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S-MAXIMAL SUBGROUPS OF Vl(M*) 

C. D. FEUSTEL 

Let i f be a compact, connected, irreducible 3-manifold. Let 5 be a closed, 
connected, 2-manifold other than the 2-sphere or projective plane. L e t / be a 
map of 5 into M such that 

is an injection. Suppose for every closed, connected surface Si and every map 
g:Si —» M such that 

(1) g*:7ri(5i) —* TTI(M) is an injection, 
(2)g^1(S1)DUT1(S)J 

g*Ti(Si) = f*iri(S). Then we shall say that the subgroup f*wi(S) is a surface 
maximal or S-maximal subgroup of xi(ikf). We may also say that the m a p / is 
5-maximal. 

Let M be an irreducible 3-manifold which does not admit any embedding 
of the projective plane. Then we shall say that M is p2-irreducible. Throughout 
this paper all spaces will be simplicial complexes and all maps will be piecewise 
linear. 

It is the purpose of this paper to prove the following: 

THEOREM 1. Let M be a compact, connected, p2-irreducible 3-manifold. Let S 
be a closed, connected 2-manifold, not the 2-sphere or projective plane. Let 
f: (S,x0) —> (M, x) be an embedding such that /* : m (S) —» in(M) is an injection 
but f* is not S-maximal. Then M has a 3-submanifold N, bounded by f(S), which 
is homeomorphic to a twisted line bundle. Furthermore, if g*:Ti(Si,Xi) —>7ri(ikf, x) 
is an injection and 

Ti(M, X) D g*7Ti(Si, Xi) D /*7Ti(6*, Xo), 

then N may be chosen so that 

in(N, x) = gtiriiSu xi) C 7ri(Af, x). 

COROLLARY. Letf:S —> M be an embedding such thatf* is 1 — 1. If f{S) does 
not separate a regular neighborhood of itself in M, f+ is S-maximal. 

Proof. A surface which does not separate a regular neighborhood of itself 
in M cannot bound a 3-submanifold in M. 

We shall denote the boundary, closure, and interior of a subspace X of a 
space Y by bd(X), c\(X), and int(X), respectively. When X is a subset of a 
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space F, we shall denote the natura l inclusion map from X into Y by p and 
the induced homomorphism from wi(X) into TTI(Y) by p*. 

We give below an outline for the proof of Theorem 1. Let (M*, P) be the 
covering space of M associated with g*7n(Si, Xi) C TTI(M, X). hetfiiS —» M* 
be a map such t ha t £/i = / . Then we will show tha t : 

I. There is an embedding gi'.Si —> M* such t ha t 

(pgi)*(*i(Si, xi)) = g*TTi(Si, xi) C TI(M, x). 

I I . There is a compact , connected 3-submanifold Ni* of M* containing 
gi (5i ) a n d / i ( 5 ) such t h a t p*:ri(Ni*) —> 7ri(M*) is an isomorphism and TVi* is 
is homeomorphic to a twisted line bundle except perhaps for a fake cell. 

I I I . There is a compact 3-submanifold N* of iVi* such t ha t 

(1) bd(N*) = p-yWniN*; 
(2) p\bd(N*) is a homeomorphism; 
(3) p*:7Ti(7V*) —> 7n(iVi*) is an isomorphism; 
(4) p\N* is a homeomorphism; 
(5) iV* is a twisted line bundle over Si. 
T h e desired result follows as p(N*) will be the 3-submanifold of if* which 

Theorem 1 requires. 
W e digress to prove a number of lemmas useful in the proof of Theorem 1. 

Definition. Let F be a closed 2-sided surface embedded in a 3-manifold M. 
Suppose t h a t no component of F is a 2-sphere or projective plane. If for each 
component F0 of F, P*:TTI(FO) —* ir\{M) is an injection, we shall say t h a t F is 
incompressible in M. 

L E M M A 1. Let M be a p2-irreducible ^-manifold. Then 7r2(M) = 0. 

Proof. If 7r2(ikO 7e- 0, it follows from [3, Theorem 1.1] t h a t there is an 
embedding in M either of the projective plane or of a 2-sphere which fails to 
bound a 3-ball. Ei ther of the above contradicts our assumption t h a t M is 
£2-irreducible. 

