S-MAXIMAL SUBGROUPS OF $\pi_{1}\left(M^{3}\right)$

C. D. FEUSTEL

Let M be a compact, connected, irreducible 3 -manifold. Let S be a closed, connected, 2 -manifold other than the 2 -sphere or projective plane. Let f be a map of S into M such that

$$
f_{*}: \pi_{1}(S) \rightarrow \pi_{1}(M)
$$

is an injection. Suppose for every closed, connected surface S_{1} and every map $g: S_{1} \rightarrow M$ such that
(1) $g_{*}: \pi_{1}\left(S_{1}\right) \rightarrow \pi_{1}(M)$ is an injection,
(2) $g_{*} \pi_{1}\left(S_{1}\right) \supset f_{*} \pi_{1}(S)$,
$g_{*} \pi_{1}\left(S_{1}\right)=f_{*} \pi_{1}(S)$. Then we shall say that the subgroup $f_{*} \pi_{1}(S)$ is a surface maximal or S-maximal subgroup of $\pi_{1}(M)$. We may also say that the map f is S-maximal.

Let M be an irreducible 3 -manifold which does not admit any embedding of the projective plane. Then we shall say that M is p^{2}-irreducible. Throughout this paper all spaces will be simplicial complexes and all maps will be piecewise linear.

It is the purpose of this paper to prove the following:
Theorem 1. Let M be a compact, connected, p^{2}-irreducible 3-manifold. Let S be a closed, connected 2-manifold, not the 2-sphere or projective plane. Let $f:\left(S, x_{0}\right) \rightarrow(M, x)$ be an embedding such that $f_{*}: \pi_{1}(S) \rightarrow \pi_{1}(M)$ is an injection but f_{*} is not S-maximal. Then M has a 3 -submanifold N, bounded by $f(S)$, which is homeomorphic to a twisted line bundle. Furthermore, if $g_{*}: \pi_{1}\left(S_{1}, x_{1}\right) \rightarrow \pi_{1}(M, x)$ is an injection and

$$
\pi_{1}(M, x) \supset g_{*} \pi_{1}\left(S_{1}, x_{1}\right) \supsetneq f_{*} \pi_{1}\left(S, x_{0}\right),
$$

then N may be chosen so that

$$
\pi_{1}(N, x)=g_{*} \pi_{1}\left(S_{1}, x_{1}\right) \subset \pi_{1}(M, x) .
$$

Corollary. Let $f: S \rightarrow M$ be an embedding such that f_{*} is 1 - 1 . If $f(S)$ does not separate a regular neighborhood of itself in M, f_{*} is S-maximal.

Proof. A surface which does not separate a regular neighborhood of itself in M cannot bound a 3 -submanifold in M.

We shall denote the boundary, closure, and interior of a subspace X of a space Y by $\operatorname{bd}(X), \mathrm{cl}(X)$, and $\operatorname{int}(X)$, respectively. When X is a subset of a
space Y, we shall denote the natural inclusion map from X into Y by ρ and the induced homomorphism from $\pi_{1}(X)$ into $\pi_{1}(Y)$ by ρ_{*}.

We give below an outline for the proof of Theorem 1. Let $\left(M^{*}, P\right)$ be the covering space of M associated with $g_{*} \pi_{1}\left(S_{1}, x_{1}\right) \subset \pi_{1}(M, x)$. Let $f_{1}: S \rightarrow M^{*}$ be a map such that $p f_{1}=f$. Then we will show that:
I. There is an embedding $g_{1}: S_{1} \rightarrow M^{*}$ such that

$$
\left(p g_{1}\right)_{*}\left(\pi_{1}\left(S_{1}, x_{1}\right)\right)=g_{*} \pi_{1}\left(S_{1}, x_{1}\right) \subset \pi_{1}(M, x)
$$

II. There is a compact, connected 3 -submanifold $N_{1}{ }^{*}$ of M^{*} containing $g_{1}\left(S_{1}\right)$ and $f_{1}(S)$ such that $\rho_{*}: \pi_{1}\left(N_{1}{ }^{*}\right) \rightarrow \pi_{1}\left(M^{*}\right)$ is an isomorphism and $N_{1}{ }^{*}$ is is homeomorphic to a twisted line bundle except perhaps for a fake cell.
III. There is a compact 3 -submanifold N^{*} of $N_{1}{ }^{*}$ such that
(1) $b d\left(N^{*}\right)=p^{-1} f(S) \cap N^{*}$;
(2) $p \mid b d\left(N^{*}\right)$ is a homeomorphism;
(3) $\rho_{*}: \pi_{1}\left(N^{*}\right) \rightarrow \pi_{1}\left(N_{1}{ }^{*}\right)$ is an isomorphism;
(4) $p \mid N^{*}$ is a homeomorphism;
(5) N^{*} is a twisted line bundle over S_{1}.

The desired result follows as $p\left(N^{*}\right)$ will be the 3 -submanifold of M^{*} which Theorem 1 requires.

We digress to prove a number of lemmas useful in the proof of Theorem 1.
Definition. Let F be a closed 2 -sided surface embedded in a 3 -manifold M. Suppose that no component of F is a 2 -sphere or projective plane. If for each component F_{0} of $F, \rho_{*}: \pi_{1}\left(F_{0}\right) \rightarrow \pi_{1}(M)$ is an injection, we shall say that F is incompressible in M.

Lemma 1. Let M be a p^{2}-irreducible 3-manifold. Then $\pi_{2}(M)=0$.
Proof. If $\pi_{2}(M) \neq 0$, it follows from [3, Theorem 1.1] that there is an embedding in M either of the projective plane or of a 2 -sphere which fails to bound a 3-ball. Either of the above contradicts our assumption that M is p^{2}-irreducible.

Lemma 2. Let M_{1} be a connected 3 -submanifold of the 3 -manifold M. Assume that M_{1} is a closed subset of M and that $\mathrm{cl}\left(M-M_{1}\right) \cap M_{1}$ is incompressible in M. Let l be a loop contained in M_{1}. If l is homotopic to a point in M, then l is homotopic to a point in M_{1}.

