigroup of 5 is computable (actually in this case,
type-II and type-II-construct are equal). This, together with certain older results
about pseudo-varieties of finite semigroups, leads to further results:

(1) We get a new proof of Ash's theorem: If the idempotents in a finite
semigroup S commute, then S divides a finite inverse semigroup. Equivalently:
The pseudo-variety generated by the finite inverse semigroups consists of those
finite semigroups whose idempotents commute.

(2) We prove: If the idempotents of a finite semigroup S form a subsemigroup
then S divides a finite orthodox semigroup. Equivalently: The pseudo-variety
generated by the finite orthodox semigroups consists of those finite semigroups
whose idempotents form a subsemigroup.

(3) We prove: The union of all the subgroups of a semigroup S forms a
subsemigroup if and only if 5 belongs to the pseudo-variety UQ * G if and only
if Sn belongs to UQ. Here UQ denotes the pseudo-variety of finite semigroups
which are unions of groups.

For these three classes of semigroups, type-// is equal to type-// construct.

1. INTRODUCTION

In this paper we simplify the new techniques of Ash ([1, 2]) and combine them
with Rhodes' and Tilson's ideas ([21, 23]) concerning the "type-//" subsemigroup of a
finite semigroup. This leads to Theorem 3.1 which shows how to compute the type / /
subsemigroup 5// of a finite semigroup 5 , if the "type-//-construct" subsemigroup Sc

of S is regular. With this assumption, Sn is equal to Sc- In the general case (where S

is any finite semigroup) it is still unknown whether 5// is computable from 5 (see [11,
19, 21]). A stronger question is whether 5// is equal to Sc (the "type-//-construct"
subsemigroup of 5, constructed from the idempotents of S via "weak conjugation" -
-see Section 2 for exact definitions). Next, we combine our Theorem 3.1 with results
about the variety generated by the finite inverse semigroups (Margolis and Pin [14,
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15, 16], who use Simon's lemma [22]), and about the variety generated by the finite

orthodox semigroups (Therien [25]). This leads to the following results:

(1) We give a new proof of Ash's theorem [1, 2]: If 5 is a finite semigroup whose

idempotents commute then S divides a finite inverse semigroup.

(2) We prove: If S is a finite semigroup whose idempotents form a subsemigroup

then S divides a finite orthodox semigroup.

(The two last results, and essentially the same proof technique, were already presented

in [3]).

(3) We prove: The union of all the subgroups of a semigroup 5 forms a subsemi-

group if and only if S belongs to the pseudo variety UQ * G , if and only if 5 / / G UQ.

For these three classes of semigroups, the " type- / / " subsemigroup S// is equal to

the "type-//-construct" subsemigroup.

A LITTLE BIT OF HISTORY.

The type-// subsemigroups arose from Rhodes' complexity theory of finite semi-
groups, in the 1960's (see [7] and [10]). Since no techniques are known for computing
the complexity of a semigroup (and in fact it is not known whether the complexity is
computable at all), Rhodes and Tilson developed lower bounds, involving the type-//
subsemigroups 5/ / and the "constructive type-//" subsemigroups Sc (see [21]). The
"type-// conjectures" or "Rhodes conjectures" were first stated in [11]. Margolis [13]
discovered that, in the case of a finite semigroup 5 whose idempotents commute we
have: 5 divides a finite inverse semigroup if and only if S// = Sc = E(S). So he posed
the following quesiton (which is equivalent to the strong type-// conjecture "S / / =?SC"
for this special class of semigroups): Does a finite semigroup S divide a finite inverse
semigroup if and only if the idempotents of S commute? The detailed proof of this
equivalence follows from Margolis' and Pin's work [14, 15, 16]. Margolis' question was
answered affirmatively by Chris Ash [1, 2].

In [3] and in this paper we combine Ash's construction (in simplified form) and
the older type-// results of [21]; we also use some results on varieties, obtained by
Margolis and Pin [14, 15, 16] (using Simon [22] and by Therien [25] (further clarified
by Tilson's derived categories [24].)

2. RELATIONAL MORPHISMS INTO GROUPS

All semigroups used in this paper are finite (except for free semigroups). A pseudo-
variety (of finite semigroups) is a class of finite semigroups closed under finite direct
product and under division. From now on we will use the word "variety" to mean
"pseudo-variety". See for example [7, 12, 18, 10] for standard definitions and results.
Tilson first demonstrated the usefulness of the following notion:
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[3] Idempotents in semigroups 163

DEFINITION: A relational morphism between two semigroups 5 and T is a sub-
semigroup T of S X T such that the projection of T into 5 is surjective. We denote
the set of these by R(S, T). Equivalently, a relational morphism T from S to T is a
relation S —» T satisfying:

(V* G S)(sr ± 0)&(V«!, s2 G S ) ( ( * ! T ) ( J 2 T ) C ( * 1 < 2 ) T ) .

Notation: To express that s(G S) is related to t(e T) by r we write "(s,<) G r " or
"tear" or "a e ( ( )T- ' "

DEFINITION: Let V and W be varieties and T the set of finite semigroups. We
define

V71 W = {5 I (5 G JF)&(3T G W, r G ^(5, T))

= / 2 6r) ( ( / ) r - 1 GV)}

One can check easily that V~1W is a variety of finite semigroups.

DEFINITION: The Malcev produce VmW of the varieties V and W is

{5 | (5 G J")&(3T e W , ^ € Mor(5, T))

We will consider the variety of finite semigroups (VmW) generated by V m W .
It turns out that the above two "products" of varieties are equivalent:

FACT 2 . 1 . Por any varieties V and W of finite semigroups V71 W = (V m W).

PROOF: [C] If 5 6 V ^ W then there exists a relational morphism T: S -> T with
T G W and (V/ = f2 G T) : ( / ) T - 1 G V. We view T as a subsemigroup of 5 X T. Let
a: T —> 5 be the projection of T onto 5 , and let (3: r —> T be the projection of r into
T. Then we have r = a"1/? (composition of the inverse of a, and (3). H f — f2 £ T
then (Z)^"1 = {(s,f) G 5 x T | (a,/) G T} = ( Z ) T - 1 . Moreover, by assumption,
(Z)T- 1 G V. Therefore {f)P~l G V, and thus r G ( V m W ) . Since ( V m W ) is
closed under homomorphic images it follows that S(= (T)O:) belongs to (VmW^).

[2] This is obvious, since every functional morphism (f> is also a relational mor-
phism. U

We will be interested in varieties of the form (V m G) where G is the variety of
all finite groups. Restating Fact 2.1 in the case of (VmG) , we get: S G (VmG)
if and only if there exists a relational morphism T : 5 —> G (for some finite group G,
with identity element 1) such that ( I ) T " 1 G V.
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This motivates the following notion, which was introduced by Rhodes and Tilson
[21] in the study of lower bounds for semigroup complexity.

DEFINITION: For any finite semigroup 5 , the type-II sub semigroup Su is {s 6 5 |
(VG e G)(Vr £ R{S,G)): s e ( l ) r - 1 }

REMARK: If in the definition of Su the groups are allowed to be arbitrary (infinite)
then Su is empty. The groups must at least be torsion.

FACT 2 . 2 . ((l)-(4) are from [21],

(1) Su is a subsemigroup of S.
(2) Every idempotent of S belongs to Su.
(3) If s £ Su and t ie elements r and x of S satisfy rxr — r (so r is regular,

but x might be non-regular), then rsx and xsr also belong to Su. (We
say that Su is closed under "weak conjugation").

