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Surface gravity wavepackets in intermediate water depth experiencing an abrupt depth
decrease are investigated experimentally. The experiments provide validation for the
second-order (in steepness) theory for narrow-banded surface gravity wavepackets
experiencing a sudden depth transition derived in a companion paper (Li et al., J. Fluid
Mech., 2021, 915, A71). We observe the generation of free second-order sub- and
superharmonic wavepackets due to the sudden depth transition, in addition to changes
to the main (first-order) wavepacket and its second-order bound waves. Locally, just after
the step, this leads to the superposition of different wavepacket components. Thereafter,
separation occurs because of the different group speeds of the free second-order sub- and
superharmonic wavepackets compared with the main packet. Experiments show that the
local superposition of waves can lead to significant amplification of wave crests near the
top of a step, as predicted by theory. In addition to a step, we also experimentally examine
more gradual depth changes in the form of 1 : 1 and 1 : 3 slopes to explore the limits of the
theory’s validity. Although we find small differences in amplitude and phase comparing
these steep slopes with a step, these experiments suggest that the theoretical model derived
in Part 1 for wavepackets travelling over a step is applicable to slopes steeper than 1 : 3.

Key words: surface gravity waves, coastal engineering

1. Introduction

Ocean waves have been studied extensively by scientists and engineers. The distribution
of wave heights given a stationary background sea state is of obvious interest.
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Figure 1. Summary of studies of wave statistics affected by changes in bathymetry. The dimensionless group
velocity cgω/g (where cg denotes the group velocity, ω the wave frequency and g the gravitational acceleration)
based on the linear dispersion relationship is plotted (the red solid curve) as a function of dimensionless water
depth kh (where h denotes water depth and k is the wavenumber). The symbol denotes the two ends of water
depths examined in the listed studies, from the depth on the shallower side khs to the deeper side khd . The
parameters in parentheses respectively denote khs, khd , the slope gradient, the method used (where FNPFS
denotes fully nonlinear potential flow solver and NLS the nonlinear Schrödinger equation) and whether a local
peak is found at the top of the depth transition (Y/N).

Particularly noteworthy are situations where large waves occur more frequently than would
be expected in a linear model (Onorato et al. 2013; Adcock & Taylor 2014; Trulsen 2018).
One mechanism that can cause this is where waves pass over a step, or steep slope, in
the seabed. In a linear model with normally distributed random components, the free
surface of the waves is expected to have a kurtosis of 3. Values of kurtosis as large as
3.6 have been observed in both numerical and experimental studies of waves at the top
of slopes, meaning that a varying bathymetry can cause an increase in the size of large
waves (Sergeeva, Pelinovsky & Talipova 2011; Trulsen, Zeng & Gramstad 2012; Gramstad
et al. 2013; Kashima, Hirayama & Mori 2014; Ma, Dong & Ma 2014; Viotti & Dias 2014;
Ducrozet & Gouin 2017; Bolles, Speer & Moore 2019; Majda, Moore & Qi 2019; Zhang
et al. 2019; Trulsen et al. 2020; Zheng et al. 2020).

A number of attempts have been made to explain this phenomenon over the last
decade. A review by Trulsen (2018) concludes that the transition over slopes can be a
possible mechanism triggering non-equilibrium wave dynamics. A figure summarising
experimental and numerical studies of this is given in Trulsen et al. (2020). Our figure 1
extends this figure by adding additional studies as well as whether a peak in kurtosis is
observed or predicted. Wave components at second order in wave steepness are found to
be important (Gramstad et al. 2013; Viotti & Dias 2014; Zhang et al. 2019; Zheng et al.
2020). Two non-dimensional parameters are believed to play a key role in the problem
(Li et al. 2021; Trulsen et al. 2020). Specifically, these parameters are k0hd and hs/hd,
composed of three characteristic lengths: the characteristic wavelength λ0 = 2π/k0 (with
k0 the wavenumber) and the two water depths hd and hs on the deeper and shallower side,
respectively.
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Wavepackets subject to an abrupt depth change: experiments

Since the 1960s there have been extensive studies of waves over a varying bathymetry
that focus on other aspects. We review only those experimental studies most relevant to this
paper. Seminally, Beji & Battjes (1993) and Grue (1992) have examined changes to spectral
shape due to the amplification of bound harmonics in response to varying bathymetry. As
the first to systematically examine the role of depth transitions in enhancing the probability
of abnormally large waves, Trulsen et al. (2020) found that there can be a local maximum
of the kurtosis and skewness of the surface elevation close to the shallower side of a
(1 : 20) underwater slope. Similar experiments were conducted and analysed by Zhang
et al. (2019). The sudden peak in kurtosis and skewness has also been observed in the
laboratory when waves propagate over a step (Bolles et al. 2019) and on top of a shoal
(Trulsen et al. 2020). In addition, Monsalve Gutiérrez (2017) observed free superharmonic
monochromatic waves at second order for weakly nonlinear regular waves over a step.