Proof. This is [4, Lemma 1.2].
Throughout the remainder of this paper I will denote $[0,1]$.
Lemma 3. Let S_{1} and S_{2} be closed, connected surfaces other than the 2 -sphere or projective plane. Let $f: S_{1} \rightarrow S_{2} \times I$ be an embedding such that $f_{*}: \pi_{1}\left(S_{1}\right) \rightarrow$ $\pi_{1}\left(S_{2} \times I\right)$ is $1-1$. Then f_{*} is an isomorphism.

Proof. This is [4, Lemma 1.3] except that S_{J} is not required to be orientable for $j=1,2$. The proof is identical to that of 1.3 in [4].

By a fake cell we shall mean a homotopy cell which may not be a cell. Let S be a closed surface. We shall say that a 3 -manifold M is a fake $S \times I$ if one can obtain an $S \times I$ from M by replacing a fake cell in M with a 3 -ball. We define a fake twisted line bundle similarly.

Observation 1. If M is a compact connected 3 -manifold and $\pi_{2}(M)=0$, one can replace a single fake cell with a 3 -ball to obtain an irreducible 3 -manifold.

If M is orientable, it follows from [$\mathbf{6}$, Generalization 1] that there are only finitely many disjoint, prime homotopy cells which are not 3-balls.

We can find a fake cell in M which contains all of these homotopy 3-cells and remove this fake cell from M.

If M is non-orientable, there can again only be finitely many disjoint homotopy cells which are not 3 -balls since otherwise the orientable double cover of M would contain more than finitely many of these homotopy cells. The observation follows.

Lemma 4. Let N be a compact, connected 3-manifold with connected, incompressible, non-vacuous boundary. Let S_{1} be a closed, connected surface not the 2 -sphere or projective plane. Suppose $\pi_{1}(N) \cong \pi_{1}\left(S_{1}\right)$. Then N is a fake twisted line bundle and $\rho_{*} \pi_{1}(\operatorname{bd}(N))$ is of index two in $\pi_{1}(N)$.

Proof. There are no embeddings of the projective plane in N since there are no elements of order 2 in $\pi_{1}(N)$. It follows from [3,1.1] that $\pi_{2}(N)=0$. We have observed that one can obtain an irreducible 3 -manifold N_{1} from N by replacing a fake cell with a ball. Thus we may assume that N_{1} is p^{2}-irreducible.

Since there is a continuous map from N_{1} into $S_{1} \times\{0\} \subset S_{1} \times I$ which induces an isomorphism from $\pi_{1}(M)$ to $\pi_{1}\left(S_{1} \times I\right)$, it follows from [5, Theorem A Corollary] that N_{1} is a twisted line bundle. If one splits N_{1} along its zero section, one sees that $\mathrm{bd}\left(N_{1}\right)$ is a double cover of the zero section.

The desired result follows immediately.
Lemma 5. Let M be a p^{2}-irreducible 3-manifold. Let N be a compact 3submanifold of M such that $\operatorname{bd}(N) \subset \operatorname{int}(M)$ and $\operatorname{bd}(N)$ is incompressible in M. Then N is p^{2}-irreducible.

Proof. Since M contains no embedded projective planes, N will not contain any embedded projective planes. Suppose there is a 2 -sphere S^{2} embedded in N and that S^{2} does not bound a ball in N. But we have assumed that S^{2} bounds a ball C in M; and C will contain a component of $\operatorname{bd}(N)$. This is impossible since bd (N) was assumed to be incompressible in M.

Lemma 6 (Kneser's Lemma). Let M be a 3 -manifold. Let F be a closed twosided surface embedded in M. Suppose there is a component S of F such that $\rho_{*}: \pi_{1}(S) \rightarrow \pi_{1}(M)$ is not an injection. Then there exists a disk D embedded in M such that $D \cap F=\mathrm{bd}(D)$ and $\mathrm{bd}(D)$ is not nullhomotopic in F.

Proof. Case 1. Suppose S separates M into 3 -submanifolds M_{1} and M_{2}. It is a consequence of $[\mathbf{2}, 4.2]$ that $\rho_{*}: \pi_{1}(S) \rightarrow \pi_{1}\left(M_{j}\right)$ is not an injection for $j=1$
or 2 . We assume that $\rho_{*}: \pi_{1}(S) \rightarrow \pi_{1}\left(M_{1}\right)$ is not $1-1$. Then the loop theorem in [7] guarantees the existence of a disk D_{1} embedded in M_{1} such that $D_{1} \cap S=$ $\operatorname{bd}\left(D_{1}\right)$ and $\operatorname{bd}\left(D_{1}\right)$ is not nullhomotopic in S. We may assume that $D_{1} \cap F$ is a collection of disjoint loops and pick D_{1} so that the number of loops in $D_{1} \cap F$ is a minimum. Suppose there is a loop $l \subset D_{1} \cap(F-S)$ which is nullhomotopic in F. Then l bounds a disk $D_{0} \subset F$. We can choose a disk $\bar{D} \subset D_{0}$ so that $D_{1} \cap \bar{D}=\operatorname{bd}(D)$. But now it is easy to reduce the number of loops in $D_{1} \cap F$ by a simple cutting argument. Thus every loop in $D_{1} \cap F$ may be taken to be nontrivial in F. It is now easy to choose a disk $D \subset D_{1}$ such that $D \cap F=\operatorname{bd}(D)$ and $\operatorname{bd}(D)$ is not nullhomotopic on F.

Case 2 . Suppose S does not separate M. Let M, be the 3 -manifold obtained by cutting M along S. Let S_{1} and S_{2} be the two boundary components of $M_{\text {, }}$ which come from S.

We define a covering space (\tilde{M}, q) of M as follows: Let $M_{,}{ }^{i}$ be homeomorphic to M, for i an integer. Let $S_{j}{ }^{i}$ be the embedding of S_{j} in $M_{,}{ }^{i}$ for i an integer and $j=1,2$. Let \tilde{M} be the space formed by pasting $S_{1}{ }^{i}$ to $S_{2}{ }^{i+1}$ via the natural homeomorphism. Let $q: \tilde{M} \rightarrow M$ be the map which is the natural homeomorphism on $M_{1}{ }^{i}-\left(S_{1}{ }^{i} \cup S_{2}{ }^{i}\right)$ and which identifies $S_{1}{ }^{i}$ and $S_{2}{ }^{i}$ in the natural way.