L E M M A 2. Let M\ be a connected 3-submanifold of the 3-manifold M. Assume 
that Mi is a closed subset of M and that c\(M — Mi) P\ Mi is incompressible in 
M. Let I be a loop contained in Mi. If I is homotopic to a point in M, then I is 
homotopic to a point in Mi. 

Proof. This is [4, Lemma 1.2], 

Throughou t the remainder of this paper I will denote [0, 1]. 

L E M M A 3. Let Si and S2 be closed, connected surfaces other than the 2-sphere or 
projective plane. Let f:Si—>S2 X I be an embedding such that f*:Ti(Si) —» 
TTI(S2 X / ) is 1 — 1. Then f* is an isomorphism. 

Proof. This is [4, Lemma 1.3] except t h a t Sj is not required to be orientable 
for j = 1,2. T h e proof is identical to t h a t of 1.3 in [4]. 
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By a fake cell we shall mean a homotopy cell which may not be a cell. Let S 
be a closed surface. We shall say tha t a 3-manifold M is a fake S X / if one 
can obtain an 5 X I from M by replacing a fake cell in M with a 3-ball. W e 
define a fake twisted line bundle similarly. 

Observation 1. If M is a compact connected 3-manifold and 7r2(M) = 0, one 
can replace a single fake cell with a 3-ball to obtain an irreducible 3-manifold. 

If M is orientable, it follows from [6, Generalization 1] t ha t there are only 
finitely many disjoint, prime homotopy cells which are not 3-balls. 

W e can find a fake cell in M which contains all of these homotopy 3-cells 
and remove this fake cell from M. 

If M is non-orientable, there can again only be finitely many disjoint 
homotopy cells which are not 3-balls since otherwise the orientable double 
cover of M would contain more than finitely many of these homotopy cells. 
T h e observation follows. 

LEMMA 4. Let N be a compact, connected 3-manifold with connected, incom
pressible, non-vacuous boundary. Let S± be a closed, connected surface not the 
2-sphere or projective plane. Suppose in(N) = 7n(Si). Then N is a fake twisted 
line bundle and p*in(bd(N)) is of index two in xi(iV). 

Proof. There are no embeddings of the projective plane in N since there are 
no elements of order 2 in Tri(iV). I t follows from [3, 1.1] t h a t TT2(N) = 0. W e 
have observed t ha t one can obtain an irreducible 3-manifold iVi from N by 
replacing a fake cell with a ball. T h u s we may assume tha t N± is £2-irreducible. 

Since there is a continuous map from Ni into Si X {0} C Si X / which 
induces an isomorphism from ir\(M) to 7n(Si X / ) , it follows from [5, Theorem 
A Corollary] t h a t iVi is a twisted line bundle. If one splits N\ along its zero 
section, one sees t ha t bd(iVi) is a double cover of the zero section. 

T h e desired result follows immediately. 

L E M M A 5. Let M be a p2-irreducible 3-manifold. Let N be a compact 3-
submanifold of M such that bd (N) C int (M) and bd (N) is incompressible in M. 
Then N is p2-irreducible. 

Proof. Since M contains no embedded projective planes, N will not contain 
any embedded projective planes. Suppose there is a 2-sphere S2 embedded in 
N and t h a t S2 does not bound a ball in N. But we have assumed t ha t S2 

bounds a ball C in M; and C will contain a component of bd(iV). This is 
impossible since bd (N) was assumed to be incompressible in M. 

L E M M A 6 (Kneser 's Lemma) . Let M be a 3-manifold. Let F be a closed two-
sided surface embedded in M. Suppose there is a component S of F such that 
P*:TTI(S) —>7ri(ikf) is not an injection. Then there exists a disk D embedded in 
M such that D C\ F = bd(D) and bd(D) is not nullhomotopic in F. 