This paper presents an experimental study which aims to validate and explore the
limitations of the second-order theory (in steepness) for narrow-banded surface gravity
wavepackets experiencing a sudden depth transition derived in a companion paper (Li et al.
2021). Different from all previous experimental studies, which have examined random or
regular waves, we employ deterministic wave groups, which allow us to cleanly examine
the physical mechanism at work. This study considers vertical steps as well as 1 : 1 and
1 : 3 slopes and investigates a range of wave parameters and water depths.

This paper is laid out as follows. The theoretical framework employed is briefly reviewed
in § 2, where the focus is on the application of the theory rather than the derivation, which
is given in Li et al. (2021). The experimental matrix and set-up are detailed in § 3. Section 4
analyses the experimental results and compares with the theoretical model of Li et al.
(2021). Conclusions are drawn in § 5.

2. Review of the theoretical model of Li et al. (2021)

Before introducing our experiments, we briefly review the theoretical model in the
companion paper (Li et al. 2021). This theoretical model (i) is based on potential flow
theory neglecting surface tension, (ii) is correct to second order in wave steepness k0A,
where k0 and A are the carrier wavenumber and amplitude, (iii) is valid for wavepackets of
narrow bandwidth and (iv) assumes that the forcing of second-order terms by first-order
evanescent waves near the depth transition is negligible. Finally, for the subharmonic
bound and free waves at second order, we employ the additional assumption that the packet
is long relative to the water depth (see § 2.6.3 in Li et al. 2021).

2.1. Governing equations and boundary conditions
We consider weakly nonlinear unidirectional waves propagating over an abrupt change of
depth. The abrupt depth change is modelled by a vertical wall, meaning that the water
depth changes from a constant hd to a constant hs at x = 0, with x denoting the horizontal
coordinate. This is illustrated in figure 2. It is assumed that hd ≥ hs and that the water
depth is intermediate (kh = O(1)) on both sides of the step. Extremely shallow water is
not considered. The system can be described as a boundary value problem:

∇2Φ = 0 for − h(x) < z < 0, (2.1a)

D
Dt
(z − ζ ) = 0, gζ + ∂Φ

∂t
+ 1

2
(∇Φ)2 = 0 for z = ζ(x, t), (2.1b)
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Figure 2. Diagram of test set-up including gauge, step, beach and wavemaker positions. Dashed lines denote
the locations of the slopes, when installed. The horizontal positions of the gauges are listed in table 1.

∂Φ

∂z
= 0 for z = −h(x), (2.1c)

[Φ]x→0− = [Φ]x→0+ ,

[
∂Φ

∂x

]
x→0−

=
[
∂Φ

∂x

]
x→0+

for − hs < z < 0, (2.1d)[
∂Φ

∂x

]
x→0

= 0 for − hd < z < −hs, (2.1e)

in which Φ(x, z, t) is the velocity potential, ζ(x, t) is the surface elevation and g is the
gravitational acceleration.

2.2. Overall structure of the solutions
In Li et al. (2021), a perturbation expansion in the dimensionless wave steepness ε and a
multiple-scales expansion in the bandwidth parameter δ lead to approximate solutions of
the boundary value problem (2.1). The solutions are expressed as functions of an incident
wavepacket that is assumed known. Specifically,

ζ = ζI + ζR + ζEd for x < 0, ζ = ζT + ζEs for x > 0, (2.2a,b)

where the subscripts I, R, T and E denote the incident, reflected, transmitted and
evanescent waves, respectively, and d and s denote the deeper and shallower sides. Up
to the second order in steepness ε, the free surface can be expressed as

ζI(x, t) = εζ
(11,0)
I + ε2[ζ (22,0)

I,b + δζ
(20,1)
I,b ], (2.3a)

ζR(x, z, t) = εζ
(11,0)
R + ε2[ζ (22,0)

R,b + ζ
(22,0)
R,f + δ(ζ

(20,1)
R,b + ζ

(20,1)
R,f )], (2.3b)

ζEd(x, t) = ε

N→∞∑
n=1

ζ
(11,0)
En︸ ︷︷ ︸

ζ
(11,0)
Ed

+ε2

⎡
⎢⎢⎢⎢⎢⎢⎣

N→∞∑
n=1

ζ
(22,0)
En︸ ︷︷ ︸

ζ
(22,0)
Ed

+δ
N→∞∑

n=1

ζ
(20,1)
En︸ ︷︷ ︸

ζ
(20,1)
Ed

⎤
⎥⎥⎥⎥⎥⎥⎦ , (2.3c)
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ζT(x, t) = εζ
(11,0)
T + ε2[ζ (22,0)

T,b + ζ
(22,0)
T,f + δ(ζ

(20,1)
T,b + ζ

(20,1)
T,f )], (2.3d)

ζEs(x, t) = ε

M→∞∑
m=1

ζ
(11,0)
Em︸ ︷︷ ︸

ζ
(11,0)
Es

+ε2

⎡
⎢⎢⎢⎢⎢⎢⎣

M→∞∑
m=1

ζ
(22,0)
Em︸ ︷︷ ︸

ζ
(22,0)
Es

+δ
M→∞∑
m=1

ζ
(20,1)
Em︸ ︷︷ ︸

ζ
(20,1)
Es

⎤
⎥⎥⎥⎥⎥⎥⎦ , (2.3e)

where the superscripts (iq, j) denote the terms of O(εiδ j) that are proportional to the
harmonics exp(iqψ0), with q = 0 corresponding to the subharmonic or ‘mean’ and q = 2
to the superharmonic. The subscripts b and f denote the second-order bound and free
wavepackets, respectively.

