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Abstract

Let M be a commutative cancellative monoid. For m a nonunit in M, the catenary degree of m, denoted
c(m), and the tame degree of m, denoted t(m), are combinatorial constants that describe the relationships
between differing irreducible factorizations of m. These constants have been studied carefully in the
literature for various kinds of monoids, including Krull monoids and numerical monoids. In this paper,
we show for a given numerical monoid S that the sequences {c(s)}s∈S and {t(s)}s∈S are both eventually
periodic. We show similar behavior for several functions related to the catenary degree which have
recently appeared in the literature. These results nicely complement the known result that the sequence
{∆(s)}s∈S of delta sets of S also satisfies a similar periodicity condition.
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1. Introduction

Over the past 20 years, problems involving nonunique factorizations of elements in
integral domains and commutative cancellative monoids have been widely popular
in the mathematical literature (see [15] and its citation list). Much of this literature
focuses on various combinatorial constants which describe in some sense how far these
systems vary from the classical notion of unique factorization. While early work in
this area focused on Krull domains and monoids (see [3, 4, 11, 13, 14, 16, 19]), many
papers have recently considered these properties on numerical monoids (which are
additive submonoids of the natural numbers). In particular, their elastic properties
(see [8]), their delta sets (see [2, 5, 9]) and their catenary and tame degrees (see
[1, 4, 6, 7, 12, 17, 18]) have been examined in detail. We take particular interest
in the main result of [9], where, for a given numerical monoid S , the authors show that
the sequence of delta sets {∆(s)}s∈S is eventually periodic. In this note, we prove an
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290 S. T. Chapman et al. [2]

analogue of this result by showing that the similar sequences defined by the catenary
degree, the tame degree and the various related forms of the catenary degree recently
introduced in the literature (see [16]) are also eventually periodic. Our argument differs
from the one offered in [9], as problems involving the catenary and tame degrees rely
on the complete set of factorizations of an element, while those involving the delta sets
are merely concerned with factorizations of differing lengths. We open in Section 2
with the necessary notation and definitions, and present our main result, with proofs,
in Section 3.

2. Definitions and preliminaries

A numerical monoid S is a cofinite additive submonoid of N0 = {0, 1, 2, . . .}.
Both [20] and [21] are good general references on the subject. It is easy to show
using elementary number theory that every numerical monoid has a unique minimal
generating set. If these generators are n1, . . . , nk with n1 < n2 < · · · < nk, then we use
the notation

S = 〈n1, . . . , nk〉 = {a1n1 + · · · + aknk | a1, . . . , ak ∈ N0}.

If gcd(n1, . . . , nk) , 1, then N0 \ S is not finite, so we must have gcd(n1, . . . , nk) = 1.
We call k the embedding dimension of s. SinceN0 \ S is finite, there is a largest number
in the complement of S , denoted F (S ), and called the Frobenius number of S .

Let S = 〈n1, . . . , nk〉 be a numerical monoid. For s ∈ S , let

Z(s) = {(a1, . . . , ak) | a1n1 + · · · + aknk = s with each ai ∈ N0}

be the set of factorizations of s in S . We say that the length of z = (a1, . . . , ak) ∈ Z(s) is

|z| = a1 + · · · + ak.

Set
L(s) = {|z| : z ∈ Z(s)} = {m1, . . . ,ml},

where we assume that m1 < m2 < · · · < ml−1 < ml. The set L(s) is known as the set of
lengths of s. The delta set of an element, denoted ∆(s), is the set containing the values
of the difference of consecutive elements of L(s), that is,

∆(s) = {mi+1 − mi | 1 ≤ i < l}.

Let z = (a1, . . . , ak) and z′ = (b1, . . . , bk) ∈ Z(s). We say that the greatest common
divisor of z and z′ is

gcd(z, z′) = (min{a1, b1}, . . . ,min{ak, bk}),

and we define the distance between z and z′ as

d(z, z′) = max{|z − gcd(z, z′)|, |z′ − gcd(z, z′)|}.
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The distance function satisfies many of the usual properties of a metric; the interested
reader can find these summarized in [15, Proposition 1.2.5]. If Z′ ⊆ Z(s), then set

d(z,Z′) = min{d(z, z′) | z′ ∈ Z′}.

A sequence
z = z0, z1, . . . , zn−1, zn = z′

of factorizations in Z(s) is an N-chain if d(zi, zi+1) ≤ N for each 1 ≤ i ≤ n − 1. For
s ∈ S , we define the catenary degree of s (denoted c(s)) to be the minimal N such that
there is an N-chain between any two factorizations of s.

The tame degree of an element t(s) is constructed as follows. For each i ≤ k, let
Zi(s) := {(a1, . . . , ak) ∈ Z(s) | ai , 0}. We further let

ti(s) = max
z∈Z(s)

d(z,Zi(s)) and t(s) = max
i≤k

ti(s).