(4) There exists some finite group G and a relational morphism T: S —» G
such that Su = ( l ) r - 1 .

(5) S 6 (V m G) if and only if Sn € V . (This connects (... m G) and the
type-11 concept).

PROOF: For (1), (2) and (3) see [21] and [23].
(4) For everye element n 6 S — Su we can pick a finite group Gn and a morphism
rn: S —» Gn such that n ^ ( l ) 7 ^ 1 • Let us take the finite direct product n ( ^ n I n *=
5 — Su} = Y\ Gn and the relational morphism T: S —> J] Gn defined by

r = {(s, (..., 9n, ...)) e 5 x JJ Gn | (Vn £ S - Su){{s,9n) € rn)}.

Then we have:
(Vn € S - Su)(n £ ( l jr"1) , by the choice of rn and r . However, (Vs € Su){s £ ( l)r-1

by definition of Su. Thus 5// is precisely to ( 1 ) T - 1 .
(5) S € (VmG) if and only if (l)r"1 e V for some finite group G with identity
1, and some relational morphism T: S -> G (Fact 2.1). Certainly Sn < (I)"*""1, thus
Su £ V if ( I ) T " 1 G V . Conversely, by (4), there exists r : S -> G with ( I ) T - 1 = SJJ .

If 5 / / G V then ( 1 ) T ~ 1 ( = 5 / J ) belongs to V. D

We emphasise that the definition of Su, and also the description of the group G
in (4) above, is non-constructive. It is still an open question whether 5/ / is computable
from 5 (assuming for example that we are given the multiplication table of 5). The
"type-// conjecture" of Rhodes is that Su is computable ([11] and [19]). A stronger
conjecture of Rhodes is that Su can be obtained by using (1), (2) and (3) of fact (2.2).
More precisely:
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DEFINITION: For a finite semigroup S, the type-II construct subsemigroup, de-
noted by Sc, is the smallest semigroup of 5 that contains the idempotents of S and
that is closed under weak conjugation.

Clearly Sc is a subsemigroup of Su (by Fact 2.2), and Sc is computable. Rhodes'
"strong type - / / conjecture" is that Sc — 5 / / .

A major result of Rhodes and Tilson is:

FACT 2 . 3 . Let Reg (5) denote the set of regular elements of S. Then S J J n
Reg (5) = Sc D Reg(S) . TJius for the regular elements of S, membership in Su is
decidable. In particular, if S is regular then Su = Sc, and so Su is computable in
that case.

PROOF: See [21], and [23] for a simplified proof. D

A consequence of Facts 2.3 and 2.2(5) is that if S is regular and membership in
the variety V is decidable, then membership in (V mG) is decidable.

For completeness we close this section by showing the connection with a paper of
McAlister [17]. McAlister derives structure theorems for arbitrary regular semigroups
S in terms of groups, fundamental regular semigroups, and CIG(S), (=the conjugate
closure of the idempotents). More precisely, CIG(S) is defined to be the smallest
subsemigroup T (necessarily regular) of 5 containing the idempotents, and such that
aTb C T whenever both aba = a and bab = b. Clearly, CIG(S) C Sc. It is not difficult
to construct examples of finite (non-regular) semigroups where this inclusion is strict.
However, we have the following result for regular semigroups:

FACT 2 . 4 . Let S be a regular semigroup. Then Sc = CIG{S).

PROOF: Define a sequence of subsemigroups Tn of 5 by:

and for i > 0:
Ti+i = (U{aTibUbTia | a, b E S1, aba = a}).

Clearly Tj ^ Tj+i, for i ^ 0, and Sc = U,-̂ oTi- It suffices to prove by induction
on i, that if S is regular then T{ < CIG(S). The statement is clear for t = 0. So
assume T{ ^ CIG(S). Let a,b £ 5 be such that aba = a. We need only show
that for all < € Ti, atb,bta G CIG(S). Since 5 is regular, there exists b' such that
bb'b = 6 and 6' = b'bb'. Then atb = abatb = abb'batb = (ab)(b'{bat)b). But ab,ba 6
E(S) < To < CIG(S), since t 6 Tiy and (ba)t 6 T{ and by induction bat G CIG(S).
Thus x = b'(bat)b G CIG(S) and abx = atb G CIG(S). A similar proof shows that
bta G CIG{S) as well. D

3. THEOREMS

In this section we state our main theorem. Other theorems (for example Ash's
theorem, and its analogue for orthodox and for solid semigroups) are then derived, using
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the main theorem together with other results (about semidirect-product decompositions
of the varieties generated by inverse, respectively, orthodox semigroups).

THEOREM 3 . 1 . Let S be any finite semigroup. Then Su consists only of regular
elements of S if and only if Sc is regular. Moreover, if Sc is regular then SJI = Sc,
and the regular elements of S form a subsemigroup.

PROOF: We will prove the easy parts of this theorem now, and postpone the hard
part.

(a) That if Su consists only of regular elements of 5 then Su = Sc (and hence
Sc is regular):
This follows immediately from Rhodes and Tilson's theorem (Fact 2.3).

(b) That if Sc is regular then the regular elements of S form a subsemigroup:
Let r j , r2 6 5 be two regular elements. By regularity, there exist idempotents

e i , / 2 £ S such that Tx =L ej , r2 =R / 2 . Therefore rir2 =L ^T2 =R eif2, thus
7"i7"2 =D eif2- Obviously e^j2 € Sc. Since we assume that Sc is regular we conclude
that e i / 2 , and hence rir2 (being .D-related to ei/2) , is regular. D

What we still have to show is the following:
If Sc is regular then Su consists only of regular elements of 5 .
This will be done in Section 4 and 5, where we will show that if s is a non-

regular element of 5 then one can construct a finite group G and a relational morphism
T: 5 —» G such that (a)r does not contain the identity element of G - (assuming Sc is
regular).

In Section 7 we give an example, showing the following:
If the regular elements of 5 form a subsemigroup, this does not imply that Sc and

Su are regular. We give another characterisation of " Sc is regular", and show that the
proof scheme used in this paper works only when Sc is regular.

We now apply the main theorem.

FACT 3 . 2 . Let S be a finite semigroup whose set of idempotents E(S) is a
subsemigroup. Then 5// = E(S). Hence (by Fact 2.2(5)), for any variety V, 5 €
(V m G) if and only if E(S) e V .

PROOF: By the main theorem we only have to show that Sc = E(S). (Then indeed
Sc will be regular, hence Sc — Su). It is enough to show that E(S) is closed under
weak conjugation. Let e e E(S) and a,t £ 5 be such that sts = s. Then ts 6 E(S)
and therefore tse £ E(S) (since E(S) is a subsemigroups, by assumption). Then set =
(using a — at s) sts et = fusing tae = (tse) jataeta .et — (using ats — a)aetaet — (set) ,
thus set 6 E(S). Similarly one proves that tea 6 F(S). D

It is known that every variety V of finite idempotent semigroups can be defined
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by a single identity u — v along with the identity x2 = x. (This is due to Gerhard,
Fennemore and Birjukov. See for example [8]. Although proved for Birkhoff varieties,
the proof carries over to our ease.)

FACT 3 . 3 . Let V be a variety of idempotent semigroups

(1) Then S G (V m G ) if and oniy if E(S) is a subsemigroup of S satisfying

E(S)eV.

(2) If V is given by identities [x — x2, u — v] then membership of a semi-

group in (VmG) is decidable.