Proof. Case 1. Suppose S separates M into 3-submanifolds Mi and ikf2. I t is 
a consequence of [2, 4.2] t ha t p#:7ri(S) —» in(Mj) is not an injection for j = 1 
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or 2. We assume that p*nn(S) —» in (Mi) is not 1 — 1. Then the loop theorem 
in [7] guarantees the existence of a disk Di embedded in Mi such that D\ C\ S = 
bd(Di) and bd(Di) is not nullhomotopic in S. We may assume that D\ C\ F 
is a collection of disjoint loops and pick Di so that the number of loops in 
D\ C\ F is a minimum. Suppose there is a loop / C D\ Pi (F — S) which is 
nullhomotopic in F. Then / bounds a disk Z)0 C ^- We can choose a disk 
D C Do so that D\C\ D = bd(D). But now it is easy to reduce the number 
of loops in D\ C\ F by a simple cutting argument. Thus every loop in D\ C\ F 
may be taken to be nontrivial in F. It is now easy to choose a disk D C D\ 
such that D C\ F = bd(D) and bd(D) is not nullhomotopic on F. 

Case 2. Suppose 5 does not separate M. Let M/ be the 3-manifold obtained 
by cutting M along S. Let Si and S2 be the two boundary components of Mf 

which come from S. 
We define a covering space (M, q) of M as follows: Let M/ be homeomorphic 

to ikf/ for i an integer. Let 5 / be the embedding of Sj in Af / for i an integer 
and j = 1 , 2 . Let M be the space formed by pasting Si to S2

i+1 via the natural 
homeomorphism. Let q:M —> M be the map wrhich is the natural homeomor-
phism on M/ — (Si U 5V) and which identifies SV and *SV in the natural way. 

Now p*:7Ti(5i°) —> iri(M) is not 1 — 1. Furthermore, 5i° separates M into 
submanifolds Mi and Jkf2. As was shown above, we can find a disk Di embedded 
in Mi such that Di C\ Si0 = bd (Di) and bd (Dx) is nontrivial in .Si0. 

It is easy to use a general position argument and then a cutting argument 
to find a disk Di which meets UT=-oy5V only in essential loops. One can then 
find a subdisk D of Di which meets U?=-co<SV in a single loop. Now q(D) is 
a disk embedded in M such that q(D) C\ S = bd(q(D)) and bd(q(D)) is 
nontrivial in S. The remainder of the proof of Case 2 is the same as that of 
Case 1. 

LEMMA 7. Let M be a 3-manifold and S a closed, two sided surface embedded in 
M. Let (if*, p) be a covering space of M (not necessarily compact). Let R be a 
connected, compact 3-submanifold of M* such that 

(DRnp-HS) = bd(R); 
(2) The number of components in bd(R) is the same as the number of com

ponents in S. 
Then (R, p\R) is a finite covering space of p(R). 

Proof. It follows from the definition of covering space that p\R is a local 
homeomorphism. Since the number of components in bd(i?) is the same as the 
number of components in S, and R is compact, each component of bd(R) 
is a finite covering of one component of 5. Since 5 is two sided and 
p~x(S) T\ int(R) is empty, 5 = bd(p(R)). Let y0 be a point in bd(R) and z0 a 
point ini? but not in p~1p(yo)- Leta0 be a path from y0 to z0. Then for each point 
Z\ in p~lp(zo) there is a unique pathos such that p(a0) = p(ai) and ai has one 
endpoint in p~1p(zQ) and one endpoint in p~lp(yo). It follows that p~lp(zo) 
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and p~lp(yo) are of the same cardinality and thus (R, p\R) is a finite covering 

olp(R). 

L E M M A 8. In the lemma above, if p\bd(R) is a homeomorphism, p\R is a 
homeomorphism. 

Proof. This is an immediate consequence of Lemma 7. 

L E M M A 9. Let M be a 3-manifold. Suppose ir^M) = 0. Then every 2-sphere 
embedded in M bounds a homotopy cell in M. 

Proof. Let S be a sphere embedded in M. Let (M, p) be the universal cover 
of M. Let S be a sphere embedded in M such t ha t pS = S. Since S is homotopic 
to a point in M, it bounds a finite chain in C3 (M, Z 2 ) . T h u s S bounds a compact 
3-submanifold B of M. I t is a consequence of Van Kampen ' s theorem tha t B 
is simply connected. I t is well known tha t this implies tha t B is a homotopy 
3-cell. 

Now B C\ p~1{S) is a finite collection of 2-spheres. By the argument above 
each of these 2-spheres bounds a homotopy cell in B. I t is possible to 
choose a sphere in p~l{S) C\ B which bounds a homotopy cell Bx such t h a t 
p~l(S) C\ Bi = bd(Bi). I t now follows from Lemma 8 tha t p\B± is a homeo
morphism, and p(Bi) is a homotopy cell bounded by S. 