Now $\rho_{*}: \pi_{1}\left(S_{1}{ }^{0}\right) \rightarrow \pi_{1}(\tilde{M})$ is not $1-1$. Furthermore, $S_{1}{ }^{0}$ separates \tilde{M} into submanifolds M_{1} and M_{2}. As was shown above, we can find a disk D_{1} embedded in M_{1} such that $D_{1} \cap S_{1}{ }^{0}=\operatorname{bd}\left(D_{1}\right)$ and $\operatorname{bd}\left(D_{1}\right)$ is nontrivial in $S_{1}{ }^{0}$.

It is easy to use a general position argument and then a cutting argument to find a disk \bar{D}_{1} which meets $\bigcup_{i=-\infty}^{\infty} S_{1}{ }^{i}$ only in essential loops. One can then find a subdisk \bar{D} of \bar{D}_{1} which meets $\cup_{i=-\infty}^{\infty} S_{1}{ }^{i}$ in a single loop. Now $q(\bar{D})$ is a disk embedded in M such that $q(\bar{D}) \cap S=\operatorname{bd}(q(\bar{D}))$ and $\operatorname{bd}(q(\bar{D}))$ is nontrivial in S. The remainder of the proof of Case 2 is the same as that of Case 1.

Lemma 7. Let M be a 3-manifold and S a closed, two sided surface embedded in M. Let $\left(M^{*}, p\right)$ be a covering space of M (not necessarily compact). Let R be a connected, compact 3 -submanifold of M^{*} such that
(1) $R \cap p^{-1}(S)=\mathrm{bd}(R)$;
(2) The number of components in $\operatorname{bd}(R)$ is the same as the number of components in S.

Then $(R, p \mid R)$ is a finite covering space of $p(R)$.
Proof. It follows from the definition of covering space that $p \mid R$ is a local homeomorphism. Since the number of components in $\operatorname{bd}(R)$ is the same as the number of components in S, and R is compact, each component of $\operatorname{bd}(R)$ is a finite covering of one component of S. Since S is two sided and $p^{-1}(S) \cap \operatorname{int}(R)$ is empty, $S=\operatorname{bd}(p(R))$. Let y_{0} be a point in $\operatorname{bd}(R)$ and z_{0} a point in R but not in $p^{-1} p\left(y_{0}\right)$. Let α_{0} be a path from y_{0} to z_{0}. Then for each point z_{1} in $p^{-1} p\left(z_{0}\right)$ there is a unique path α_{1} such that $p\left(\alpha_{0}\right)=p\left(\alpha_{1}\right)$ and α_{1} has one endpoint in $p^{-1} p\left(z_{0}\right)$ and one endpoint in $p^{-1} p\left(y_{0}\right)$. It follows that $p^{-1} p\left(z_{0}\right)$
and $p^{-1} p\left(y_{0}\right)$ are of the same cardinality and thus $(R, p \mid R)$ is a finite covering of $p(R)$.

Lemma 8. In the lemma above, if $p \mid \operatorname{bd}(R)$ is a homeomorphism, $p \mid R$ is a homeomorphism.

Proof. This is an immediate consequence of Lemma 7.
Lemma 9. Let M be a 3 -manifold. Suppose $\pi_{2}(M)=0$. Then every 2 -sphere embedded in M bounds a homotopy cell in M.

Proof. Let S be a sphere embedded in M. Let (\tilde{M}, p) be the universal cover of M. Let \widetilde{S} be a sphere embedded in \widetilde{M} such that $p \widetilde{S}=S$. Since \widetilde{S} is homotopic to a point in \widetilde{M}, it bounds a finite chain in $C_{3}\left(\widetilde{M}, Z_{2}\right)$. Thus \widetilde{S} bounds a compact 3 -submanifold B of \widetilde{M}. It is a consequence of Van Kampen's theorem that B is simply connected. It is well known that this implies that B is a homotopy 3 -cell.

Now $B \cap p^{-1}(S)$ is a finite collection of 2 -spheres. By the argument above each of these 2 -spheres bounds a homotopy cell in B. It is possible to choose a sphere in $p^{-1}(S) \cap B$ which bounds a homotopy cell B_{1} such that $p^{-1}(S) \cap B_{1}=\operatorname{bd}\left(B_{1}\right)$. It now follows from Lemma 8 that $p \mid B_{1}$ is a homeomorphism, and $p\left(B_{1}\right)$ is a homotopy cell bounded by S.

Lemma 10. Let M be a 3-manifold with nonvacuous disconnected boundary. Let F_{1} be a component of $\operatorname{bd}(M)$. Let F be a closed, connected surface, not the 2-sphere or projective plane. Let (\tilde{M}, q) be a covering space of \tilde{M} such that \tilde{M} is a fake $F \times I$. Then M is a fake $F_{1} \times I$.

Proof. Since $\mathrm{bd}(\widetilde{M})$ is compact, the covering is of finite index. Since bd (M) is disconnected, the components of $\mathrm{bd}(\tilde{M})$ are mapped to distinct components of $\operatorname{bd}(M)$ by q. Let $F_{0}=q^{-1}\left(F_{1}\right)$. Then $\left(F_{0}, q \mid F_{0}\right)$ is a k-fold covering of F_{1} and $q_{*} \pi_{1}\left(F_{0}\right)$ is of index k in $\pi_{1}\left(F_{1}\right) \subset \pi_{1}(M)$. Since $\operatorname{bd}(\tilde{M})$ is incompressible in $\tilde{M}, \operatorname{bd}(M)$ is incompressible in M. But now $\rho_{*} \pi_{1}\left(F_{1}\right) \rightarrow \pi_{1}(M)$ is an isomorphism since $\rho_{*} \pi_{1}\left(F_{0}\right)=\pi_{1}(\tilde{M})$. It follows from Observation 1 that one can replace a fake cell in M with a 3-ball and obtain an irreducible 3-manifold. The lemma follows from 3.1 in [1].