PROOF: (1) By Pact 2.2(5), S G (VmG) if and only if 5/ / € V. If S G (VmG)
then Sn € V , hence (by the assumption on V) 5/ / = E(S). Then E(S) is also a
subsemigroup of 5 , since 5/ / is. If E(S) is a subsemigroup and E(S) G V then (by
Fact 3.2) Sn = E{S), hence Sn&V. Thus (Fact 2.2(5)): 5 € (VmG) .

(2) Given 5 , we can decide whether E(S) is a subsemigroup and whether E(S)

satisfies the identity u = v. This then decides whether 5 belongs to ( V m G ) , by

(i). D

One can generalise Fact 3.3, using a similar proof. Let V be a variety of union-of-

groups semigroups. Then 5 € (V mG) if and only if Sc 6 V.

Our main applications are the following two theorems:

THEOREM 3 . 4 . (Ash [1, 2]). A semigroup S divides a finite inverse semigroup

if and only if the idempotents of S commute.

PROOF: Let Inv denote the variety generated by finite inverse semigroups. It is
easy to see that S G Inv if and only if S divides a finite inverse semigroup. Let SL
denote the variety of finite semi-lattices (that is commutative idempotent). We will
use the result of Margolis and Pin [14] that Inv = (SL m G). By Fact 3.2, we have
5 G (SLmG) = Inv if and only if E(S) € 5 1 . This is precisely what Theorem 3.4
claims. U

Ortho denotes variety generated by finite orthodox semigroups, Id that consist-
ing of finite idempotent semigroups, and * denotes the semidirect product of pseudo-
varieties.

THEOREM 3 . 5 . A semigroup S divides a finite orthodox semigroups, if and

only if the idempotents of S form a subsemigroup. Moreover, Ortho = (Id mG) =
(Id *G).

PROOF: Here we will prove all but one of the statements of the theorem. Obviously,
if a semigroup S divides an orthodox semigroup (that is a regular semigroup whose
idempotents form a subsemigroup), then the idempotents of 5 form a subsemigroup.

Proof that if E(S) is a subsemigroup then S divides an orthodox semigroup, using

https://doi.org/10.1017/S0004972700017986 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017986


168 J. Birget, S. Margolis and J. Rhodes [8]

the fact that Ortho = (Id m G):
By Fact 3.2: 5 G (Id mG) if and only if E(S) G Id. Then if Ortho = (Id mG),

we get S G Ortho if and only if the idempotents of 5 form a semigroup. Moreover it
is easy to see that a semigroup belongs to Ortho if and only if it divides an orthodox
semigroup. D

Next we have to show that Ortho = (Id mG) = (Id * G).
Proof that Ortho C (Id m G ) : Applying Fact 3.3(1) to the variety Id we get:

S G (Id mG) if and only if E(S) is a subsemigroup of 5 . And, if 5 G Ortho then
E(S) is indeed a subsemigroup of S. U

Proof that (Id * G) C Ortho: It is sufficient to prove that if 5 G Id and G G G
then S *G is an orthodox semigroup. Clearly E(S * G) = {(s,l) \ s G S} and
therefore E(S * G) is a subsemigroup of S * G. Furthermore S * G is regular since for
any (s,g)eS*G we have (a,g)(g-1s,g-1)(s,g) = (s,g). D

The proof that (Id * G) = (Id m G) is more involved, and will be given in Section
6.

DEFINITION: A semigroup S is solid if and only it the union of all the subgroups
of S forms a subsemigroup of 5 .

NOTATION: UQ is the variety of union-of-groups finite semigroups (so, S G UQ if
and only if S is equal to the union of its subgroups).

The finite solid semigroups form a variety. That UQ*G has a decidable membership
problem follows from the next theorem.

THEOREM 3 . 6 . Let S be a Unite semigroup. Then: S is solid it and only if
S G UQ * G if and only if Sc G UQ if and only if 5// G UG. For a solid semigroup S,
we have 5/ / = Sc.

The proof uses results of Therien [25] and is given in Section 6.

4. PROOF OF THE MAIN THEOREM: CONSTRUCTIONS

In this and the next section we will give the remainder of the proof of Theorem
3.1, namely, we prove the following statement:

For any finite semigroup S, if Sc u regular then SJI consists only of regular
elements of S.

We will show (under the assumption that Sc is regular) that if n is a non-regular
element of 5 then n ^ S//. Moreover "n £ 5/ /" means (by definition of type-//)
that there exists a finite group Gn and a relational morphism rn: S —> Gn such that
n ^ (l)7"^1 • For every non-regular element n of 5 we will actually construct such a
Gn and Tn . The group Gn that we will construct will be a direct product of symmetric
groups.
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GENERAL OVERVIEW OF THE PROOF.

Every relational morphism 5 —» G can be constructed as follows: First pick a
non-empty subset Z% in G, for each t £ S. Second, take T to be the subsemigroup of
5 x G generated by the set {(t,g) \ t £ S&zg £ Zt}. Then, obviously, r is a relational
morphism S —* G.

Let G(Q) (for a given set Q) denote the symmetric group on Q. For this special
kind of group one can construct certain relational morphisms S ^> G(Q) as follows:

(1) To every element s £ S, associate a partial injective function / , : Q —* Q.
(However, we do not require that f,t = f,ft).

(2) Extend each / , to a (total) premutation p, £ G(Q), in an arbitrary way.
(So / , is just the restriction of p, to some subset of Q).

(3) Take T to be the subsemigroup of S x G(Q) generated by the set {(s,p,) \
s £ 5 } . Obviously, T is then a relational morphism 5 —» G(Q).

Important observations concerning r as just constructed are:

For p £ G(Q) and s £ S, we have p £ (S)T if and only if there exists a number
k ^ 1 and elements s\, ..., s^ £ S such that s = si sjt and p = ptl p,h . (This
is equivalent to saying that (s,p) can be factored as the product (si,ptl) (sjt,p,t)).

More generally, we will construct relational morphisms from 5 into direct products
of symmetric groups G(Qi) x . . . x G(Qn) (where n is an integer > 1 and Qit ...,Qn

are finite sets), as follows:

(1) For every element s £ 5 and every set Qi(l ^ i ^ n) , pick a partial
injective function /# ) ; : Qi —> Qi.

(2) Extend each f,ti to a total permutation pJit- £ G(Qi).

(3) Take r to be the subsemigroup of S xG(Qi)*x . . . x G(Qn) generated by

{ ( a . P . , 1 , • • • , P . , n ) \ s e S } .

We observe again that for a £ 5 , p\ £ G(Qi), , pn £ G(Qn) we have
(pi, . . . , pn) £ (S)T if and only if there exists a number k ^ 1 and elements Sj s^ £ 5

such that s — Si Sk and such that for each i (with 1 ^ » ^ n): pi = p,x ,j p l t ) ; .
In particular, s £ (1)T~1 (where 1 is the identity element of G(Qi) x • • • x G(Qn)) if
and only if there exists a factorisation of s as si s^ (for some k ^ 1 and some
si, ..., Sk € S) such that for all i (with 1 < t < n) , p# l i i p,kii = lj (= identity

Contrapositively: s does not belong to ( I ) T " 1 if and only if for all factorisations
of s as Sj si (with k ^ 1, and Sj, . . . , s^ £ 5 J ifcere exists i (with 1 ^ i ^ n)
such that p,lti p,k ti ^ 1;.