LEMMA 10. Let M be a S-manifold with nonvacuous disconnected boundary. 
Let F\ be a component of bd(M). Let F be a closed, connected surface, not the 
2-sphere or projective plane. Let (M, q) be a covering space of M such that M 
is a fake F X I. Then Mis a fake F\ X / . 

Proof. Since bd (M) is compact, the covering is of finite index. Since bd (M) 
is disconnected, the components of bd(Af) are mapped to distinct components 
of bd(ikT) by a. Let .Po = o^iFx). Then (F0, q\F0) is a k-fold covering of F± 

and q^Tri(Fo) is of index k in TI(FI) C TTI(M). Since bd(M) is incompressible 
in M, bd(M) is incompressible in M. Bu t now p*wi(Fi) —» wi(M) is an isomor
phism since p*7n(i?o) = TTI(M). I t follows from Observation 1 t ha t one can 
replace a fake cell in M with a 3-ball and obtain an irreducible 3-manifold. 
T h e lemma follows from 3.1 in [1]. 

LEMMA 11. Let F be a closed, connected surface not the 2-sphere or projective 
plane. Let M be a 3-manifold such that wi(M) = wi(F) and 7r2(M) = 0. Let 
Fi and F% be disjoint, closed, connected, two sided surfaces, other than the 2-sphere 
or projective plane, embedded in M. Suppose Fi and F2 are incompressible in M. 
Then F\ \J F2 bounds a fake Fi X I embedded in M. 

Proof. Since p*iri(Fi) —•» TI(M) = wi(F) is an injection, it follows from [5, 
Theorem 1] t ha t Fi is the cover of F associated with p*iri(Fi) C iri(M) = 
TI(F). Since Fi is compact, this cover is of finite index and TI(F±) is of finite 
index in wi(M). Let A be the subgroup of TT\{M) associated with the orientable 
double cover of M if M is not orientable and in(M), otherwise. Now A0 = 
P*(TTI(FI)) C\ A is of finite index in %i(M) since p*(7ri(77

1)) and A are each of 
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finite index in TI(M). Let (M, q) be the cover of M associated with A0. Le t 

(Pi, Çi) be the cover of Fi associated with P*~1(P*TTI(FI) ^ AQ) = p*_ 1(^40). 

Pi 

Figure 1 

I t is easily shown t h a t there is an embedding pi making the diagram in 
Figure 1 commuta t ive . Note pi*:iri(Fi) -* wi(M) is an isomorphism. Le t F2 

be a component of q~l{F2). Since p\F\ and F2 are two-sided closed surfaces 
embedded in an orientable 3-manifold, they are orientable. W e claim t h a t 
both pi.Fi and F2 separate M. W e see this as follows: Le t X be a simple loop 
meeting either p i ^ i or F2 in a single point and crossing p i ^ i or F2 a t t h a t point . 
Since pi*:7ri(Fi) —•» TT\{M) is an isomorphism, X is homotopic to a loop Xi which 
lies in a regular neighborhood of p±Fi so t h a t Xi does not meet p i ^ i or F2. 
This is impossible as the intersection number of X and p i ^ i or F2 is one while 
t h a t of Xi and piFi or F2 is zero. W e observe t h a t p i ^ i U F2 bounds a 3-
submanifold R of M. I t is an easy consequence of Lemma 2 t h a t p*:7n(R) —> 
iri(M) is an isomorphism since R contains piF\. Also pi*:7ri(^i) —> TI(R) is an 
isomorphism. I t follows t h a t every loop in F2 C R is homotopic in R to a 
loop in pi.Fi. Consider the proof of 5.1 in [8]. In this proof Waldhausen produces 
a 2-sphere and concludes t h a t since his 3-manifold is irreducible the 2-sphere 
bounds a ball. We observe t h a t the construction of this 2-sphere was inde
pendent of his assumption of irreducibility. T h u s we can construct the same 
2-sphere in R. 

I t follows from Lemma 9 t h a t a 2-sphere in M bounds a fake cell and thus 
by Waldhausen ' s proof t h a t R is a fake F\ X / . 