In (2.3), we have only given those terms that we might expect to observe in our
experiments (see Li et al. (2021) for full details). At first order in wave steepness,
an incident wavepacket is reflected (Φ(11,0)

R ) and transmitted (Φ(11,0)
T ), complemented

by the generation of evanescent waves (Φ(11,0)
Ed on the deeper side and Φ(11,0)

Es on the
shallower side) near the step (cf. Massel 1983). Both bound and free wavepackets can
be distinguished at second order. First, bound waves are generated by combinations of
linear waves, also arising in the absence of a step (cf. recent experiments by Calvert et al.
(2019)) and propagating together with the main (first-order) wavepacket. When the bound
waves experience the depth transition, free waves are released in both directions. Free
waves satisfy the linear dispersion relation and, hence, propagate independently. It is these
free and bound second-order wavepackets that this paper examines experimentally.

3. Experimental methodology

3.1. Set-up, wave generation and data acquisition
We carried out experiments in the 35 m flume in the COAST (Coastal, Ocean and Sediment
Transport) Laboratory at the University of Plymouth, UK. A schematic of the experiments
is given in figure 2. The flume has a width of 0.6 m. It was filled to a depth hd, and a
false floor of a height of hstep = 0.35 m was installed from 7.5 to 22.5 m away from the
wavemaker. Hence, the water depth on the shallower side is hs = hd − hstep and depends
on the deeper water depth hd, which is varied in the experiments whilst keeping hstep
constant. In our experiments, we set hd to be 0.55 and 0.75 m.

We used a double-element piston-type wavemaker to generate a focused wave group
with a narrow-banded Gaussian spectrum that linearly focuses to a Gaussian packet in
space:

AI(x, t) = A0 exp

(
−(x − xf − cg0(t − tf ))2

2σ 2

)
, (3.1)

in which A0 is the focused wave amplitude for a uniform depth hd at a measurement
zone located at xf = 1.0 m (i.e. 8.5 m from the resting position of the wavemaker) and
at tf = 32 s, cg0 is the group velocity of the carrier wave on the deeper side and σ is
the characteristic envelope length that leads to δ = 1/(k0σ). We note that the focused
amplitude As on the shallower side differs from the input A0 by a factor of |T0|, where T0
denotes the transmitted coefficient for the linear carrier wave, i.e. As = |T0|A0. A total of
16 resistance-type wave gauges provided 128 Hz free-surface elevation measurements at
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Gauge no. 1 2 3 4 5 6 7 8
Position x (m) −1.88 −0.10 0.00 0.10 0.30 0.50 0.70 0.90
Gauge no. 9 10 11 12 13 14 15 16
Position x (m) 1.10 1.50 5.00 7.50 10.0 14.0 15.0 18.0

Table 1. Horizontal positions of the gauges relative to the top of the depth transition (x = 0), as indicated in
figure 2.

different locations depicted in figure 2 and defined in table 1. The measured free-surface
signals, not the input signal, provided the parameters used to predict the theoretical surface
elevation for each experiment.

The wave paddles are controlled by a first-order signal, and hence both super- and
subharmonic error waves (Schäffer 1996) are expected to be generated, which have to
be taken into account when analysing the experiments. After propagating through the
measurement zone, the dispersed wavepackets were absorbed by mesh-filled wedges
within an absorption zone located at the downstream end of the wave flume.

3.2. Experimental matrix
The main set of experiments are outlined in table 2. These consist of steps with two
depth ratios hs/hd and a range of different peak frequencies f0 (or ω0) for each depth.
In addition, for hd = 0.55 m, two sloped seabed structures with 1 : 1 and 1 : 3 slopes were
examined with different frequencies f0. The wave frequencies were chosen to guarantee
that the depths on both sides of the abrupt depth transition are intermediate. The different
frequencies and depth ratios were chosen to examine the effects of both the depth ratio
hs/hd and wave frequencies. The wave steepness ε = k0A0 and bandwidth δ = 1/(k0σ)
were carefully selected and tested such that second-order effects are measurable but small
enough that higher-order effects (i.e. O(δ2ε, ε3) due to linear and nonlinear dispersion,
respectively) do not play a significant role. The envelope length is long compared to the
carrier wavelength and, thus, the narrow-banded wavepacket approximation is valid. The
cases that were repeated three times are marked with an asterisk in table 2. Estimates of
measurement errors are presented in appendix B, including an examination of repeatability
in appendix B.2.