We shall next construct a relational morphism T according to the method just
described, and such that if s is a non-regular element of s then s £ ( 1 ) T - 1 (hence
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s £ SJI ). In order to do this we have to give sets Q\,..., Qn and to each element s
of S we must associate some partial injective functions f,ti (for 1 ^ i ^ n); and this
has to be done in such a way that if a is non-regular then s £ ( l ) r - 1 . In the rest of
this section we will describe the sets Qi and the partial functions f,ti. In Section 5 we
will show the two properties of the construction:

(1) Each f,t{ is an injective partial function.
(2) If s is non-regular then for every factorisation of s as s = si sj.

(with k ^ 1, and S j , . . . ,5jt £ S) there exist i such that the composition

f,x ti /»jt,» cannot be extended to the identity function 1{: Qi —> Qi.

This then shows (under the assumption that Sc is regular) that 5// consists only
of regular elements of 5 .

Before being able to describe each Qi we need a preliminary construction which we
call an expansion. Simply, an expansion associates with every semigroup S a semigroup
Ex(5) such that Ex(5) ->• 5 (that is 5 is a homomorphic image of Ex(5)). The full
definition of an expansion can be found in [5] but it will not be needed here. For any
semigroup 5 we define the expansion 5 to be the semigroup presented by generators
and relations as follows:
Generators: the set S.
Relations: the set {w = ]Jw \ w e S+&l[w € Reg(5)}.

Here we use the following notation:
S+ is the set of all finite non-empty sequences of elements of 5 .
If w — (a.!,..., an) G 5 + then J|iu = Oi an. So S consists of the con-

gruence classes in 5""*" with respect to the smallest congruence containing the relations

The semigroup 5 is a homomorphic image of 5 via the map defined on represen-
tatives (in S+) by w —* Ylw (^ne product map). More rigorously, in a congruence
class (with respect to the above congruence) pick some representative w; the image of
the congruence class is defined to be Yiw • ^ ls e a s v *° cneck that this image Y\w
depends only on the congruence class, and not on its representative w. We denote this
homomorphism S —> S by w.

This expansion is close to ideas contained in Ash's proof [ 1 , 2 ] - using the philos-
ophy of [5].

FACT 4 . 1 . (Properties of the expansion S). Let S be any semigroup.

(a.) For every x £ S we have that x is regular in S if and only if (x)ir is reguJar
in S. In this case the congruence class (X)-KW~X contains only one element. So one can
say that the regular elements of S and S are "the same". It follows that if idempotnets
of S commute (respectively form a band), the same is true in S.
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(b) If S is a finite semigroup then S is also finite.

PROOF: Part (a) of this fact follows immediately from the defining relations of S,
and from the fact that homomorphic images (via the map n in this case) of regular
elements are regular.

Part (b) can be proved in several ways. One could use Ramsey's theorem (as Ash
does in [1, 2]). One could use Brown's theorem [6], which states that if 5 is (locally)
finite and 6: T —> 5 is a surmorphism such that for every idempotent e of 5 , (e)6~1

is (locally) finite, then T is (locally) finite. Obviously (by part (a) of this theorem) the
morphism TT has the required property; in fact (e)ir~1 is a one-element set. A third
method uses the "null-regular-layers"technique of [4]; this is more complicated but gives
much better bounds on the cardinality of 5 . U

FACT 4 . 2 . (Irreducible representatives in S+ of the elements of S)

(a) Every regular element of S can be identified with a unique regular element of

S.

(b) Every non-regular element of S can be represented by a word in S+ of the

form w = (no, r j , rij, . . . , rjt, n*) wiiere each r< is a regular element of S and each

rij is a (possibly empty) sequence of non-regular elements of S with the property that

f]n,- is a non-regular element of S. Moreover, for every subsegement x of length > 1
of w we have that Y[ x JS non-reguiar (that is no rule u —> f[ u , with J"{ u regular can
be applied to w). Therefore we call w an "irreducible representative".

(c) If the regular elements of S form a subsemigroup then every element of S has

a unique representative w satisfying properties (a) and (b) above. In addition, here

each n,-, for 0 < i < k is a non-empty word. (We allow no and nj, to be empty.)

REMARK: Recall that if Sc is regular then the regular elements of 5 form a sub-
semigroup. (This was proved in the partial proof of Theorem 3.1). Therefore we can
apply Fact 4.2(c) in our situation.

PROOF OF FACT 4.2: Parts (a) and (b) are straightforward. Part (c) is a direct
consequence of the following lemma which was first discovered by Ash [1, 2], in the
case of semigroups whose idempotent commute. The lemma implies (assuming that the
regular elements of 5 form a subsemigroup) that the rewrite rules "w —> f [ w ^ I I w

is regular" have the Church-Rosser diamond property. D

LEMMA 4 . 3 . Let S be a semigroup whose regular elements form a subsemigroup.
Then for all x,y,z £ 5 we have that if both xy and yz are regular then xyz is also
regular.

PROOF: Let t 6 S be such that xytxy = xy. It follows xytx =R xy, and thus
xytx is regular. Furthermore xyz — xytxyz, which is the product of the two regular
elements xytx and yz. So xyz is regular, since the regular elements of S form a
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subsemigroup. D

From now on we will only talk about semigroups whose regular elements form a
subsemigroup; so we can identify elements of 5 with their unique representatives as
described in Fact 4.2.

A few more notions and results will be needed before we can define the sets Q;.
For the next definitions and for Facts 4.4 - 4.8 we need not assume that 5C is regular.

DEFINITION: (Type-// partition w refining the ^-relation - -see [23]). For s,t € S
define s w t if and only if there exist x, y € Si such that sx = t and ty = a .

So ss is just =R but using only multipliers from S*. Obviously w is an equivalence
relation on S refining =R (Green's R relation). We will denote the equivalence class
of a for « by [s]. The equivalence ss has the following important properties (given in
Facts 4.4 - 4.8, which we will use later to prove that our partial functions f,ti injective),
taken from [23].

FACT 4 . 4 . If r,b € S and rb =R r then there exists a £ S with rba = r and
aba = a.

PROOF: Since rb =R r, there exists w 6 S with rbw = r. Hence for all k ^ 1,
r(bw) = r. Since S is finite we can choose n > 1 so that (bw)n is an idempotent. Let
a = w(bw)2n~\ Then rba = r, and also aba = to(6w)2n~1t«;(6w)2n"1 = w(frw)4n"1 =
w(bw) n~ = a. U

The next result shows that a is a right partial congruence when restricted to an
.R-class. Note that in Fact 4.5 we need the assumption that sx and tx both stay in the
.R-class of s and t.

FACT 4 . 5 . If s « t and x E S and s ~R sx =R tx, then sx « tx.

PROOF: Let s,t and x be as above. Since s w t, there exists w € Sc with t = sw.
Furthermore, since ax ~R S, Fact 4.4 implies that there exists a €. S such that sxa — a
and axa=a. Therefore tx = awx = axawx. Since w € Sc and 5C is closed under
weak conjugation, we have z = awx £ 5C. So tx = sxz for some element z 6 Sc.
In a symmetric way one finds an element z' € Sc with ax = txz'. This proves that
sx tx tx. D

FACT 4 . 6 . If a,t,x £E S are such that 3 =R t =R SX =R tx then we have:

a « t •£> ax m tx.

PROOF: The implication "=>" follows from Fact 4.5.
For " •<=": Since sx Rs tx there exists w £ Sc such that tx = sxw. Choose

a £ S such that axa = a and t = txa (by Fact 4.4). Then t = txa = sxwa. But
xwa 6 Sc (by closure under weak conjugation). Thus there exists z(= xwa) £ Sc such
that t = sz. In a symmetric way one proves that there exists z' 6 Sc such that a = tz'.
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Thus t « s. 0

COROLLARY 4 . 7 . Let R be an R-class of S and let R/ ss denote the set of

equivalence classes of R with respect to w. Let x G 5 . Tien gx : R/ Rs—• R/ « defined

by

{ [r' • x] if there easts r' such that r' « r and r ' • i 6 fi,

undefined otherwise.

is a partial function which, in addition, is injective.