W e observe t h a t our proof was independent of the components of q~1(F1) 
and q~1(F2) which we chose. T h u s if L = int(R) P\ q~l(F2) is non-empty , 
we can reduce the number of components in L by picking a different F2. 
Similarly, one can reduce the number of components in ^(Fi) P\ in t ( i^) . I t 
follows t h a t we m a y assume t h a t g _ 1 ( ^ i ) ^ ^2) (^ R = bd(R). T h u s by 
Lemma 8, (R, q\R) covers q(R). I t follows from L e m m a 10 t h a t q(R) is a 
fake Fi X I. 

T H E O R E M 2. Let M be a compact, connected, p2-irreducible 3-manifold. Let S 
be a closed, connected 2-manifold, not the 2-sphere or projective plane. Let 
g: (S, XQ) —» (M, x) be a map such that g*:iri(S, x0) —> TTI(M, X) is 1 — 1. Then 
there exists a covering space (M*, p) of M and an embedding gi:S —» M* such that 

(Pgi)**i(S, xo) = g*7ri(S, Xo) C iri(M, x). 
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Proof. Let (M*, p) be the covering space of M associated with 
g^TT1(S,x0) C 7Ti(ikT, x ) . Let g4:S —> M* be a map such t h a t pg± = g:S —> ikf. 
Let g3:<S —> M* be a map homotopic to g4 such t ha t cl{s:{s} ^ g3_1g3(2)} is a 
1-complex. Leti^o be a regular neighborhood of gz(S). W e propose to modify 
Ro to obtain a compact connected 3-submanifold i£* of M* such t ha t 

(a) bd(i?*) is incompressible in M*; 
(b) p#:iri(R*) —>7Ti(M*) is an isomorphism. Given i ^ , for k an integer, 

such tha t 
c\(bd(Rk) - ( b d ( i y n b d ( i ? 0 ) ) ) 

is a collection of disjoint disks (possibly empty ) , we define Rk+i as follows: 
(1) If for every component F of b d ( i ^ ) p*:in(F) —> 7n(ikf*) is an injection, 

RJC+I = Rjc-

(2) Otherwise, we let Dk+i be a disk embedded in ikf* such t h a t 
Dk+i H bd(i£fc) = bd(A;+i) and bd(Dk+i) is not nullhomotopic in bd(i?fc)- I t 
follows immediately from Lemma 6 tha t such a disk exists. We may assume t h a t 
bd(Dk+1) C int(bdCRo) H bd(i?*)) since c l ( b d ( i ^ ) - bd(R0)) is a collection 
of disjoint disks in bd (Rk). We may also assume tha t Dk+1 is in general position 
with respect to gz(Si) and the portion of bd(i^0) not contained in b d ( i ^ ) -
Then if Dk+i C Rk, we remove a regular neighborhood of Dk+i from Rk to 
obtain Rk+i. Otherwise we add a regular neighborhood of Dk+i to Rk to obtain 
Rk+i. Thus if there is a component F of bd(Rk) such t ha t P*:TTI(F) —> T±(M*) 
is not an injection, the total genus of b d ( i ^ + i ) is less than the total genus of 
bd(Rk). 

Since the total genus of bd(Ro) is finite, there exists a positive integer n 
such tha t Rk = Rk+\ for k ^ n. 

Since 7r2(-M*) = 0, it follows from Lemma 4 t ha t every sphere in bd(Rn) 
bounds a homotopy cell in M*. We define Rn* to be the union of Rn with the 
collection of homotopy cells bounded by 2-spheres in bd(Rn). We observe 
t h a t bd(Rn*) is incompressible in M*. By construction, gz^igziS) H \Jk=inF>k) 
is a collection of disjoint simple loops in S. Since g^:in(S) —•> 7ri(Af*) is an 
injection, each of these simple loops is nullhomotopic in S. I t follows t h a t we 
can find a disk D (Z S such tha t 

^ D g 8 - 1 ( g 8 ( 5 ) n u * - i B 5 t ) -
We let R* be the component of Rn* which contains gz(S — D). We note t h a t 
g%bd(D) is nullhomotopic in M*\ and thus by Lemma 2, g^bd(D) is nullhomo
topic in R* since bd(i^*) is incompressible. W e define a map g2:S —» i^* 

( l ) b y £ 2 | S - D = g s | 5 - A and 
(2) by using the nullhomotopy of g 3bd(D) in R* to extend g2 to D. Since 

7r2(M*) = 0, g2 and g3 are homotopic. Thus g2*:7n(.S) —•> 7n(Af*) is an isomor
phism. I t is an easy consequence of Lemma 2 tha t g2*'iri(S) —+wi(R*) is an 
isomorphism. 