Lemma 11. Let F be a closed, connected surface not the 2-sphere or projective plane. Let M be a 3-manifold such that $\pi_{1}(M) \cong \pi_{1}(F)$ and $\pi_{2}(M)=0$. Let F_{1} and F_{2} be disjoint, closed, connected, two sided surfaces, other than the 2-sphere or projective plane, embedded in M. Suppose F_{1} and F_{2} are incompressible in M. Then $F_{1} \cup F_{2}$ bounds a fake $F_{1} \times I$ embedded in M.

Proof. Since $\rho_{*} \pi_{1}\left(F_{1}\right) \rightarrow \pi_{1}(M) \cong \pi_{1}(F)$ is an injection, it follows from [5, Theorem 1] that F_{1} is the cover of F associated with $\rho_{*} \pi_{1}\left(F_{1}\right) \subset \pi_{1}(M) \cong$ $\pi_{1}(F)$. Since F_{1} is compact, this cover is of finite index and $\pi_{1}\left(F_{1}\right)$ is of finite index in $\pi_{1}(M)$. Let A be the subgroup of $\pi_{1}(M)$ associated with the orientable double cover of M if M is not orientable and $\pi_{1}(M)$, otherwise. Now $A_{0}=$ $\rho_{*}\left(\pi_{1}\left(F_{1}\right)\right) \cap A$ is of finite index in $\pi_{1}(M)$ since $\rho_{*}\left(\pi_{1}\left(F_{1}\right)\right)$ and A are each of
finite index in $\pi_{1}(M)$. Let (\tilde{M}, q) be the cover of M associated with A_{0}. Let (\widetilde{F}_{1}, q_{1}) be the cover of F_{1} associated with $\rho_{*}^{-1}\left(\rho_{*} \pi_{1}\left(F_{1}\right) \cap A_{0}\right)=\rho_{*}^{-1}\left(A_{0}\right)$.

Figure 1
It is easily shown that there is an embedding ρ_{1} making the diagram in Figure 1 commutative. Note $\rho_{1 *}: \pi_{1}\left(\widetilde{F}_{1}\right) \rightarrow \pi_{1}(\tilde{M})$ is an isomorphism. Let \widetilde{F}_{2} be a component of $q^{-1}\left(F_{2}\right)$. Since $\rho_{1} \widetilde{F}_{1}$ and \widetilde{F}_{2} are two-sided closed surfaces embedded in an orientable 3 -manifold, they are orientable. We claim that both $\rho_{1} \widetilde{F}_{1}$ and \widetilde{F}_{2} separate \widetilde{M}. We see this as follows: Let λ be a simple loop meeting either $\rho_{1} \widetilde{F}_{1}$ or \widetilde{F}_{2} in a single point and crossing $\rho_{1} \widetilde{F}_{1}$ or \widetilde{F}_{2} at that point. Since $\rho_{1 *}: \pi_{1}\left(F_{1}\right) \rightarrow \pi_{1}(\tilde{M})$ is an isomorphism, λ is homotopic to a loop λ_{1} which lies in a regular neighborhood of $\rho_{1} \widetilde{F}_{1}$ so that λ_{1} does not meet $\rho_{1} \widetilde{F}_{1}$ or \widetilde{F}_{2}. This is impossible as the intersection number of λ and $\rho_{1} \widetilde{F}_{1}$ or \widetilde{F}_{2} is one while that of λ_{1} and $\rho_{1} \widetilde{F}_{1}$ or \widetilde{F}_{2} is zero. We observe that $\rho_{1} \widetilde{F}_{1} \cup \widetilde{F}_{2}$ bounds a $3-$ submanifold R of \tilde{M}. It is an easy consequence of Lemma 2 that $\rho_{*}: \pi_{1}(R) \rightarrow$ $\pi_{1}(\widetilde{M})$ is an isomorphism since R contains $\rho_{1} \widetilde{F}_{1}$. Also $\rho_{1_{1}}: \pi_{1}\left(\widetilde{F}_{1}\right) \rightarrow \pi_{1}(R)$ is an isomorphism. It follows that every loop in $\widetilde{F}_{2} \subset R$ is homotopic in R to a loop in $\rho_{1} \widetilde{F}_{1}$. Consider the proof of 5.1 in [8]. In this proof Waldhausen produces a 2 -sphere and concludes that since his 3 -manifold is irreducible the 2 -sphere bounds a ball. We observe that the construction of this 2 -sphere was independent of his assumption of irreducibility. Thus we can construct the same 2 -sphere in R.

It follows from Lemma 9 that a 2 -sphere in \tilde{M} bounds a fake cell and thus by Waldhausen's proof that R is a fake $\widetilde{F}_{1} \times I$.

We observe that our proof was independent of the components of $q^{-1}\left(F_{1}\right)$ and $q^{-1}\left(F_{2}\right)$ which we chose. Thus if $L=\operatorname{int}(R) \cap q^{-1}\left(F_{2}\right)$ is non-empty, we can reduce the number of components in L by picking a different \widetilde{F}_{2}. Similarly, one can reduce the number of components in $q^{-1}\left(F_{1}\right) \cap \operatorname{int}(R)$. It follows that we may assume that $\left.q^{-1}\left(F_{1}\right) \cup F_{2}\right) \cap R=\operatorname{bd}(R)$. Thus by Lemma $8,(R, q \mid R)$ covers $q(R)$. It follows from Lemma 10 that $q(R)$ is a fake $F_{1} \times I$.

Theorem 2. Let M be a compact, connected, p^{2}-irreducible 3-manifold. Let S be a closed, connected 2-manifold, not the 2 -sphere or projective plane. Let $g:\left(S, x_{0}\right) \rightarrow(M, x)$ be a map such that $g_{*}: \pi_{1}\left(S, x_{0}\right) \rightarrow \pi_{1}(M, x)$ is $1-1$. Then there exists a covering space $\left(M^{*}, p\right)$ of M and an embedding $g_{1}: S \rightarrow M^{*}$ such that

$$
\left(p g_{1}\right)_{*} \pi_{1}\left(S, x_{0}\right)=g_{*} \pi_{1}\left(S, x_{0}\right) \subset \pi_{1}(M, x) .
$$