PROOF: If there exist r', r" such that r' « r » r" and r'x,r"x G # then
[r'as] = [r"x] by Fact 4.6. Thus p,. is a partial function.

If fa], fa] G J?/ « are such (fa])5z = (fa])*/! then there exist r[, r2 with
r i ~ r i i r2 ^ r21 r i z a n t^ r 2 z G -R, and [r[x] = [r'2x]. But then, by Fact 4.6, r[ ~r'2.

Hence also 7*i w r 2 , thus [rj] = fa]. Therefore (7Z is injective. U

FACT 4 . 8 . If e =R f and e = e2, f = f2 then e ss / . In otner words, a!/ the
idempotents in an R-class belong to a common tn-class.

PROOF: If e = R / then e = fe and f = ef. Since e, f e Sc the result follows. D

FACT 4 . 9 . [23]. If a,b E S and aba = a, then b G 5 / / implies a G 5 / / (and
hence since a is regular, a G Sc).

PROOF: [23, Proposition 1.1]. Let <j>: S —• G be a relational morphism from

5 into the finite group G. Let g G ^(6) and let h G ^(a). Hence (&,</), (a, h) G

graph ^ . Let (gh)" = 1. Then (o,flr)(6,ff),(a,/t)w~ = (a,h(gh)w~1 1. But (yfe)"~ =

graph (j> implies (o,*/"1) G graph <j>. Hence 6 G 5/ / implies (p, 1) G graph <f> implies

(a, 1) G graph <j> so a G 5 / / . U

FACT 4 . 1 0 . Let a,b & S be inverses in S (that is aba = a and bab = b so a

and b are both regular elements of S.) Then a G Sc if and only if b G Sc.

PROOF: By Fact 4.9 aba = a and b G Sc C SJI implies a G Sc, and conversely. 0

FACT 4 . 1 1 . For r G 5 , i G Sc, r =« ri implies r as ri (that is 3i' G 5C such
that rii ' = r).

PROOF: By Fact 4.4 3i' G S such that rii ' = r and i'ii' - i'. Now since i G 5C C
Sn and by Fact 4.9 (with i = b, i' = a), i' £ Sc. D

REMARKS: (a) The statement and proof of Fact 4.1) remains the same if Sc is
replaced throughout by S// .
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(b) The relation w is the same with respect to Sc or 5// that is

(vV;,r2 G S)(3ii,i2 G 5c)(r1»i = r2kr2i2 = ^I) if and only if

(Wi,r2 G 5c)(3t3,t4 G S//)(rii3 = r2&r2t4 = rj).

PROOF: If riia = r2 with i3 £ Su, then by Fact (4.4) there exists an i3 such that
r2i3 = rii3is = rx and 73i3t3 = t3. Hence by i3 G S/j and Fact 4.10, i3 G Sc. Now
repeat the argument starting with r2i3 = ri and obtain ri%3 = r2, ?3 G Se. U

The relation « on S induces a function on 5 as follows:
With a reduced representative w = (n i , r i ,n i , . . .,rfc,nj.) G S one associates

[w] =r (n0, [rj], ni,...,[rjfc],nt). We denote the image of S under this function by [5].
Recall that [r,-] denotes the w-class of r^. Since we assume that Sc is regular, and
hence that S has unique reduced representatives (Fact 4.2c), the above function is well
defined. Also (Fact 4.2c), each n̂  (for 0 < i < f c ) i s a nonempty word (but no and n*
can be empty).

We are now ready to define the sets Qi.
Definition of the state sets Qi.

For every word [w] of the form (n0, [ri], nx, . . . , [r*], n*) of [5] we consider a set

Q[w] defined below. So we will have as many sets as there are elements in [S]. Recall

also that we assume that Sc is regular.

Let [w] = (no, [ri], n i , . . . , [r*], n*). Then Q[w], consists of all generalised pre-

fixes of the word [w]. More precisely, Q[w] is obtained as follows:

Firstly, take all the words of the form (no, [fi], • • . , [>\-i]i ni-i> [r]) where r =R ri

and 1 ^ i ^ k. (Here (no, [ri], ..., n;_j) is just a prefix of [w], and r is J?-equivalent

to ri; .R-equivalence is similar to a prefix relation.)

Secondly, take all the words of the form (no, . . . , [r,-], n^ j , . . . , n,^) where 0 < i <

k, 0 < j < |nj | (= length of n^), and where we denote n,- by ("i.i, . . . , n . j n j ) . So

the words taken here are prefixes of [w] which end within some n; or at the beginning

of some n j .

Finally, if no, is not the empty word then we also introduce the empty word,

denoted by e, into Q[w].

For a given [w] = (no, [rj], . . . , n*) with n0 ^ e, we call e, the start state of Q[wj.

If n0 = e in [w], then [w] is really of the form {[r\], n i , . . . , n*). We consider the

w-class containing all the idempotents of the .R-class of rj (recall Fact 4.8); we denote

that ss-calss by [ci], and call [ei] the start state of Q[v]
 m that case.

Definition of the functions fs[w].

For every [w] = (n0, [ri], n i , . . . , [rj.], n*) G [5] and every element s G 5 we will

define a partial function /»,[w]: Q[v] "~* Q[w] • m the next section we will prove various
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properties of / J ) [ w ] .

Intuitively, if q 6 Q[w] w e want (<?)/,,[«,] to be the next generalised prefix of [w]

that is reached from prefix q when the input letter s is processed. (But (q)f,t[w] is

only defined if s indeed leads to q to a generalised prefix G Q[w] ~ otherwise we leave

(Q)ft,[w] undefined.) The precise definition of (q)f,,[w] breakes down into three cases,

according to the shape of q. We will prove in Section 5 that the listed cases are mutually

exclusive or consistent.

CASE 1. If q € Q[w] is of the form q = (no, [ri], ni , . . . , n,-_i[rl) with r =R r,- and

1 < i < k, then

(no,[r1] , . . . ,n i_i ,[r] ,s) if [r] = [r{], and s = ni+1>1

(the first letter of n^+i)

[Case 1.1: Exit from a regular .R-class];

(<7)/«,[w] = < (no> [ri]) • • •»ni-i»[r> • 3]) if there exists r' such that

r' « r and r's =R ri(=R r)

(see Corollary 4.7); [Case 1.2];

. (undefined otherwise) [Case 1.3].

CASE 2. If q e Q[w] is °f the form g = (no, [r\], n j , . . . , [r,], n j t l , . . . , n^;-) where

ni = (riiti, . . . , Tij-jn^i), 0 ^ j < In,-], and 0 ^ i < k, but if we are not in Case (3),

then

' (no)[r i ] ,ni , . . . , [ r , - ] ,n<i i , . . . ,n i j ,a) if a = n ^ + i and j + 1 < |n»|

(no, [ri], n i , . . . , [r-\, n;, [e,+i]) if s = Tii,|n,|,i = |n, | - 1, and

[ei+i] is the ss-class of all the

idempotents of the

.R-class of ri+i

[Case 2.2:

Entry into a regular .R-class];

(undefined otherwise) [Case 2.3].