Now we claim tha t R* is a fake line bundle over S. This can be seen as 
follows: If bd(R*) is not connected, it follows from Lemma 11 t ha t two com-
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ponents of bd(i?*) bound a fake S X I in R*. T h u s R* is a fake S X I. If 
bd(i£*) is connected, it follows from Lemma 4 t h a t R* is a fake twisted line 
bundle over S. W e m a y assume t h a t R* contains a point y in p~1(x). Now we 
can find an embedding gi of 5 in R such t h a t 3> is in gi(S) and gi*:7ri(S) —> 
TTI(M*) is an isomorphism. This completes the proof of the theorem since 
(pgi)*'m(S, x0) —» 7T!(ilf, x) is an isomorphism onto g*Ti(S, x0) C ?n (ilf, x ) . 

Proof of Theorem 1. Le t g: (Si, Xi) —> (ilf, x) be a m a p such t h a t 

g*-TTi(Si, %i) —* TTI(M, x) is an injection and 

g*: 7ri(5i, Xi) D / * 7 r i ( 5 , Xo). 

Let (ilf*, £ ) be the covering space of ikT associated with g#7ri (Si, Xi) C TTI (if, x ) . 
I t follows from Theorem 2 t h a t there is an embedding giiSi —> M* such t ha t 
(pgi)*iri(Si, xi) = g*ri(Si,Xi) C TI(M,X). Let fi:S —> M* be an embedding 
such t h a t pfi = / . I t follows from a general position a rgument t h a t we can 
find a small motion of gi so t h a t L = gi(Si) P \ / i ( S ) will be a 1-manifold, i.e., 
a collection of simple loops. Suppose some loop X C L is nullhomotopic in ilf*. 
Since gi# a n d / i * are injections, h = gi - 1(X) and Z2 = / f ^ O O are nullhomotopic 
on Si and 5 , respectively. Let D\ be the disk contained in S\ bounded by h. 
I t is easy to choose X so t h a t Z>i O g-rl(L) = /i. Le t D2 C S be the disk 
bounded by l2. I t follows from Lemma 1 t h a t T2 (ilf) = 0 and thus from Lemma 
9 t h a t giiPi) \J fi(D2) bounds a homotopy cell C in ilf*. W e notice t h a t 
/ i ( S ) meets a regular neighborhood of C in a disk D2. Since every loop in 
gi _ 1 (gi (Si) H D2) bounds a disk on Si, it is not hard to define an embedding 
g2'.Si —» ilf such t h a t 

(1) g2 = gi except on a collection of disks on Si ; 
(2) £2*^1 (Si) —> 7Ti(ikT*) is an isomorphism; 
(3) g2(Si) H D2 is empty ; 

( 4 ) ^ 2 ( S i ) n / i ( S ) c L . 
Since 7r2(ilf*) = 0, gi and g2 are homotopic and g2% is an isomorphism. I t 

follows t h a t we m a y choose g\ so t ha t every loop in L = gi(Si) P \ / i ( S ) is 
nontrivial in ilf*. Note t ha t we do not require t ha t pgi{x\) = x. T h e proof of 
the theorem breaks into two cases. 

Case l . / i ( S ) r\ gi(Si) is empty . 
Case 2 . / i ( S ) P\ gi(Si) is non-empty. 

Case 1. I f / i ( S ) and gi(Si) are two sided in ilf*, it follows from Lemma 11 
t h a t / i ( S ) and gi(Si) bound a fake S X I embedded in ilf*. This is impossible 
since 

/l*7Tl(S) C gl*7Ti(Sl). 

