A primitive group ring

Warren Brisley and R. Groenhout

Abstract

An explicit construction is given for a primitive group ring, together with an explicit construction of a faithful irreducible module for it.

Until Formanek and Snider established sufficient conditions [1] for a group to generate a primitive group ring, there were some doubts about the existence of such objects. Their proof of primitivity uses the "internal" characterisation of primitivity in terms of the existence of a certain maximal one-sided ideal. By contrast, it seems worthwhile to construct a particularly easily-described group ring, together with an explicit faithful irreducible module for it; this provides an actual example, in which the primitivity is displayed in its "external" characterisation.

1. The group

Let \sum be the group of permutations, on the non-negative integers N, generated by $\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots\right\}$, where σ_{i} is defined by:
$\left(n \sigma_{i}\right)$ is the number obtained from n by changing the digit for 2^{i} in the binary representation of n. (Thus, σ_{0} interchanges each even integer with its successor, σ_{1} permutes N to $2,3,0,1,6,7,4,5, \ldots$, and in general, σ_{k} interchanges (rigidly) blocks of length 2^{k}.) Clearly Σ is singly transitive, any element of Σ is specified completely by its action on

Received 6 December 1974. The authors thank R.W. Robinson for the encouragement to believe that a set like S could be chosen in an easilydescribed manner.

0 , and Σ is isomorphic to $C_{2} \times C_{2} \times C_{2} \times \ldots$.

Let A be another copy of $C_{2} \times C_{2} \times C_{2} \times \ldots$ generated by commuting involutions $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ and split-extend A by Σ using the automorphisms $\sigma_{j}: a_{i} \leadsto>a_{k}$ where $k=\left(i \sigma_{j}\right)$. The result is the group $G=\left\{\left\{a_{0}, a_{1}, a_{2}, \ldots\right\} \cup\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}\right\rangle$ with the relations
(i) all x_{i} are of order 2 and commute pairwise,
(ii) all a_{i} are of order 2 and commute pairwise,
(iii) for each i, j pair, $x_{j} a_{i} x_{j}=a_{k}$ where $k=\left(i \sigma_{j}\right)$.

By the transitivity of Σ, G is generated by $\left\{a_{0}\right\} \cup\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$. Further, by the block action of elements of Σ, G is locally finite; and by the transitivity of Σ, any normal subgroup of G must be infinite. (As an aid to calculation, note that any element of G can be written as $a x$, with $a \in A, x \in X$, where X is generated by $\left.\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}.\right\}$

2. The group ring

Let F be any field: the group ring $F(G)$ consists of elements (formal sums) of the form $\left(\sum_{i} \alpha_{i} g_{i}\right)$ with $\alpha_{i} \in F, g_{i} \in G ;$ addition and multiplication are defined in the natural way, using the multiplication in G and collecting terms.

In this particular case, we require that F not have characteristic 2 . We note that for this particular group ring, any element r of $F(G)$ can be written

$$
r=A_{1} X_{1}+A_{2} X_{2}+\ldots+A_{k} X_{k}
$$

where
(i) each X_{i} is an element of X, and all the X_{i} are different,
(ii) each A_{i} is an element of $F(A)$, and so it can be written
(with e the unit element of G):
$A_{i}=\beta e+\beta_{0} a_{0}+\beta_{1} a_{1}+\beta_{01} a_{0} a_{1}+\ldots+\beta_{01} \ldots{ }^{a_{0}} a_{1} \ldots a_{n}$
where there are 2^{n+1} terms for some n. (Some, but not all, of the β 's may well be zero: each β is in F.)

3. The module

Let V be the vector space over F with basis (independent) elements $\left\{b_{0}, b_{1}, b_{2}, \ldots\right\}$: that is, V consists of finite formal sums $\sum \alpha_{i} b_{i}$, with the α_{i} in F. We need only define the action of G on V (in fact, on the basis elements) in such a way as to make V into a G-module, and then V will be an $F(G)$-module in the natural way.