CASE 3 . Finally, if q — (n0, [ n ] , nlt . . . , [r,], nitl, . . . , ni.in.-l.i) w e define

fwi if s ^ 7i- \Case 3 1\'
(?)/.,[«] =

(undefined otherwise) [Case 3.1].
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5. PROOF OF THE PROPERTIES OF f , ^

We will prove in this section that for all a £ S and all [w] £ [5]:

(1) f*,[w] IS a well-defined partial function;
(2) /.,[„] is an injective;
(3) it 3 is a non-regular element of S then we have: For every factorisation

(«i, . . . , si) G S+ of s there exists [w] £ [S] such that the composition

ftl,lw] /»t.M JS noi extendable to the identity function l ^ j : Q[w] —»

<?M-
This then shows that if a is a non-regular element of S then a £ SJI . (Recall the

reasoning in the "general overview of the proof", at the beginning of Section 4).

The proof that f,%[w\ is a partial function, and the proof that ftl[w] is injective,
are dual to each other (with just a few technical differences). The main problems are
the entry problem (for injectiveness) and the exit problem (for functionality).

Proof that t , [ w ] : Q[w] —* Q[w] ••» a partial function - or the "exit problem".

We must show that in the definition of {q)f,t[w] only one of the cases applies.
Clearly (from the shape of q) Case 1 and Case 2 never apply simultaneously. Also,
Cases 2 and 3 are exclusive by definition. Cases 1 and 3 are either exclusive by the
shape of q, or Case 3 and Case 1.1 both apply and produce the same result.

Within Case 2, and Case 3, all subcases are mutually exclusive.

When Case 1.2 applies alone, (q)f,l[w] is uniquely defined, by Corollary 4.7. The
only place where it is not obvious that the cases are exclusive concerns Cases (1.1) and
(1.2).

Proof that subcases 1.1 and 1.2 of the definition o/(q)f^)[w] are mutually exclusing:

If s 7̂  n j + l i l or [r] ^ [rj], then obviously only one of Cases 1.1 and 1.2 applies. So
consider the situation where s — ni+\ti and [r] = [r^]. Obviously Case 1.1 applies. We
must rule out Case 1.2. We call this the exit problem, because there apparently are
two ways to leave the J?-class of [r̂ ] either by going to (. . . , n ^ i , [r,], a) or by going to
(. . . , nj_! , [r' • s]) (the latter possibility will be ruled out). We shall say that 5 has the
unique-exit property if Cases 1.1 and 1.2 are mutually exclusive. Since Case 1.1 applies,
the word ([rj],a) is a subword of [w]. Since [w] is a reduced word of [5], it follows
from Fact 4.2 that r̂  • 3 is a non-regular element of S. If Case 1.2 also applies then
there exist r ' with r' w r̂  and r' • a =R r,-. This however contradicts the assumption
that Sc is regular, by Lemma 5.1 given below. D

LEMMA 5 . 1 . Let r,s G 5 be such that r is regular, r-a is non-regular, and there
exists r' with r' w r and r's =R r. Then Sc contains an element that is non-regular
in S.

PROOF: Let / be an idempotent in the L-class of r ' . So there exists y with
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yr' = f — f2. Also yr' ~ yr (since r « r ' and w is preserved under left multiplication).
Therefore yr e Sc (since yr' = f = f2 G Sc and yr « / ) . We can apply Fact 4.4
to r's =R r': there exists x E. S with r 'az = r' and zsx = x. (Actually, since r' is
regular, we can choose x so that x =L r'.) Then, since yr € Se and 5C is closed under
weak conjugation, we get xyra 6 Sc.

We shall show now that xyra is not regular in S. We have indeed (1) xyr =L yr
and (2) yr =L r. (2) follows since r ss r' =L yr' « r/r and yr ^x, r. (1) holds because
3/r = H 3/r' implies zyr = « xyr' = xf = x (since x =L r' = f =L r' w r =L yr). So
we get xyr =i r. Therefore xyra =L ra, which is non-regular in 5 . U

Proof that fs,[w]: Q[w] ~» Q[w] " injective - or the entry problem.

We must show that if qlt q2 € Q[w] are such that (gi)/,,[„,] = (g2)/«,[«] an{i
both are defined, then q\ = q2. Let [w] = (no, [ri],ni, . . . , [r*], n*). We denote
n,- = (»»j,i|. • • ini , j i- • • > ni,|ni|) f° r O ^ t ^ i , O ^ j ^ |tij | . We will distinguish two
cases, depending on the form of (qi )f,,[w] •

CASE A. {qi)f.,[w] is of the form (n0, [n] , m , . . . , [r2], riij, . . . , riij+i) where 0 <
i ^ k and 1 ^ j + 1 < |n j | . This case is rather simple: by the definition of (qi )f,t[w] we
must have s = fit,j+i > a n d <?i must be equal to (no, [i"i], n i , . . . , [r,-], n^i, ..., «t,j) -
otherwise (gi )/,,[„] would have been undefined. Similarly, since (gi )/,,[„] = (?2)/»,[»]»
we must have g2 = (n0 ) [n], n i , . . . , [r^], n ^ , . . . , n,-,j). Hence gx = g2.

CASE B. (qi)r2l[w] is of the form (n0, [rj], n j , . . . , n;_i , [r"]) where r" =R rit and

1 ^ i <fc.

If [r"] ^ [e<] (where [e,-] is the w-class of the idempotents of the iZ-class of r^) or

if [r"] = [e;] but a ^ n i_1 i . i, then the definition of {qi)f,t[w] uniquely determines

2i = <?2 to be (n o , | r i ] , nlt . . . , n i_i , [r]), where [r], [r"7] and a are related as follows:

there exists r' with r ' w r and r" — r'a = R r . By Corollary 4.7, this uniquely

determines [r].

However, if [r"] = [ê ] and s = n ^ j i . i then there seem to be two possible

values for q^ and g2 (which would allow gx ^ g2). This is the entry problem. We

must rule out one of these values, otherwise fgl[w] will not be injective. Two apparently

possible values for gi , g2 are:

(1) (n0, [ri], nu . . . , ni_i , [e,]), and

(2) ^n0, [TI], n i , . . . , « . ; _ ! , . . . , n j_ l j | n ._ i |_1J ,

assuming in both cases that a = n,-_j | n . I a n { l that there exists r' with r' w e< and

r' -stuei.

(5.1)(a) Let us prove that (1) is impossible. Indeed, assume we had

(9i)/.,M = ( n o , M , n i , . . . , n,_i,[ei]) = (n 0 ) [n], nu . . . , n j _ i , . . . , ^ ^ ^ . ^
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with a = n i _ l i | B j _ l | and ( 3 r ' ) : r' =R e< and r ' • a ss e i . Then a • e ^ = n ^ ! , ^ . ^ •
must b e a non-re^u/ar element if 5 . (This is because the word expressing (qi)f,,[w]

above mus t b e reduced; no rule of the form u —> Ylu can be applied to it . If a • e< were
regular then the rule (a,ei) —* a • e,- could be applied). This however, contradicts the
fact t h a t Sc is regular, by the dual of Lemma 5.1 because of the following: If r' « ei = e
and r' • a w e and a • e is a non-regular element of 5 , then there exists ii £ Sc such
tha t r ' s i i — e so r ' a i i e = ee = e so a - ( t ie ) =£, e so i je =i e. Then by the dual of
Fact 4.11 i\e w e . Hence e = e 2 , a • e is not regular t i e « e and a - i je =£, e. Then, by
taking the dual of Lemma (5.1) with a, e, r, r' here replaced by a, r, r', i, e there,
respectively, we find Sc is not regular, a contradiction.