If gi(Si) is two sided in ilf* a n d / i ( S ) is not, we let R be a regular neighborhood 
of / i ( S ) . Now bd(i?) is two sided in ilf*. Since bd(R) is incompressible in if*, 
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bd(jR) and gi(Si) bound a fake Si X I which we denote by Ri. Now Ri U R 
is a fake twisted line bundle over 5 bounded by gi($i). I t is a consequence of 
Lemma 4 t ha t gi*7n(5i) is of index two in TTI(RIU R). This is impossible 
since by Lemma 2, p*:in(Ri U i?) —>7n(ikT*) is an isomorphism. If neither 
fi(S) nor gi(5i) separates a regular neighborhood of itself, we let Ri and R2 be 
regular neighborhoods o f / i (5 ) and gi(Si) , respectively. Now bd(i^i) U bd(i?2) 
bounds a fake product line bundle R% in M* by Lemma 11. T h u s M* = 
R1U R2VJ R%. This is easily seen to be impossible as in(M*) would not be 
isomorphic to the group of a closed surface. 

If fi(S) is two sided and gi(S) fails to separate a regular neighborhood R of 
itself, Lemma 11 implies t h a t / i (5) U hd(R) bounds a fake 5 X / in M*. W e 
denote this fake 5 X / by Ri. Consider Ni* = Ri U R. Suppose t h a t 
p~lf(S) r\ Ni* contains a component F 5e fi(S). We claim F is two sided 
in If*. 

This can be seen as follows. Let z0 be the point in p~l(x) r\fi(S). Le t R be 
a regular neighborhood of f(S). Since p*in(R} x) C p*K\{M, z0), p: (i?, #) —> 
(ilf, x) lifts to an embedding pi. (R, x) —» (AT*, z0). Since / i ( 5 ) is two sided 
in pi(R),f(S) is two sided in i£ and thus in M. I t follows t h a t F is two sided 
in M*. 

By Lemma 11, FVJfi(S) bounds a fake S X I embedded in Ni* which 
we denote by R2. Now cl(Ni* — R2) is a deformation retract of Ni*. T h u s 
P*."7Ti(cl(iVi* — R2)) -^> TTI(NI*) is an isomorphism. T h u s 

P*^i(cl(iVi* - i ? 2 ) ) = i n (M*) . 

Since Ni* is compact, there can only be a finite number of components in 
^>_1/(5) r\ Ni*. T h u s by an appropriate choice of F above we have t ha t if 
iV* = cl(iVi* - i?2), 

iv* n p~lf(S) = bd(iv*) = F. 

I t follows from Lemma 7 tha t (TV*, ^?|iV*) is a finite covering space of p(N*). 
We wish to show tha t (p\F)*:wi(F) -^iri(f(S)) is an isomorphism so t ha t 

p\F will be a homeomorphism. If ^ | F is a homeomorphism, it will follow from 
Lemma 8 t ha t p\N* is a homeomorphism. Since p(N*) is a 3-submanifold of 
M whose boundary is incompressible in M, it will follow from Lemma 5 t h a t 
p(N*) is ^ - i r reducib le and thus t ha t N* is />2-irreducible. Bu t then by Lemma 
4, iV* will be a twisted line bundle. Of course, this implies t h a t N = p(N*) is 
a twisted line bundle which would complete the proof of Case 1. I t remains 
to show t h a t p*wi(F) = iri(f(S)). Le t (ikf**, q) be the covering space of M 
associated with f*Ti(S, x0) C 7ri(ikf, x ) . Let i£2 be as above. Since 
f*iri(S) C g^ iCSi ) , we can find a covering map gi to complete the diagram 
in Figure 2. 

We observe tha t there is an embedding H:R2 —-> ikf** such tha t (qiH)* = p*. 
Note t ha t both components of bd(R2) carry the homotopy of R2 and t h a t 
g - 1 (x ) meets both components of H hd(R2) in a t least one point. Let F\ be 
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the component of H bd(R2) which is contained in q^ÇF) and x3 a point in 
Fi such that g(x3) = x. We choose x3 as the basepoint for if**. 

Since P*:TTI(FI, X3) —> 7n(if**, X3) is an isomorphism, we have that 
g*P*-7ri(^i^3) —>TTI(/(5), x) is onto and thus p*:irx(F) —> iri(f(S)) is an 
isomorphism as was to be shown 

Case 2. We assume that L = fi(S) P\ gi(<Si) is a non-empty collection of 
disjoint simple loops and that if / is any loop in L, I is not nullhomotopic in 
if*. Let R0 be a regular neighborhood of fi(S) U gi(Si). We will modify R0 in 
this proof in much the same way that we modified R0 in the proof of Theorem 2. 