Assuming the existence of a certain set

$$
S=\{2,5,6,7,12, \ldots\}
$$

(whose existence, construction and use we will deal with later), we specify:

$$
\begin{aligned}
& b_{i} x_{j}=b_{k} \quad \text { where } \quad k=\left(i \sigma_{j}\right), \\
& b_{i} a_{0}=\varepsilon_{i} b_{i} \text { where } \begin{aligned}
\varepsilon_{i} & =-1 \text { if } i \in S, \\
\varepsilon_{i} & =+1 \text { if } i k S .
\end{aligned}
\end{aligned}
$$

This specification extends associatively to words in the generators of G, and we obtain V as a G-module if the relations in G are satisfied. Clearly the requirements of order and commutativity are satisfied: for the other relations, we note that elements of Σ are uniquely specified by their action on 0 , so if x_{j} interchanges r and n, and X_{r} interchanges 0 and r then $x_{j} X_{r}$ is precisely the element which interchanges 0 and n. Thus $b_{i}\left(x_{j} a_{r} x_{j}\right)$ is $b_{i}\left(x_{j} X_{r} a_{0} X_{r} x_{j}\right)$, which is $b_{i}\left(\left(x_{j} X_{p}\right) a_{0}\left(x_{j} X_{r}\right)\right)$, which is $b_{i} a_{n}$. In either case, the result is $\varepsilon_{t} b_{i}$, where $x_{j} X_{p}$ interchanges i and t.
V is now an $F(G)$-module in the natural way.

4. Faithfulness and irreducibility

The set S is selected using the following array:

0	1	2	3	4	5	6	7	8	9	\ldots
1	0	3	2	5	4	7	6	9	8	\ldots
2	3	0	1	6	7	4	5	10	11	\ldots
3	2	1	0	7	6	5	4	11	10	\ldots

where the entry $e_{i j}$ in row i, column j is $j \sigma$, where σ is that unique element of Σ which interchanges 0 and i. (The rows and columns are numbered from zero.) Clearly, if $e_{i j}=n$, then the action of a_{i} on b_{j} is given by:

$$
\begin{aligned}
& b_{j} a_{i}=-b_{j} \text { if and only if } b_{n} a_{0}=\left(-b_{n}\right) \text {, that is if } n \in S, \\
& b_{j} a_{i}=+b_{j} \text { if and only if } n \text { is not in } S .
\end{aligned}
$$

The array is symmetric, since by the definition of $\Sigma, e_{i j}$ is calculated from j using the difference between the binary expression of zero and that of i; this is equivalent to using the non-zero binary digits of j to mark which of the binary digits of i to change; thus $e_{i j}=e_{j i}$.

We now need a lemma:
LEMMA. The set S can be chosen in such a way that, given $n \geq 0$, the set of part-columns of length $n+1$:

$$
\left\{\left[\begin{array}{c}
e_{0 j} \\
e_{1 j} \\
\vdots \\
e_{n j}
\end{array}\right], j=0,1,2, \ldots\right\}
$$

contains at least one of each of the 2^{n+1} possible patterns of + , produced by the ε_{k}, where $k=e_{i j}$.
(Thus, with S as mentioned in the previous section, and with
$n=1$, we have the pattern

$$
\left.\left.\left.\left.\begin{array}{l}
b_{0} a_{0}=+b_{0} \\
b_{0} a_{1}=+b_{1}
\end{array}\right\} \begin{array}{l}
b_{2} a_{0}=-b_{2} \\
b_{2} a_{1}=+b_{2}
\end{array}\right\} \begin{array}{l}
b_{4} a_{0}=+b_{4} \\
b_{4} a_{1}=-b_{4}
\end{array}\right\} \begin{array}{l}
b_{6} a_{0}=-b_{6} \\
b_{6} a_{1}=-b_{6}
\end{array}\right\}
$$

corresponding to columns $j=0,2,4,6$, and rows 0 and 1 for a_{0} and a_{1} acting on those b_{j} : for example, $b_{4} a_{1}=-b_{4}$ since $\left.e_{14} \in S.\right)$

Leaving the algorithm to produce S until later, we now have:
(i) V is a faithful $F(G)$ moduze.

Proof. Take any r in $F(G)$, and assume $V r=0$. Write r as in Section 2. Then

$$
b_{j} r=b_{j} A_{1} X_{1}+b_{j} A_{2} X_{2}+\ldots+b_{j} A_{k} X_{k}=0 \text { for each } j
$$