Having ruled out (1), we obtain gj = 52 ==
(no> b"i]) n l 5 . . . , n ,- . ! , ! , . . . , n ; _ i , |n ;_! | — 1) . D

Proof that if s is non-regular then s ^ ( l ) r - 1 .

Let 3 be a non-regular element of S and let ( s i , . . . , sjt) € S+ be any factorisation

of 3. (Tha t is k ^ 1 , « i , . . . , s* 6 S and Si s t = s ) - Let w be the reduced
representat ive of an element of S obtained by applying the denning relations of 5 to the
word ( s j , . . . , 3k). We will show tha t for this particular w , obtained from («i , . . . , s/,)

we have (denoting the s tar t s ta te of Q^ by 90 )'•

(5-2) (go)/.lfH f.k,[w) = [w].

Notice also that q0 ^ [w] because, on the one hand, [w] is certainly not e, and on
the other hand [w] is not of the form [e] (with e = e2 £ S) because a is not regular
(hence w is not regular by Fact 4.2(b)). Therefore, from equaltiy (5.2) we deduce that

(9o)/jt ,[w] /*fc ,[w] is defined and is different from q0 . Thus f,x t[w] f,k t[w] cannot
be extended to the identity function l[wj: Q[w] —* Q[w] • From this we conclude that
3 £ (1)T"I^,| (recall the "general overview of the proof at the beginning of Section 4).

Proof that (go)/.! , H f.kl[w] = [w].

By Fact (4.2), the word ( j l t . . . , a*) can be broken up in a unique way into sub-

segments no, p i , n i , . . . , ph, rift, each belonging to S + , such that:

(1) the concatenation no • Pi • ni p/, • nj, equals (si, . . . , s*);
(2) each p ; (with 1 < i ^ h) is a maximally long subsegment of (si , . . . , ak)

such that J l P> *s a regular element of 5 ;
(3) each n< (with 0 ^ i ^ h) is a subsegment of (a l t . . . , aj.) such that every

non-empty subsegment v of n< (including n< itself) satisfies: f] v is a
non-regular element of S.

Observe that in this notation: w = (no, J~[ p i , n j , . . . , JJ p/i, n^ ) . Also, if no ^ e
then the start state of Q^j is go = e; if no = e then go = [ei] = the w-dass of
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all the idempotents in the .R-class of f ] P i - Let us write nj = ( n ^ , . . . , nit\ni\), for
0 < i ^ h, and Pt(p»,i, • • •, P»,|pi|) for 1 ^ i ^ h. The composition of partial functions
/ # l ^ /«i,M is the successive composition of partial functions of the form / ^ it[w]

for j = 1, . . . , |no | , followed by fPlj,[w] for j = 1, . . . , | p i | , followed by fniJ,[w] for
j = 1, . . . , | n i | , et cetera.

We start out with the state go • After the functions fnQ . ^ j have been applied to
go > successively for j = 1, . . . , |no| the state reached is (no, [ei]). Again, [ei] denotes
the «-class of the idempotents in the .R-class of f[ Pi • Next we apply successively
fpi -.M f°r 3' = *> • • •' IPil • By definition the states reached will be of the form:
(n0, [r[ -p1A) where r[ ss ej , rj-^j =R f l P i i
(no, [r'2 • pij]) where r2 ss p M , r2 • pi>2 =R ]J p i , et cetera,

(n0) [r) • pij]) where r) w T'^ -Vi,j-i, *) -Pi,j =fl II Pi 7 for i = 1, • • •, |Pi I, et cetera,

finally (for j = |p i | ) we reach the state (n 0 , [rjp i | - J»i,|Pl|]) where r [ p j | « '•|Pl|_1 '

PI , IPI | - I
 a n d r | P l | -PI.IPII = « I I P I -

 B u t . since e i = f l f l P i = Pi.i PI , |PI |
 w e

also have e\ = H eipi,i =fl eipi.ipi^ =R ••• =R &\V\,\ Pi,j for j = 1, . . . , |pi|.
Therefore we can choose r[ = e^, r'2 — ripiti = eipi.i, and in general r'j = T'J-\P\,J-\ =

eiPi.i Pi.j-1 for j = 1, . . . , |pi | , and finally we get [r[pi | • Pi,\Pl\] = [flPi]-
Thus, after applying the functions fpi ._[„,] to the state (no, [ei]) we reach the state

Next, we apply fni .^ for 1 < j ^ | n i | . By the definition of the actions, and
by the unique-exit property, this leads to the state (no, [ I I P I I I

 ni> [e2])- I n ^ e s a m e

way we can apply the further functions, corresponding to the successive p;- and n^ (for
j = 1, . . . , h). At the very end we apply rule (3) of the definition of /,,[„,]. This then
yields the state [w]. D

REMARKS ON THE IDEA OF THE CONSTRUCTION.

A lot of the inspiration for the definition of Q[w] an<^ f»,[w] came from Ash [1,
2]. His proof however used induction on the J-order of 5 which complicates things.
The main difficulty in defining f,,[w] w a s to make it an injective partial function, while
at the same time keeping the state sets Q[w\ finite and having only finitely many of
them. For example, it would have been easy to make / , injective by using S+ instead
of [5], but this would have led to infinitely many state sets, and then T would no
longer be finite. When using 5 we still treat the non-regular elements as if we were
in S+. However the regular elements are handled as in 5 . This dual approach leads
to difficulties when successive multiplications ( s i , «is2, SiS2S3. et cetera) lead from
non-regular into regular -R-calsses, (or from regular into non-regular .R-classes). This
entrance and exit problem for regular .R-classes was solved as follows:

Entrance problem: (into a regular R-clats):
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If the current state is q = ( . . . , n^ i , . . . , n.,|nj|-i) s^d- a = ni,|n<| then we do not
define [q)f,t[w] to be ( . . . , n<) but we define it to be ( . . . , n^, [e<+i). In other words,
we anticipate in the state what the next regular -R-class will be, although this regular
i2-class has not yet "really" been reached. This additional knowledge about the future
(in the current state) makes fM,[w] injective ("unique past"). Notice that we can know
what [e<+i] is, since we know [w] (/,,[«] is only defined on Q[w] for a fixed [w]). If this
fails to make the function well-defined Se becomes non-regular via the dual of Lemma
(5.1). See (5.1)(a).

The exit problem (from a regular R-class):

When we are in state q = ( . . . , [»•<]) and [w] = ( . . . , [»•;], n^i , . . . ) and s = n.,-̂
then we define (q)ft)[w] to be ( . . . , [rj], niti). (We do not define (q)f.t[w] to be
( . . . , [r'.s]). Again, the knowledge of [w] tells us that now we should exit from the
regular il-class. If this fails to make the function injective Sc becomes non-regular via
Lemma (5.1). See (5.0).

6. P R O O F THAT (Id*G) = (Id m G ) AND RESULTS ABOUT SOLID SEMIGROUPS

In this section we prove the last open case of Theorem 3.5, and we prove Theorem
3.6.

We note that if V is any variety, then V*G C (V m G ) . For if 5 G V , G G G then
the projection /': S * G —» G satisfies ( I ) / " 1 ^ 5 € V . However, the inclusion in the
opposite direction does not hold for arbitrary varieties V . [For example, Rhodes (un-
pub.) has constructed a sequence of semigroups Sn(n ^ 0), with Sn G ((A * G)mG)
such that Sn has complexity n. On the other hand, A * G * G = A * G i s contained
in the variety of semigroups of complexity ^ 1.]