4. Results and discussion

This section discusses the experimental results, comparing with theoretical predictions
using the model and solutions presented in the companion paper (Li et al. 2021). The
new physical mechanism, as evident in the measured data, is presented in § 4.1 and its
consequences for skewness in § 4.2. The role of the two most relevant non-dimensional
parameters, the carrier wavelength relative to the water depth k0hd and the depth ratio
hs/hd, is examined in § 4.3 in a quantitative comparison with theory focusing on maximum
surface elevation. Results for the two slopes are compared with results for the step in § 4.4.

4.1. Generation of free waves and local behaviour
In order to examine the sub- and superharmonic content of the time-domain
measurements of the surface elevation at different locations, we separate the signals using
frequency-domain filtering, which is described in detail in appendix A. Effectively, this
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Case f0 hd
hs

hd
k0hd k0shs ε δ Case f0 hd

hs

hd
k0hd k0shs ε δ

(Hz) (m) (Hz) (m)

A1 0.60 0.55 0.36 1.03 0.57 0.04 0.1 B1∗ 0.55 0.75 0.53 1.13 0.76 0.06 0.1
A2 (C2,D2) 0.65 — — 1.15 0.62 0.04 0.1 B2∗ 0.7 — — 1.60 1.02 0.08 0.1
A3 (C3,D3) 0.70 — — 1.27 0.67 — — B3 0.8 — — 2.00 1.22 0.08 0.1
A4 (C4,D4) 0.75 — — 1.40 0.73 — — B4 1.05 — — 3.34 1.86 0.08 0.1
A5∗ (C5,D5) 0.80 — — 1.55 0.79 — — B5 1.4 — — 5.92 3.17 0.08 0.1
A6 (C6,D6) 0.85 — — 1.71 0.85 — —
A7 (C7,D7) 0.90 — — 1.88 0.91 — —
A8 (C8,D8) 0.95 — — 2.06 0.97 — —

Table 2. Parameters of the main set of experiments. In the table, ε = k0A0 and δ = 1/(k0σ). Sets A and B are for steps with hd = 0.5 and 0.75 m, respectively; sets C and
D are for slopes of 1 : 1 and 1 : 3, respectively. Cases with an asterisk have been repeated at least three times.
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Figure 3. Energy spectra of surface elevation as a function of frequency at different gauge positions for cases
A5, A2, B1 and B2. (a) Measured data at gauges 1 (x = −1.99 m), 9 (x = 1.10 m) and 14 (x = 14.0 m).
(b) Theoretical results versus the measured data at gauge 9. In the figure, f0 is the carrier wave frequency.

leads to the separation of the wave harmonics that arise at different orders in ε and
include the (first-order) first harmonics ζ (1), the (second-order) subharmonics ζ (20,1) and
superharmonics ζ (22,0).

To illustrate the new physical mechanism, we examine in detail case A5 in figures 3,
4, 5 and 6. Three additional cases, which illustrate qualitatively similar behaviour, are
presented in appendix C. The results from both the theoretical model in Li et al. (2021)
and the experiments are shown. The surface elevations in figures 4 and 13 are scaled by
the measured linear peak amplitude As = |T0|A0 at gauge 9 on the shallower side. We note
that, in the experiments, the linear wavepackets did not focus exactly at any of the gauges.
Amplitude As was thus calculated from the spectra of linear waves at gauge 9 where linear
packets were close to focus.

The energy spectra for four cases are shown in figure 3, which shows the experimental
data at three gauges and the comparisons of the wave energy between experiments and
theory at gauge 9. It can be clearly observed in figure 3(a) that energy near 3 × f0 is
three to four orders of magnitude smaller than the energy near 1 × f0, as expected for
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Figure 4. Measured and theoretically predicted surface elevation separated out by harmonic and compared to
theory for case A5. All surface elevations are scaled by the linear peak amplitude As = |T0|A0 measured at
gauge 9. The position (a) before the step, (b) near the step on the shallower side and (c) far downstream of the
step.

the small ε in the experiments. This indicates that the third-order effects are small and
thus negligible for the four cases selected. Hence, the theory in Li et al. (2021), which
is correct to second order in ε, is valid for these experiments. This is confirmed by figure
3(b), where generally good agreement between experiment and theory for the second-order
subharmonic (ζ (20,1)) and superharmonic (ζ (22,0)) terms is demonstrated, with better
agreement for the latter than for the former.

The top panels of figure 4 present the total surface elevation (ζ (1) + ζ (2)) for case A5
at the three gauges before, just after and far downstream of the step. Generally good
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Figure 5. Spatio-temporal evolution of superharmonic wavepackets associated with case A5.

agreement between the theory and experiments is shown for the total surface elevation.
The differences at x = 14 m shown in figure 4(c) are mainly due to the effects of
linear dispersion. The theory is based on the narrow-bandwidth assumption causing
wavepackets to travel without change in form and ignoring dispersion; over long distances
this assumption is violated. The total surface elevation at gauge 1 (just before the step)
shows close-to-linear properties as the trough and crest of the wavepacket differ by only
∼5 %. In contrast, the nonlinear behaviour at gauge 9 (after the step where the linear packet
is close to focus) is obvious as the wave crest is larger than the trough by ∼20 %. The
nonlinear behaviour at gauge 9 leads to the total surface elevation being vertically skewed
in the region near the top of the step. We now examine in detail super- and subharmonics.