Proof. Let $\left(M^{*}, p\right)$ be the covering space of M associated with $g_{*} \pi_{1}\left(S, x_{0}\right) \subset \pi_{1}(M, x)$. Let $g_{4}: S \rightarrow M^{*}$ be a map such that $p g_{4}=g: S \rightarrow M$. Let $g_{3}: S \rightarrow M^{*}$ be a map homotopic to g_{4} such that $\operatorname{cl}\left\{z:\{z\} \neq g_{3}{ }^{-1} g_{3}(z)\right\}$ is a 1 -complex. Let R_{0} be a regular neighborhood of $g_{3}(S)$. We propose to modify R_{0} to obtain a compact connected 3 -submanifold R^{*} of M^{*} such that
(a) $\operatorname{bd}\left(R^{*}\right)$ is incompressible in M^{*};
(b) $\rho_{*}: \pi_{1}\left(R^{*}\right) \rightarrow \pi_{1}\left(M^{*}\right)$ is an isomorphism. Given R_{k}, for k an integer, such that

$$
\operatorname{cl}\left(\operatorname{bd}\left(R_{k}\right)-\left(\operatorname{bd}\left(R_{k}\right) \cap \operatorname{bd}\left(R_{0}\right)\right)\right)
$$

is a collection of disjoint disks (possibly empty), we define R_{k+1} as follows:
(1) If for every component F of $\operatorname{bd}\left(R_{k}\right) \rho_{*}: \pi_{1}(F) \rightarrow \pi_{1}\left(M_{*}\right)$ is an injection, $R_{k+1}=R_{k}$.
(2) Otherwise, we let D_{k+1} be a disk embedded in M^{*} such that $D_{k+1} \cap \mathrm{bd}\left(R_{k}\right)=\mathrm{bd}\left(D_{k+1}\right)$ and $\operatorname{bd}\left(D_{k+1}\right)$ is not nullhomotopic in $\operatorname{bd}\left(R_{k}\right)$. It follows immediately from Lemma 6 that such a disk exists. We may assume that $\operatorname{bd}\left(D_{k+1}\right) \subset \operatorname{int}\left(\operatorname{bd}\left(R_{0}\right) \cap \operatorname{bd}\left(R_{k}\right)\right)$ since $\mathrm{cl}\left(\operatorname{bd}\left(R_{k}\right)-\operatorname{bd}\left(R_{0}\right)\right)$ is a collection of disjoint disks in $\operatorname{bd}\left(R_{k}\right)$. We may also assume that D_{k+1} is in general position with respect to $g_{3}\left(S_{1}\right)$ and the portion of $\operatorname{bd}\left(R_{0}\right)$ not contained in $\operatorname{bd}\left(R_{k}\right)$. Then if $D_{k+1} \subset R_{k}$, we remove a regular neighborhood of D_{k+1} from R_{k} to obtain R_{k+1}. Otherwise we add a regular neighborhood of D_{k+1} to R_{k} to obtain R_{k+1}. Thus if there is a component F of $\operatorname{bd}\left(R_{k}\right)$ such that $\rho_{*}: \pi_{1}(F) \rightarrow \pi_{1}\left(M^{*}\right)$ is not an injection, the total genus of $\mathrm{bd}\left(R_{k+1}\right)$ is less than the total genus of $\operatorname{bd}\left(R_{k}\right)$.

Since the total genus of $\operatorname{bd}\left(R_{0}\right)$ is finite, there exists a positive integer n such that $R_{k}=R_{k+1}$ for $k \geqq n$.

Since $\pi_{2}\left(M^{*}\right)=0$, it follows from Lemma 4 that every sphere in $\operatorname{bd}\left(R_{n}\right)$ bounds a homotopy cell in M^{*}. We define $R_{n}{ }^{*}$ to be the union of R_{n} with the collection of homotopy cells bounded by 2 -spheres in $\operatorname{bd}\left(R_{n}\right)$. We observe that bd $\left(R_{n}{ }^{*}\right)$ is incompressible in M^{*}. By construction, $g_{3}{ }^{-1}\left(g_{3}(S) \cap \cup_{k=1}^{n} D_{k}\right)$ is a collection of disjoint simple loops in S. Since $g_{3 *}: \pi_{1}(S) \rightarrow \pi_{1}\left(M^{*}\right)$ is an injection, each of these simple loops is nullhomotopic in S. It follows that we can find a disk $D \subset S$ such that

$$
D \supset g_{3}{ }^{-1}\left(g_{3}(S) \cap \cup_{k=1}^{n} D_{k}\right)
$$

We let R^{*} be the component of $R_{n}{ }^{*}$ which contains $g_{3}(S-D)$. We note that $g_{3} \operatorname{bd}(D)$ is nullhomotopic in M^{*}; and thus by Lemma $2, g_{3} \operatorname{bd}(D)$ is nullhomotopic in R^{*} since $\mathrm{bd}\left(R^{*}\right)$ is incompressible. We define a map $g_{2}: S \rightarrow R^{*}$
(1) by $g_{2}\left|S-D=g_{3}\right| S-D$, and
(2) by using the nullhomotopy of $g_{3} \operatorname{bd}(D)$ in R^{*} to extend g_{2} to D. Since $\pi_{2}\left(M^{*}\right)=0, g_{2}$ and g_{3} are homotopic. Thus $g_{2 *}: \pi_{1}(S) \rightarrow \pi_{1}\left(M^{*}\right)$ is an isomorphism. It is an easy consequence of Lemma 2 that $g_{2 *}: \pi_{1}(S) \rightarrow \pi_{1}\left(R^{*}\right)$ is an isomorphism.

Now we claim that R^{*} is a fake line bundle over S. This can be seen as follows: If $\operatorname{bd}\left(R^{*}\right)$ is not connected, it follows from Lemma 11 that two com-
ponents of $\mathrm{bd}\left(R^{*}\right)$ bound a fake $S \times I$ in R^{*}. Thus R^{*} is a fake $S \times I$. If $\operatorname{bd}\left(R^{*}\right)$ is connected, it follows from Lemma 4 that R^{*} is a fake twisted line bundle over S. We may assume that R^{*} contains a point y in $p^{-1}(x)$. Now we can find an embedding g_{1} of S in R such that y is in $g_{1}(S)$ and $g_{1 *}: \pi_{1}(S) \rightarrow$ $\pi_{1}\left(M^{*}\right)$ is an isomorphism. This completes the proof of the theorem since $\left(p g_{1}\right)_{*}: \pi_{1}\left(S, x_{0}\right) \rightarrow \pi_{1}(M, x)$ is an isomorphism onto $g_{*} \pi_{1}\left(S, x_{0}\right) \subset \pi_{1}(M, x)$.