We propose to modify R0 to obtain a compact, connected 3-submanifold 
i V of M* such that 

(a) bd(iVi*) is incompressible in if*; 
(b) p*7ri(iVi*) —» iri(M*) is an isomorphism; 
( c ) / i ( 5 ) U ^ ( 5 i ) C i V i * . 
Given Rk, for & an integer, we define Rk+i as follows: 
(1) If for every component F of bd( i^) P*TTI(F) —> 7ri(if*) is an injection 

Rjc+1 = Rjc-

(2) Otherwise, we let Dk+1 be a disk embedded in if* such that 
Dk+i (^i bd(Rk) = bd(Z)fc+i) and bd(Dk+i) is not nullhomotopic in hd(Rk). 
The existence of such a disk follows from Lemma 6. We may also assume that 
Dk+i is in general position with respect to fi(S). It follows from a cutting 
argument that we may assume that Dk+\ does not mee t / i (5) since / i* is an 
injection and every loop in/ i (5) Pi Z^+i bounds a disk on/ i (5) . Using another 
general position argument we may assume that Dk+i meets gi (Si) in a collection 
of simple closed loops. Since gi* is an isomorphism, each of the simple closed 
loops bounds a disk D on gi(Si). We observe that D does not meet 
L = giCSi) ^fi(S) since every loop in L is nontrivial in if*. It follows by a 
cutting argument that Dk+iC\ (fi(S) \J gi(Si)) is empty. If Dk+Ï C i?*, we 
define Rk+i to be Rk with a regular neighborhood of Dk+1 removed. If 
Dk+i r\ Rk = bd^fc+i), we define Rk+i to be the union of Rk with a regular 
neighborhood of Dk+1. In either case the total genus of the boundary of Rk+i 
is less than the total genus of the boundary of Rk. Since the total genus of 
bd(Ro) is finite, there is an integer n such that Rk = Rk+i for k ^ n. Let Ni 
be the component of Rn which contains gi(Si) \J f\{S). By Lemma 9, every 
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2-sphere in bd(iVi) bounds a homotopy 3-cell in M*. We add all such homotopy 
cells to Ni to obtain iVi*. It is a consequence of Lemma 2 that p#:7ri(iVi*) —» 
in(M*) is an isomorphism since bd(7Vi*) is incompressible in M*. 

Suppose bd(iVi*) is disconnected. Then by Lemma 11, Ni* is a fake S X I. 
It is a consequence of Lemma 3 that/i*:7n(5) —» 7ri(iVi*) is an isomorphism. 
This is impossible. 

Suppose/i(5) is one sided in iVi*. Let i? be a regular neighborhood of fi(S). 
Then bd(i?) U bd(iV*) bounds a fake bd(#) X I by Lemma 11. It follows 
that R is a deformation retract of N* and fi*:iri(S) —» 7n(7V*) is an isomor
phism. This is impossible since 

W i ( S ) C in(M*). 

Now/ i (5 ) is two sided in ivy*. Thus by Lemma 11, / i (5) and bd(7Vi*) 
bound a fake S X I embedded in iVi*. We denote this fake S X I by N. Now 
cl(7Vi* - iV) = iVi** is a deformation retract of Nf. Thus p*7n(iVi**) -> 
7ri(M*) is an isomorphism. 

Suppose ^~1/(5) Pi iVi** F^ MS). Let 7̂  be a component of p~lf{S) C\ Nx** 
other than / i (5). As was shown earlier, .F is two sided in M*. By Lemma 11, 
F \J fi(S) bounds a fake S X I embedded in iVi**. We denote this fake S X I 
by Ni. If we are careful in our choice of F, we can have that 

cl(iVi** - iVi) H p-y(S) = F. 
Let N* = clfTVi** — Ni). As was shown earlier p\F is a homeomorphism. 
Thus p|TV* is a homeomorphism. As in the proof of Case 1, we see that N* is a 
twisted line bundle and the theorem follows. 

Note added in proof. William Jaco has obtained a result similar to our 
Theorem 1 in his paper Finitely presented subgroups of 3-manifold groups, 
Invent. Math. 13 (1971), 335-346. 
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