4.1.1. Free and bound superharmonics ζ (22,0)

On the deeper side, at gauge 1 (x = −1.88 m) in figure 4, the bound superharmonic
wavepacket has a magnitude of approximately 5 % that of the linear packet. This is in
agreement with the theoretical prediction. A careful reader may also observe, a long time
after the main packet, a packet of spurious superharmonic error waves associated with
linear generation at the paddle (cf. Schäffer 1996).

The superharmonics are significantly different after the step, i.e. at gauge 9 and gauge
14. Two distinct aspects can be identified if comparison is made between before and after
the step. First, there is significant amplification of wave amplitudes: by a factor of 10 at
gauge 9 and a factor of 5 at gauge 14. Second, in addition to the superharmonic packet
bound to the linear packet, a free superharmonic packet has separated from the linear
packet at gauge 14, as predicted in the theoretical model in Li et al. (2021). This packet
can be identified as free because it propagates at a speed that is different from that of the
main packet and satisfies the linear dispersion relationship, as examined below. The large
amplification of the superharmonic at gauge 9 relative to gauge 14 is a result of the bound
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and free superharmonic packets overlapping. Due to their different speeds of propagation,
they separate after a distance with the free packet lagging behind. The energy spectrum
associated with case A5 in figure 3 further confirms the amplification of the superharmonic
components at gauges 9 and 14 compared to gauge 1.

Figure 5 shows the spatio-temporal evolution of the superharmonic components. The
bound superharmonic packet propagates at the group velocity of the linear packet cg0s,
and the free superharmonic packet at the group velocity of the free carrier wave at 2 × f0,
cg,20s:

cg0s = 1
2
ω0

k0s

(
1 + 2k0shs

sinh 2k0shs

)
, cg,20s = ω0

k20s

(
1 + 2k20shs

sinh 2k20shs

)
, (4.1a,b)

in which cg0s (k0s) and cg,20s (k20s) are the group velocities (wavenumbers) of the
linear carrier wave and the superharmonic free carrier wave on the shallower side,
respectively. In particular, the wavenumbers k0s and k20s satisfy the dispersion relations
ω2

0 = gk0s tanh k0shs and (2ω0)
2 = gk20s tanh k20shs, respectively.

The separation of the bound and free packets can be clearly seen as they propagate away
from the step at x = 0 m. The separation becomes obvious for gauge positions x ≥ 5 m.
The propagation speeds and directions of various packets are illustrated by the straight
lines with arrows. Evidently, cg,20s < cg0s, so that the bound packet arrives first followed
by the free superharmonic packet (cf. gauge 13 at x = 10 m).

4.1.2. Free and bound subharmonics ζ (20,1)

Compared with the superharmonic waves, the subharmonic waves have a smaller
magnitude for case A5 shown in figure 4 (and likewise for the other three cases shown
in appendix C). When the subharmonic bound packet, which takes the form of a set-down,
experiences a depth transition, its magnitude increases, and a free ‘set-up’ is generated on
the shallower side. Their combined effect has three aspects, as illustrated in figures 4 and
6. First, the free set-up propagates at (approximately) the shallow water speed

√
ghs, which

is larger than the bound set-down that propagates at the group speed of the main carrier
wave on the shallower side cg0s (cg0s <

√
ghs). This leads to the free set-up separating

from the main packet and its set-down after a certain distance away from the step. Second,
the magnitude of the effective set-down near the step on the shallower side becomes larger
as we move away from the step and the free set-up propagates ahead faster. Third, the
magnitude of the set-down becomes steady when the free and bound packets no longer
overlap, as shown in figure 6.

For completeness, we note that agreement with theory in figure 4 ahead of the step is
less good due to spurious subharmonic error waves associated with linear generation at
the paddle (cf. Schäffer (1996) and the experiments of Calvert et al. (2019)). The rapidly
travelling free set-up is poorly absorbed by the beach at the end of the flume, is reflected
and travels back, as shown by the rightmost arrow in figure 6.

4.2. Increased skewness near the depth transition
As noted in § 4.1, the maximum surface elevation can be significantly enhanced near the
top of a depth transition due to second-order effects. As discussed in Li et al. (2021),
there exists a peak location xp that corresponds to the location where the second-order
superharmonic bound and free waves are in phase and the crest elevation thus reaches a
maximum. One direct consequence of this is that the surface elevations at this location
are strongly vertically skewed. We illustrate this in figure 7, where the total surface

915 A72-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.49


Y. Li, S. Draycott, T.A.A. Adcock and T.S. van den Bremer

x = 15 m

x = 14 m

x = 10 m

x = 7.5 m

x = 5 m

x = 0.9 m

x = 0.5 m

x = 0.1 m

x = –1.875 m

ζ
(2

0
,1

)
(m

)

20 25 30

2520 30 35

35
t/Tp

40 45 50

Exp.
Theory

cg0st

cg0t

�ghst

�ghst

1

0

–1

(×10–3)

Figure 6. Spatio-temporal evolution of subharmonic wavepackets associated with case A5.

elevation at the location where maximum crest elevation is observed is shown for three
representative cases: A1, A2 and B2. Because the positions of the wave gauges are
fixed, the maximum surface elevation measured in experiments may be different from
the overall maximum. This is demonstrated in figure 7, where the surface elevations at
the theoretically predicted peak locations are shown in figure 7(d–f ). We do not have
measurements at these theoretically predicted peak locations.