Proof of Theorem 1. Let $g:\left(S_{1}, x_{1}\right) \rightarrow(M, x)$ be a map such that $g_{*}: \pi_{1}\left(S_{1}, x_{1}\right) \rightarrow \pi_{1}(M, x)$ is an injection and

$$
g_{*}: \pi_{1}\left(S_{1}, x_{1}\right) \supsetneqq f_{*} \pi_{1}\left(S, x_{0}\right) .
$$

Let $\left(M^{*}, p\right)$ be the covering space of M associated with $g_{*} \pi_{1}\left(S_{1}, x_{1}\right) \subset \pi_{1}(M, x)$. It follows from Theorem 2 that there is an embedding $g_{1}: S_{1} \rightarrow M^{*}$ such that $\left(p g_{1}\right)_{*} \pi_{1}\left(S_{1}, x_{1}\right)=g_{*} \pi_{1}\left(S_{1}, x_{1}\right) \subset \pi_{1}(M, x)$. Let $f_{1}: S \rightarrow M^{*}$ be an embedding such that $p f_{1}=f$. It follows from a general position argument that we can find a small motion of g_{1} so that $L=g_{1}\left(S_{1}\right) \cap f_{1}(S)$ will be a 1 -manifold, i.e., a collection of simple loops. Suppose some loop $\lambda \subset L$ is nullhomotopic in M^{*}. Since $g_{1 *}$ and $f_{1 *}$ are injections, $l_{1}=g_{1}{ }^{-1}(\lambda)$ and $l_{2}=f_{1}^{-1}(\lambda)$ are nullhomotopic on S_{1} and S, respectively. Let D_{1} be the disk contained in S_{1} bounded by l_{1}. It is easy to choose λ so that $D_{1} \cap g_{1}^{-1}(L)=l_{1}$. Let $D_{2} \subset S$ be the disk bounded by l_{2}. It follows from Lemma 1 that $\pi_{2}(M)=0$ and thus from Lemma 9 that $g_{1}\left(D_{1}\right) \cup f_{1}\left(D_{2}\right)$ bounds a homotopy cell C in M^{*}. We notice that $f_{1}(S)$ meets a regular neighborhood of C in a disk \bar{D}_{2}. Since every loop in $g_{1}{ }^{-1}\left(g_{1}\left(S_{1}\right) \cap \bar{D}_{2}\right)$ bounds a disk on S_{1}, it is not hard to define an embedding $g_{2}: S_{1} \rightarrow M$ such that
(1) $g_{2}=g_{1}$ except on a collection of disks on S_{1};
(2) $g_{2 *}: \pi_{1}\left(S_{1}\right) \rightarrow \pi_{1}\left(M^{*}\right)$ is an isomorphism;
(3) $g_{2}\left(S_{1}\right) \cap \bar{D}_{2}$ is empty;
(4) $g_{2}\left(S_{1}\right) \cap f_{1}(S) \subset L$.

Since $\pi_{2}\left(M^{*}\right)=0, g_{1}$ and g_{2} are homotopic and $g_{2 *}$ is an isomorphism. It follows that we may choose g_{1} so that every loop in $L=g_{1}\left(S_{1}\right) \cap f_{1}(S)$ is nontrivial in M^{*}. Note that we do not require that $p g_{1}\left(x_{1}\right)=x$. The proof of the theorem breaks into two cases.

Case 1. $f_{1}(S) \cap g_{1}\left(S_{1}\right)$ is empty.
Case 2. $f_{1}(S) \cap g_{1}\left(S_{1}\right)$ is non-empty.
Case 1. If $f_{1}(S)$ and $g_{1}\left(S_{1}\right)$ are two sided in M^{*}, it follows from Lemma 11 that $f_{1}(S)$ and $g_{1}\left(S_{1}\right)$ bound a fake $S \times I$ embedded in M^{*}. This is impossible since

$$
f_{1 *} \pi_{1}(S) \subsetneq g_{1 *} \pi_{1}\left(S_{1}\right)
$$

If $g_{1}\left(S_{1}\right)$ is two sided in M^{*} and $f_{1}(S)$ is not, we let R be a regular neighborhood of $f_{1}(S)$. Now $\operatorname{bd}(R)$ is two sided in M^{*}. Since $\operatorname{bd}(R)$ is incompressible in M^{*},
$\mathrm{bd}(R)$ and $g_{1}\left(S_{1}\right)$ bound a fake $S_{1} \times I$ which we denote by R_{1}. Now $R_{1} \cup R$ is a fake twisted line bundle over S bounded by $g_{1}\left(S_{1}\right)$. It is a consequence of Lemma 4 that $g_{1 *} \pi_{1}\left(S_{1}\right)$ is of index two in $\pi_{1}\left(R_{1} \cup R\right)$. This is impossible since by Lemma $2, \rho_{*}: \pi_{1}\left(R_{1} \cup R\right) \rightarrow \pi_{1}\left(M^{*}\right)$ is an isomorphism. If neither $f_{1}(S)$ nor $g_{1}\left(S_{1}\right)$ separates a regular neighborhood of itself, we let R_{1} and R_{2} be regular neighborhoods of $f_{1}(S)$ and $g_{1}\left(S_{1}\right)$, respectively. Now $\operatorname{bd}\left(R_{1}\right) \cup \operatorname{bd}\left(R_{2}\right)$ bounds a fake product line bundle R_{3} in M^{*} by Lemma 11. Thus $M^{*}=$ $R_{1} \cup R_{2} \cup R_{3}$. This is easily seen to be impossible as $\pi_{1}\left(M^{*}\right)$ would not be isomorphic to the group of a closed surface.

If $f_{1}(S)$ is two sided and $g_{1}(S)$ fails to separate a regular neighborhood R of itself, Lemma 11 implies that $f_{1}(S) \cup \operatorname{bd}(R)$ bounds a fake $S \times I$ in M^{*}. We denote this fake $S \times I$ by R_{1}. Consider $N_{1}{ }^{*}=R_{1} \cup R$. Suppose that $p^{-1} f(S) \cap N_{1}{ }^{*}$ contains a component $F \neq f_{1}(S)$. We claim F is two sided in M^{*}.