To prove the inclusion in the opposite direction we must quote results from the
theory of the derived category of a relation as developed by Tilson [24]; see also [20]
for an exposition. We will only quote the important results.

It is well-known that if V and W are varieties of groups, then V * W = (V m W )
consists of all groups G such that there is H £ W and a functional morphism <j>: G —»
H with ker(^) G V . The derived category was developed to extend this situation
from group theory to semigroup theory. It turns out that the "kernel" of a relational
morphism <f>: S —» T is a category D(<j>) that is only "locally" in 5 . That is, the
monoid of self-morphisms Mor(u,u) divides 5 for each v G Obj(D(^)) . For the
case of a morphism between groups, D(<j>) turns out to be the category of cosets of
K = ker(^), and it is well-known that D(<f>) is equivalent to K in the sense of category
theory (see [24]). This is why in group theory we can reduce extension questions to the
study of K ^G.

We will say that a (finite ) category C is locally in a variety V if Mor(v,u) G V
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for each v G Obj (C) . We will say that C is globally in V if there is a monoid M £ V
and a function T : Mor(C) —» M such that

(1) if a 6 Mor(«,u>) and /? G Mor(u;,z) then (a(3)r D ar-fir;

(2) for all morphisms a of C: (a ) r ^ 0 ( T " 1 is surjective);

(3) r " 1 is a partial function.

The following fundamental theorem appears in [24].

THEOREM 6 . 1 . 5 € V * W if and only if there is T £ W and a relational

morphism <f>: S —> T such that D((f>) is globally in V .

Let D(<f>) denote the derived category without identifying arrows (see [14]. Note
D{4>) < 1)(<t>). Then if W = G, D(<t>) and £>(#) distinguish between V * G and
(V m G ) , since easily

COROLLARY 6 . 2 . (a) S e ( V m G ) if and only ifthere is a relational morphism

<$>: S -> G where G e G such that ~D{<j>) is locally in V .

(b) If V is "local" (that is for all categories C, C is locally in V if and only if C

is globally in V J, then V • G = (V m G).

It is easy to show if a category C is globally in V, then it is locally in V . The
converse is usually not true. For example, if J the variety of ./-trivial monoids, then
there are categories that are locally in J but not globally in J ([9], see also [25]).
The same holds true for the variety Comn (for n ^ 1) consisting of all commutative
monoids satisfying xn = xn+1 (Therien [25]). On the other hand, an important lemma
of Simon [22] can be shown to give the following theorem concerning the variety SL of
semilattices.

THEOREM 6 . 3 . Let C be a category. Then C is locally in SL if andonly if C
is globally in SL.

COROLLARY 6 . 4 . SL* G = (SLmG).

Therien and Weiss [26] have shown that a similar conclusion holds for the variety
Id of idempotent monoids:

THEOREM 6 . 5 . Let C be a category. Then C is locally in Id if and only if C
is globally in Id.

We obtain from Corollary (6.2) and Theorem (6.5):

COROLLARY 6 . 6 . Id*G = ( I d m G ) .

Therien proved more - which will enable us to prove our Theorem 3.6. Let UQn

be the variety of monoids satisfying xn+1 = x, n > 1. So UQ = |J UQn is the variety

of union-of-group semigroups.

https://doi.org/10.1017/S0004972700017986 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017986


182 J. Birget, S. Margolis and J. Rhodes [22]

THEOREM 6 . 7 . ([28]J. Let C be a category. Then for each n ^ 1, C is locally

in UQn it and only if C is globally in UQn.

COROLLARY 6 . 8 . C is locally in UQ if and only if C is globally in UQ.

COROLLARY 6 . 9 . For all n > 1: (W£nmG) = (UQn*G) = {S | Sc e UQn}
= {S | Sn G Ugn}. And: (UQ mG) = {UQ * G) = {5 | Sc G KG} = {S \ 5// G KG}.

Notice that Sc G UQ implies that Sc is regular. Therefore (by the main Theorem
3.1), Sc = Sn for solid semigroups. As a consequence (using Fact 2.2(5)) we have
S G IAG * G if and only if Sc G UQ, and thus, membership in the variety UQ * G is
decidable.

7 . A COUNTER-EXAMPLE, AND A CHARACTERISATION OF " Sc IS REGULAR"

FACT 7 . 1 . There exists a finite semigroup S satisfying:

(1) the regular elements of S form a subsemigroup, but
(2) Sc and Su contain some non-regular elements of S. So, if the regular

elements of S are a subsemigroup, this does not imply that Sc is regular.

The type-/ / conjectures for semigroups whose regular elements form a subsemi-
group, are still open in general.

To prove the fact, consider the following semigroup S:

As a set 5 = {0,n} U {a!, a2,a3,a^} X {61,62)63} and the multiplication is as
follows:

(0) the element 0 is a zero (that is (Vx G 5)(0 -x - 0 • x - 0));

(1) n ' = 0;
(2) (V6G{61,62,63}) (n-(<*!,&) = (a4, 6), n • (a2, b) = (a3, b) and n •

(os, 6) = n • (a4, 6) = 0);
(3) (Va G {a1,a2,a3,a4})((a, bi)-n = (a, b2)-n = 0&(a, b3) • n = (a, b2));

(4) {ai, a2, a3, a4 } x {61,62163 } is a Rees-matrix semigroup with trivial struc-
ture group, and with the following structure matrix C:

C d\ a2 0,3 (Z4

61

62

63

1
0
0

1
1
0

0
0
1

0
0

0

One checks easily that this multiplication is associative. The regular elements of
S form a subsemigroup (consisting of {0} U {0.1,0.1,0.3} x {bi,b2}). Also, the element
(ai, 62) is a product of idempotents ((01,62) = (ai> 6i)(a2>62)), hence belongs to Sc-

Moreover, we have (02,63)•n-(02,63) = (02,63), so n and (02,63) are a weak conjugate
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pair. Therefore, since (oj, 62) € Se and since Sc is closed under weak conjugation we

have n • (01,62) • (02,63) = (04)63) G Sc. But (04,63) is a non-regular element.

To conclude the paper we give the following characterisation of our running as-

sumption USC is regular in 5".

THEOREM 7 . 2 . Let S be a finite semigroup and let Sc be its type-11-construct

subsewlgroup. Then the following are equivalent:

(1) Sc is regular in S (that is every element of Sc has an inverse in S);

(2) Sc is regular (that is every element of Sc has an inverse in Sc itself);

(3) t i e reguair elements of S form a subsemigroup, we have for all x and a

in S: if a is regular but a • x is non-regular, then (Vi £ [a])(t • x <R t)

(strict R-order) (see Lemma (5.1)) and we have for all x and 3 in S;

if S is regular but x • a is non-regular, then (Vt G [']')(z • t <L t) (strict

L-order); (Recall that [a] denotes the m-class of a, defined before Fact

4.4. Here [a]' = {t £ S | (3o,6 € Sc)(t = aaka = bt)}. So [a]' is the

equivalence class of a with respect to the left dual of ss).

(4) 5// is regular in S;

(5) 5// is regular;

(6) 5 / / = Sc and Sc is regular.

PROOF: (1) «=> (2) follows from Fact 4.10.

(2) = > (3) by (3.1)(a) and Lemma (5.1) and its dual.

(3) =£• (4) is the long proof of Theorem (3.1) given in Sections 3, 4 and 5. Note

only the assumptions of (3) are used!

(4) <̂ => (5) follows from Fact 4.9.

(5) =*• (6) follows from Fact 2.3.

(6) = • (1) is trivial. D
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