Figure 7 illustrates that the crest elevation can be larger than the trough by 75 %, 60 %
and 45 % for cases A1, A2 and B2, respectively. The additional elevation significant
pushes the limits of the perturbation expansion, as evident from the locally non-monotonic
behaviour in the trough in figure 7(d,e). Nevertheless, the good agreement between theory
and experiments in figure 7(a–c) demonstrates that the theoretical model works well for
the cases presented here (ε = 0.04–0.08).

4.3. Quantitative comparison with theory and the role of depth
We now proceed to investigate the role of the most important non-dimensional parameters
of the problem: the carrier wavelength relative to the deeper water depth k0hd and the
depth ratio hs/hd. The scaled maximum crest elevation as a function of k0hd is shown in
figure 8 for the two depth ratios we have examined (hs/hd = 0.36 and 0.53), comparing
experiments with theory. Several things can be noted from figure 8. First, there is generally
good agreement between the theory and experiments for all k0hd and for both depth ratios.
The increase in maximum crest elevation is predominantly due to the superharmonic
terms, with the subharmonic terms being small. Second, both superharmonic bound and
free waves increase in magnitude as k0hd decreases. The amplitude of the free waves is
larger than that of the bound waves for k0hd � 1.6 for hs/hd = 0.36, but always smaller
for hs/hd = 0.53. Third, the increase in maximum crest elevation is generally larger for

915 A72-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.49


Wavepackets subject to an abrupt depth change: experiments

1.4

1.75
1.50

1.00

0.50

–0.50

–1.00
–1.20

0

1.6 1.2

0.9

0.6

0.3

–0.3

–0.6

–0.9

0

1.3

1.0

0.5

–0.5

–1.0

0

1.0

0.5

–0.5

–1.0
–1.2

0

1.4 1.2

0.9

0.6

0.3

–0.3

–0.6

–0.9

0

1.0

0.5

–0.5

–1.0

0

20 25 30 35 40 45 20 25 30 35 40 45 20 25 30 35 40 45

20 25 30 35 40 45 20 25 30 35 40 45 20 25 30 35 40 45

(ζ
(1

)
+

ζ
(2

) )
/
A s

(ζ
(1

)
+

ζ
(2

) )
/
A s

(ζ
(1

)
+

ζ
(2

) )
/
A s

(ζ
(1

)
+

ζ
(2

) )
/
A s

(ζ
(1

)
+

ζ
(2

) )
/
A s

(ζ
(1

)
+

ζ
(2

) )
/
(|T

0
|A

0
)

t (s) t (s) t (s)

(a) (b) (c)

(d) (e) ( f )

Exp.
Theory

Theory

Figure 7. Vertically skewed waves for cases A1, A2 and B2 at the locations of maximum amplitude in the
experiments (a–c) and in theory (d–f ). The amplitude is scaled by the linear peak amplitude (As = |T0|A0)
measured at gauge 9. (a) A1: hd = 0.55 m, f0 = 0.6 Hz, x = 1.1 m. (b) A2: hd = 0.55 m, f0 = 0.65 Hz,
x = 1.1 m. (c) B2: hd = 0.75 m, f0 = 0.7 Hz, x = 1.1 m. (d) A1: at xp = 2.86 m. (e) A2: at xp = 2.16 m.
( f ) B2: at xp = 1.06 m.

a smaller depth ratio hs/hd (figure 8(a) versus 8(b)). Fourth, owing to the fixed gauge
positions, we are observing increases in maximum crest elevation of up to ∼35 %, but not
the even larger increases of ∼75 % predicted at the peak locations for the smallest depth
ratio and small k0hd.

4.4. Steep slopes compared to a step
In this section, we extend our study from a step to a slope. Specifically, we examine two
steep slopes, a 1 : 1 slope and a 1 : 3 slope (see table 2, cases C5 and D5, which we compare
with case A5), and consider time series and maximum surface elevation in turn.

4.4.1. Time series
A time-series comparison is presented in figure 9, where the different harmonics are
shown. The step and the two slopes demonstrate qualitatively the same physics with minor
quantitative differences in amplitude and phase. This is confirmed in the zoomed-in time
series in figure 9(d): all three experiments are in phase before the depth change (i.e.
at gauge 1, x = −1.88 m). Downstream of the depth change, at x = 1.10 m shown in
figure 9(e), there is a clear phase difference for the 1 : 3 slope in the total, linear and
superharmonic signals compared to the step and the 1 : 1 slope, which remain in phase. We
note that, at this location, the superharmonic phase difference is a result of the combined
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Figure 8. Maximum crest elevation at gauge 9 (x = 0.90 m) as a function of k0hd . The circles show (a) cases
A1–A8 with hs/hd = 0.36 (hs = 0.20 m, hd = 0.55 m) and (b) cases B2–B5 with hs/hd = 0.53 (hs = 0.40 m,
hd = 0.75 m).

phase of the free and bound superharmonics. Further downstream of the depth change,
at x = 14.0 m shown in figure 9( f,g), there is an even greater phase difference observed
for the free superharmonic packet (figure 9g) than for the bound superharmonic packet
(figure 9g).