This can be seen as follows. Let z_{0} be the point in $p^{-1}(x) \cap f_{1}(S)$. Let R be a regular neighborhood of $f(S)$. Since $\rho_{*} \pi_{1}(R, x) \subset p_{*} \pi_{1}\left(M, z_{0}\right), \rho:(R, x) \rightarrow$ (M, x) lifts to an embedding $\rho_{1}:(R, x) \rightarrow\left(M^{*}, z_{0}\right)$. Since $f_{1}(S)$ is two sided in $\rho_{1}(R), f(S)$ is two sided in R and thus in M. It follows that F is two sided in M^{*}.

By Lemma 11, $F \cup f_{1}(S)$ bounds a fake $S \times I$ embedded in $N_{1}{ }^{*}$ which we denote by R_{2}. Now $\mathrm{cl}\left(\mathrm{N}_{1}{ }^{*}-R_{2}\right)$ is a deformation retract of $N_{1}{ }^{*}$. Thus $\rho_{*}: \pi_{1}\left(\operatorname{cl}\left(N_{1}{ }^{*}-R_{2}\right)\right) \rightarrow \pi_{1}\left(N_{1}{ }^{*}\right)$ is an isomorphism. Thus

$$
\rho_{*} \pi_{1}\left(\mathrm{cl}\left(N_{1}^{*}-R_{2}\right)\right)=\pi_{1}\left(M^{*}\right)
$$

Since $N_{1}{ }^{*}$ is compact, there can only be a finite number of components in $p^{-1} f(S) \cap N_{1}{ }^{*}$. Thus by an appropriate choice of F above we have that if $N^{*}=\operatorname{cl}\left(N_{1}{ }^{*}-R_{2}\right)$,

$$
N^{*} \cap p^{-1} f(S)=\operatorname{bd}\left(N^{*}\right)=F
$$

It follows from Lemma 7 that $\left(N^{*}, p \mid N^{*}\right)$ is a finite covering space of $p\left(N^{*}\right)$.
We wish to show that $(p \mid F)_{*}: \pi_{1}(F) \rightarrow \pi_{1}(f(S))$ is an isomorphism so that $p \mid F$ will be a homeomorphism. If $p \mid F$ is a homeomorphism, it will follow from Lemma 8 that $p \mid N^{*}$ is a homeomorphism. Since $p\left(N^{*}\right)$ is a 3 -submanifold of M whose boundary is incompressible in M, it will follow from Lemma 5 that $p\left(N^{*}\right)$ is p^{2}-irreducible and thus that N^{*} is p^{2}-irreducible. But then by Lemma $4, N^{*}$ will be a twisted line bundle. Of course, this implies that $N=p\left(N^{*}\right)$ is a twisted line bundle which would complete the proof of Case 1 . It remains to show that $p_{*} \pi_{1}(F)=\pi_{1}(f(S))$. Let $\left(M^{* *}, q\right)$ be the covering space of M associated with $f_{*} \pi_{1}\left(S, x_{0}\right) \subset \pi_{1}(M, x)$. Let R_{2} be as above. Since $f_{*} \pi_{1}(S) \subset g_{*} \pi_{1}\left(S_{1}\right)$, we can find a covering map q_{1} to complete the diagram in Figure 2.

We observe that there is an embedding $H: R_{2} \rightarrow M^{* *}$ such that $\left(q_{1} H\right)_{*}=\rho_{*}$. Note that both components of $\operatorname{bd}\left(R_{2}\right)$ carry the homotopy of R_{2} and that $q^{-1}(x)$ meets both components of $H \mathrm{bd}\left(R_{2}\right)$ in at least one point. Let F_{1} be

Figure 2
the component of $H \mathrm{bd}\left(R_{2}\right)$ which is contained in $q_{1}^{-1}(F)$ and x_{3} a point in F_{1} such that $q\left(x_{3}\right)=x$. We choose x_{3} as the basepoint for $M^{* *}$.

Since $\rho_{*}: \pi_{1}\left(F_{1}, x_{3}\right) \rightarrow \pi_{1}\left(M^{* *}, x_{3}\right)$ is an isomorphism, we have that $q_{*} \rho_{*}: \pi_{1}\left(F_{1}, x_{3}\right) \rightarrow \pi_{1}(f(S), x)$ is onto and thus $p_{*}: \pi_{1}(F) \rightarrow \pi_{1}(f(S))$ is an isomorphism as was to be shown

Case 2. We assume that $L=f_{1}(S) \cap g_{1}\left(S_{1}\right)$ is a non-empty collection of disjoint simple loops and that if l is any loop in L, l is not nullhomotopic in M^{*}. Let R_{0} be a regular neighborhood of $f_{1}(S) \cup g_{1}\left(S_{1}\right)$. We will modify R_{0} in this proof in much the same way that we modified R_{0} in the proof of Theorem 2.

We propose to modify R_{0} to obtain a compact, connected 3 -submanifold $N_{1}{ }^{*}$ of M^{*} such that
(a) $\operatorname{bd}\left(N_{1}{ }^{*}\right)$ is incompressible in M^{*};
(b) $\rho_{*} \pi_{1}\left(N_{1}{ }^{*}\right) \rightarrow \pi_{1}\left(M^{*}\right)$ is an isomorphism;
(c) $f_{1}(S) \cup g_{1}\left(S_{1}\right) \subset N_{1}{ }^{*}$.