This reads:

$$
\alpha_{1, j} b_{j} X_{1}+\alpha_{2, j} b_{j} X_{2}+\ldots+\alpha_{k, j} b_{j} X_{k}=0
$$

where the $\alpha_{i, j}$ are in F. Since the X_{1}, \ldots, X_{k} are all different, so too are the $b_{j} X_{1}, \ldots, b_{j} X_{k}$, by the properties of Σ. Hence each $\alpha_{i, j}$ is zero. Now any $\alpha_{i, j}$ is produced from $A_{i}\left(b_{j} A_{i}=\alpha_{i, j}, b_{j}\right)$ by

$$
A_{i}=\beta e+\beta_{0} a_{0}+\beta_{1} a_{1}+\ldots+\beta_{01 \ldots n} a_{0} a_{1} \ldots a_{n}
$$

for some n. Then

$$
\alpha_{i, j}=\beta \pm \beta_{0} \pm \beta_{1} \pm \ldots \pm \beta_{01} \ldots n
$$

where the \pm signs depend on the allotment of the ε_{k}. Since each of the 2^{n+1} patterns of \pm which could be produced by the action of the a_{i}, may be achieved by the use of some b_{j}, by the lemma, we have the 2^{n+1} equations

$$
M\left[\begin{array}{c}
\beta \\
\beta_{0} \\
\vdots \\
\beta_{01 \ldots}
\end{array}\right]=0
$$

where the coefficient matrix M has mutually orthogonal rows. (Indeed, this production of possible \pm patterns - setting $a_{0}= \pm 1, a_{1}= \pm 1, \ldots$ in the monic words built from $1, a_{0}, a_{1}, \ldots, a_{n}$, is one of the standard ways of producing a Hadamard matrix of side 2^{n+1}.) Thus, each of the β^{\prime} s is zero, and A_{i} is the zero of $F(A)$ for each i. Hence r is zero. The module is faithful.
(ii) V is an irreducible $F(G)$-module.

Proof. Take any element $v=\sum_{i=0}^{n} \alpha_{i} b_{i}$ in V, in which not all the α_{i} are zero - say $\alpha_{k} \neq 0$. Then, by the lemma, and the symmetry of the array, there is an a_{r} such that

$$
b_{j} a_{r}=\left\{\begin{array}{ll}
-b_{k} & \text { for } j=k \\
+b_{j} & \text { for } \quad 0 \leq j \leq n
\end{array} \text { but } j \neq k .\right.
$$

So $v\left\{e-a_{r}\right\}=2 \alpha_{k} b_{k}$, so $v F(G)$ contains b_{k}, and since by the action of Σ, $b_{k} F(G)$ contains all basic elements of V, we have $v F(G)=V$ and hence V is irreducible.

It only remains to describe the algorithm to produce S and hence establish the lemma. We note first that if $q=2^{k}, k>0$, and $2^{m}>q$, then the blocks along the top row of the array

$$
\left(2^{m}, \ldots, 2^{m}+q-1\right),\left(2^{m}+q, \ldots, 2^{m}+2 q-1\right),\left(2^{m}+2 q, \ldots\right), \ldots
$$

are "reflected", in the sense that the first q elements in the columns headed $2^{m} ; 2^{m}+q ; 2^{m}+2 q ; \ldots$ are just these blocks, in the same internal order. This follows since the permutations sending

0 to 1,0 to $2, \ldots, 0$ to $2^{k}-1$ cannot change the binary digits past the $2^{(k-1)}$-digit. We start by flagging $2,4,5,6,7$ as members of S : this deals with $n=0,1$ and we have reached 7 as last flagged integer.

Assume we have flagged sufficient to justify the lemma for $n=0,1,2, \ldots, 2^{k-1}-1$, and that the last flag was placed at r. Set $q=2^{k}$. (To start, $k=2, r=7$.)
(*) Find the next power of 2 , say 2^{m}, such that $2^{m}>r$ and $2^{m}>q$. Then allot flags within the next 2^{q} blocks of length q,

$$
\left(2^{m}, 2^{m}+1, \ldots, 2^{m}+q-1\right),\left(2^{m}+q, \ldots, 2^{m}+2 q-1\right), \ldots
$$

to produce one of each of the possible 2^{q} patterns of flagging. This could be done in "dictionary" order, the first block totally unflagged, the last one totally flagged. We have now provided the ε_{n} for $n=0,1,2, \ldots, 2^{k}-1$. Set r to the last integer flagged, set $q=2^{k+1}$, and return to (*). As noted in Section 3 , this produces the set:

$$
S=\{2,5,6,7,12,17,22,27,28,29, \ldots\}
$$

and, in fact, the algorithm produces a plethora of columns of each required type for each n, and so the lemma is justified.

Consequently the irreducibility and fidelity of the module is established.

Reference

[1] Edward Formanek and Robert L. Snider, "Primitive group rings", Proc. Amer. Math. Soc. 36 (1972), 357-360.

Department of Mathematics, University of Newcastle, Newcastle, New South Wales.