4.4.2. Maximum surface elevation amplitudes
Assessing the maximum crest elevation, figure 9 shows only small visual differences
for the two slopes and the step. For a clearer assessment of the variation in amplitudes,
post-processing was carried out to estimate the amplitude of the separated free and bound
superharmonic packets for all of the cases with different slopes: cases A2–8 (1 : 0), C2–8
(1 : 1) and D2–8 (1 : 3) in table 2. This was done using peak extraction applied to the
Hilbert transform of the filtered superharmonic signal as described in appendix A.2. This
approach enables a consistent estimate of the amplitudes of the packets to be obtained even
when the free and bound harmonics are not fully separated. We note that the amplitude
obtained from this technique should differ from the true like-for-like focused amplitude.
However, this does not affect the validity of the comparisons.

The normalised separated amplitudes of the free, bound and total (sum of free and
bound) superharmonic wavepackets are presented in figure 10 as a function of k0hd.
Also shown in figure 10 are the separated amplitude values obtained from three repeats
of the k0hd = 1.55 cases for each of the slopes (A5, C5, D5). The right-hand panel
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Figure 9. For caption see on next page.

of figure 10 shows a zoomed-in version of the separated harmonics corresponding to
the black box in the main panel. Assessing the second-order bound superharmonics in
figure 10, it is evident that the amplitudes are not greatly affected by the gradient of the
slope. The free superharmonic wavepackets, however, appear to reduce in amplitude as
the gradient reduces. This is observed consistently across k0hd except for the highest
value tested. The unchanged bound and smaller free harmonics result in a reduction
in the total superharmonic amplitude with reduced slope gradient. Although relatively
small differences are observed, steeper slopes are therefore expected to result in larger
crest height values near the depth transition and are hence more likely to induce extreme
wave events. Assessing the values of the repeats (right-hand panel) demonstrates that the
extracted amplitude values are consistent.

Despite the differences shown in figures 9 and 10, the overall trend is that the
differences in both phase (�3 %) and amplitude (�5 %) are small between the different
depth transitions. This demonstrates that the theoretical model derived in Li et al. (2021)
can be an effective model for second-order waves experiencing a steep slope.
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5. Conclusions

In this paper we have examined experimentally the effect of an abrupt depth transition on
the evolution of a surface gravity wavepacket that ‘feels’ the depth transition with a focus
on the effects arising at second order in steepness. Experimental results for a step have
been compared with the theoretical model derived in the companion paper (Li et al. 2021),
examining two depth ratios. Additionally, the effect of replacing a step by (steep) 1 : 1 and
1 : 3 slopes has been examined. The following conclusions can be drawn.

First, we have experimentally validated the second-order narrow-banded wave theory
derived in Li et al. (2021) for surface wavepackets experiencing an abrupt depth transition.
The following new physics identified in Li et al. (2021) is observed experimentally here.
As the main (linear) wavepacket propagates over the step, bound waves at second order
change magnitude, and freely propagating wavepackets are released. Specifically, free
superharmonics and subharmonics at second order are out of phase with their their bound
counterparts and propagate at different speeds from the group velocity of the main (linear)
packet. This leads to rich local behaviour near the top of a depth transition. The different
harmonics overlap locally, and the superposition of those harmonics leads to an overall
maximum crest amplitude at a location that we refer to as the ‘peak location’. The free
components separate from the main packet after a certain distance.

Second, for a step, a quantitative comparison can be made between the maximum
crest amplitude measured and predicted by theory. For the steepness considered here,
the second-order theory, which agrees with the experimental results, suggests that the
maximum wave amplitude can become as large as 175 % of the incident linear focused
wave amplitude at the peak location, mainly as a result of the superposition of different
wave harmonics at up to second order in wave steepness. This leads to a surface elevation
that is strikingly vertically skewed; the wave crest can be larger than the trough by 75 %,
a much greater difference than would be expected from bound waves alone. The authors
conjecture that the vertically skewed surface elevation and the considerable amplification
of the wave amplitude explain the local change in wave statistics for random waves
observed near the top of the depth transition in a series of papers reviewed in Trulsen
(2018). Future work will explore this further.

Finally, experiments with three different slopes (i.e. a step and 1 : 1 and 1 : 3 slopes) have
shown only minor changes in phase and amplitude of the second-order free superharmonic
components. This suggests that the theoretical model derived in Li et al. (2021) can be an
effective model for steep slopes, at least those with gradients larger than 1 : 3.
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Figure 11. Filtering approach for the extraction of wave harmonics demonstrated for case A5 at gauge 9.