Given R_{k}, for k an integer, we define R_{k+1} as follows:
(1) If for every component F of $\operatorname{bd}\left(R_{k}\right) \rho_{*} \pi_{1}(F) \rightarrow \pi_{1}\left(M^{*}\right)$ is an injection $R_{k+1}=R_{k}$.
(2) Otherwise, we let D_{k+1} be a disk embedded in M^{*} such that $D_{k+1} \cap \operatorname{bd}\left(R_{k}\right)=\operatorname{bd}\left(D_{k+1}\right)$ and $\operatorname{bd}\left(D_{k+1}\right)$ is not nullhomotopic in $\operatorname{bd}\left(R_{k}\right)$. The existence of such a disk follows from Lemma 6. We may also assume that D_{k+1} is in general position with respect to $f_{1}(S)$. It follows from a cutting argument that we may assume that D_{k+1} does not meet $f_{1}(S)$ since $f_{1 *}$ is an injection and every loop in $f_{1}(S) \cap D_{k+1}$ bounds a disk on $f_{1}(S)$. Using another general position argument we may assume that D_{k+1} meets $g_{1}\left(S_{1}\right)$ in a collection of simple closed loops. Since $g_{1 *}$ is an isomorphism, each of the simple closed loops bounds a disk D on $g_{1}\left(S_{1}\right)$. We observe that D does not meet $L=g_{1}\left(S_{1}\right) \cap f_{1}(S)$ since every loop in L is nontrivial in M^{*}. It follows by a cutting argument that $D_{k+1} \cap\left(f_{1}(S) \cup g_{1}\left(S_{1}\right)\right)$ is empty. If $D_{k+1} \subset R_{k}$, we define R_{k+1} to be R_{k} with a regular neighborhood of D_{k+1} removed. If $D_{k+1} \cap R_{k}=\operatorname{bd}\left(D_{k+1}\right)$, we define R_{k+1} to be the union of R_{k} with a regular neighborhood of D_{k+1}. In either case the total genus of the boundary of R_{k+1} is less than the total genus of the boundary of R_{k}. Since the total genus of $\operatorname{bd}\left(R_{0}\right)$ is finite, there is an integer n such that $R_{k}=R_{k+1}$ for $k \geqq n$. Let \bar{N}_{1} be the component of R_{n} which contains $g_{1}\left(S_{1}\right) \cup f_{1}(S)$. By Lemma 9 , every

2 -sphere in bd $\left(\bar{N}_{1}\right)$ bounds a homotopy 3 -cell in M^{*}. We add all such homotopy cells to \bar{N}_{1} to obtain $N_{1}{ }^{*}$. It is a consequence of Lemma 2 that $\rho_{*}: \pi_{1}\left(N_{1}{ }^{*}\right) \rightarrow$ $\pi_{1}\left(M^{*}\right)$ is an isomorphism since $\operatorname{bd}\left(N_{1}{ }^{*}\right)$ is incompressible in M^{*}.

Suppose bd $\left(N_{1}{ }^{*}\right)$ is disconnected. Then by Lemma $11, N_{1}{ }^{*}$ is a fake $S \times I$. It is a consequence of Lemma 3 that $f_{1 *}: \pi_{1}(S) \rightarrow \pi_{1}\left(N_{1}{ }^{*}\right)$ is an isomorphism. This is impossible.

Suppose $f_{1}(S)$ is one sided in $N_{1}{ }^{*}$. Let R be a regular neighborhood of $f_{1}(S)$. Then $\operatorname{bd}(R) \cup \operatorname{bd}\left(N^{*}\right)$ bounds a fake $\operatorname{bd}(R) \times I$ by Lemma 11. It follows that R is a deformation retract of N^{*} and $f_{1 *}: \pi_{1}(S) \rightarrow \pi_{1}\left(N^{*}\right)$ is an isomorphism. This is impossible since

$$
f_{1 *} \pi_{1}(S) \underset{\neq}{\neq \pi_{1}\left(M^{*}\right) .}
$$

Now $f_{1}(S)$ is two sided in $N_{1}{ }^{*}$. Thus by Lemma 11, $f_{1}(S)$ and $\operatorname{bd}\left(N_{1}{ }^{*}\right)$ bound a fake $S \times I$ embedded in $N_{1}{ }^{*}$. We denote this fake $S \times I$ by \bar{N}. Now $\operatorname{cl}\left(N_{1}{ }^{*}-\bar{N}\right)=N_{1}{ }^{* *}$ is a deformation retract of $N_{1}{ }^{*}$. Thus $\rho_{*} \pi_{1}\left(N_{1}{ }^{* *}\right) \rightarrow$ $\pi_{1}\left(M^{*}\right)$ is an isomorphism.

Suppose $p^{-1} f(S) \cap N_{1}{ }^{* *} \neq f_{1}(S)$. Let F be a component of $p^{-1} f(S) \cap N_{1}{ }^{* *}$ other than $f_{1}(S)$. As was shown earlier, F is two sided in M^{*}. By Lemma 11, $F \cup f_{1}(S)$ bounds a fake $S \times I$ embedded in $N_{1}{ }^{* *}$. We denote this fake $S \times I$ by \bar{N}_{1}. If we are careful in our choice of F, we can have that

$$
\operatorname{cl}\left(N_{1}^{* *}-\bar{N}_{1}\right) \cap p^{-1} f(S)=F .
$$

Let $N^{*}=\operatorname{cl}\left(N_{1}{ }^{* *}-\bar{N}_{1}\right)$. As was shown earlier $p \mid F$ is a homeomorphism. Thus $p \mid N^{*}$ is a homeomorphism. As in the proof of Case 1 , we see that N^{*} is a twisted line bundle and the theorem follows.

Note added in proof. William Jaco has obtained a result similar to our Theorem 1 in his paper Finitely presented subgroups of 3-manifold groups, Invent. Math. 13 (1971), 335-346.

References

1. E. M. Brown, Unknotting in $M^{2} \times I$, Trans. Amer. Math. Soc. 123 (1966), 480-505.
2. E. M. Brown and R. H. Crowell, The augementation subgroup of a link, J. Math. Mech. 15 (1966), 1065-1074.
3. D. B. A. Epstein, Projective planes in 3-manifolds, Proc. London Math. Soc. 11 (1961), 469-484.
4. C. D. Feustel, Some applications of Waldhausen's results on irreducible surfaces, Trans. Amer. Math Soc. 149 (1970), 475-583.
5. W. Heil, On p^{2}-irreducible S-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772-775.
6. J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7.
7. J. Stallings, On the loop theorem, Ann. of Math. 72 (1960), 12-19.
8. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88.

Institute for Defense Analyses,
Princeton, New Jersey;
Virginia Polytechnic and State University, Blacksburg, Virginia