Appendix A. Post-processing using frequency filtering and the separation of different
wave harmonics

A.1. Filtering harmonics
To separate the linear, superharmonic and subharmonic components of the surface
elevations, frequency-domain filters were applied. These were implemented by taking a
single-sided fast Fourier transform of the surface elevation, then an inverse fast Fourier
transform of the frequency components allocated to the harmonics. The lower and upper
frequency bounds of these harmonics are taken, considering the bandwidth of the input
spectrum, as

flower,N = Nf0 − 2δ, fupper,N = Nf0 + 2δ, (A1a,b)

where N = 0, 1 and 2 for subharmonic, linear and superharmonic wave components,
respectively. This process is depicted in figure 11 for case A5 at gauge 9. The total time
series corresponding to the total spectrum is shown, along with the separated harmonics.
The corresponding frequency bounds used for the filtering process are indicated by the
colours and the dashed lines in the energy density spectrum, which correspond to the
colours of the presented filtered surface elevations.

A.2. Separation of free and bound superharmonics
As the superharmonic signal is made up of free and bound components, additional
analysis is required to separate these, in order to compare their relative amplitudes (see
figure 10). To achieve this, for each case a gauge is identified where the free and bound
superharmonics are well separated. A Hilbert transform is then applied to the signal, and
the locations and amplitudes of the peaks of the absolute Hilbert transform are identified.
These peak values are taken as the representative amplitudes of the separated free and
bound superharmonic wavepackets. This process is shown in figure 12 for case A3, where
gauge 14 is used. The second peak is identified as the magnitude of the free superharmonic
wavepacket due to its lower group velocity.

915 A72-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.49


Wavepackets subject to an abrupt depth change: experiments

4

2

0

–2

–4

25 30 35 40 45

t/Tp (–)

ζ(2
2
,0

)  
(m

)
(×10–3)

Superharmonic
Hilbert transform
Location of maxima

Figure 12. Filtering approach used to extract amplitudes of free and bound superharmonics shown for case
A3 at gauge 14.

Case r2 (total) r2 (linear) r2 (superharmonic) r2 (subharmonic)

A2 0.9993 0.9999 0.9884 0.9924
A5 0.9992 0.9996 0.9950 0.9933
B1 0.9986 0.9991 0.9907 0.9809
B2 0.9997 0.9999 0.9984 0.9957

Table 3. Mean coefficients of determination between three repeats over and all gauges for cases A2, A5, B1
and B2 separated out by harmonics.

Case σ̄ (total) (×10−4 m) σ̄ (linear) (×10−4 m) σ̄ (super) (×10−4 m) σ̄ (sub) (×10−4 m)

A2 0.7933 0.3334 0.4661 0.1636
A5 0.9450 0.6693 0.3296 0.2056
B1 3.394 3.012 1.402 1.186
B2 1.884 1.170 0.7808 0.6347

Table 4. Mean standard deviations between three repeats, and all gauges, for cases A2, A5, B1 and B2
separated out by harmonics.

Appendix B. Error analysis and repeatability

This appendix quantifies the experimental errors. The potential errors in the wave gauge
measurements are assessed in § B.1, with those from other sources (e.g. changes in
water depth from evaporation, wavemaker non-repeatability, noise, etc.) assessed through
repetition of experiments (§ B.2).

B.1. Wave gauge error
During experiments, calibration was carried out each morning using a three-point
calibration. Gauges were positioned at known z positions of 0.05, −0.05 and 0 m and a
linear fit applied between these positions and the measured voltages. The predicted surface
elevations from this fit were compared with the known positions to provide a representative
error, taken as the mean standard deviation (over all calibrations and every gauge) between
the measured and predicted values. The resulting mean error value is 2.469 × 10−4 m with
a standard deviation of 2.061 × 10−4 m (over all calibrations and every gauge). Gauge drift
over a day was analysed in detail and found to be negligible.
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Figure 13. Measured and theoretically predicted surface elevation separated out by harmonic at gauges 1, 9
and 14 for cases A2, B1 and B2. All surface elevations are scaled by the focused wave amplitude As = |T0|A0
measured at gauge 9. The position (a,d,g) before the step, (b,e,h) near the step on the shallower side and (c, f,i)
far downstream of the step.
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B.2. Repeatability
To assess the repeatability of the tests, three repeats were carried out for four of the
experiments defined in table 2: A2, A5, B1 and B2. The mean coefficient of determination
between each repeat and every other repeat, averaged over all gauges, is shown in table 3.
This is shown for the total measured time series, along with the filtered linear, super-
and subharmonic components. Very high repeatability is observed, despite some repeats
being carried out on different days. In general, slightly reduced repeatability is evident for
the (much smaller) subharmonic components. The equivalent mean standard deviations
are shown in table 4, noting that they roughly vary proportionally with the focused wave
amplitude.

Appendix C. Time histories for cases A2, B1 and B2

Three additional cases shown in figure 13 demonstrate qualitatively similar behaviour to
case A5, including the local processes near the top of a depth transition and the release of
free wavepackets as a result of waves interacting with the step.
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