Alternatively, we can say that t(s) is the minimal number such that d(z, Zi(s)) ≤ t(s)
for all z ∈ Z(s) and all i ≤ k.

Three variations on the catenary degree have appeared in the literature (most
recently in [16]; see also [19]). Their definitions are as follows.

(1) The monotone catenary degree of an element cmon(s) is the minimal number
such that for any z, z′ ∈ Z(s) with |z| ≤ |z′|, there exists a cmon(s)-chain z =

z1, z2, . . . , zk = z′ with the added restriction that |zi| ≤ |zi+1|.
(2) The equivalent catenary degree ceq(s) of an element s ∈ S is the minimal number

such that given z, z′ ∈ Z(s) with |z| = |z′|, there exists a ceq(s)-chain z = z1, . . . , zk

= z′ with the added restriction that |zi| = |zi+1|.
(3) We say that a, b ∈ L(s) (with a < b) are adjacent if [a, b] ∩ L(s) = {a, b}. Let

Zl(s) = {z ∈ Z(s) | |z| = l}. The adjacent catenary degree cadj(s) of an element
s ∈ S is the minimal number such that d(Za(s), Zb(s)) ≤ cadj(s) for all adjacent
a, b.

We close this section by noting that computing done in connection with these results
was run on the GAP numerical semigroups package [10]. Also, any undefined notation
or definitions will be consistent with those used in the monograph [15].

3. Periodicity

Given a numerical monoid S = 〈n1, . . . , nk〉, we define L(S ) = lcm{n1, . . . , nk}.
When there is no ambiguity, we shall simply write L. The remainder of this section
will consist of a proof of our main result, which is as follows.

Theorem 3.1. If S = 〈n1, . . . , nk〉 is a numerical monoid, then the sequences

{c(s)}s∈S , {t(s)}s∈S , {cmon(s)}s∈S , {ceq(s)}s∈S , and {cadj(s)}s∈S

are all eventually periodic with fundamental period a divisor of L.
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Let S = 〈n1, . . . , nk〉 and suppose that k = 2. Using techniques from [6], one can
readily verify that t(s) = c(s) = n2 for large s (see also [15, Example 3.1.6]). Moreover,
it also follows for large s that cadj(s) = c(s). Since for k = 2 we also have for all s that
ceq(s) = 0 and cmon(s) = max {ceq(s), cadj(s)} = cadj(s) = c(s) (see [16, page 1003]), we
can assume throughout the remainder of our paper that k ≥ 3.

The proof of Theorem 3.1 will rely on the following basic sequencing lemma,
whose proof is left to the reader.

Lemma 3.2. Let S = 〈n1, . . . , nk〉 be a numerical monoid and f : S → N0 a function. If
there exist positive integers N and M such that s ∈ S and s > M imply that f (s − N) ≥
f (s), then { f (s)}s∈S is eventually periodic with fundamental period a divisor of N.

The following definition is critical to all of our remaining proofs.

Definition 3.3. Let s be an element of a numerical monoid S = 〈n1, . . . , nk〉 such that
s − L ∈ S . For each i, with 1 ≤ i ≤ k, define a map

φi : Z(s − L)→ Z(s)

by

φi : z→ z +

(
0, . . . , 0,

L
ni
, 0, . . . , 0

)
.

For each i, it is easy to verify that φi is distance preserving (that is, d(z, z′) =

d(φi(z), φi(z′)) for all z, z′ ∈ Z(s − L)). In the next proposition, we describe the set
Z(s) in terms of the images under φi of s − L.

Proposition 3.4. If S = 〈n1, . . . , nk〉 and s ∈ S are as in Definition 3.3 with s ≥ L(knk),
then

Z(s) =
⋃
i≤k

φi(Z(s − L)).

Proof. Let (a1, . . . , ak) ∈ Z(s). Then
∑k

i=1 aini = s. Observe that

knk ·max ai
i≤k

≥

k∑
i=1

aini = s ≥ L(knk).

If we denote a j = maxi≤k ai and simplify, then a j ≥ L > L/n j. So, we write
(a1, . . . , ak) = (a1, . . . , a j − (L/n j), a j+1, . . . , ak) + (0, . . . , 0, L/n j, 0, . . . , 0). Hence,
(a1, . . . , ak) = φ j(a1, . . . , a j − (L/n j), a j+1, . . . , ak) and we conclude that Z(s) =⋃

i≤k φi(Z(s − L)), where the reverse inclusion is obvious. �

Proposition 3.4 leads to the following observations concerning the catenary and
tame degrees of relatively large elements of a numerical monoid.

Theorem 3.5. Let S = 〈n1, . . . , nk〉 be a numerical monoid.

(a) If s ∈ S with s ≥ max{L(knk),F (S ) + 2L + 1}, then c(s − L) ≥ c(s).
(b) If s ∈ S with s ≥ max{L(knk),F (S ) + L + 1 + nk}, then t(s − L) ≥ t(s).
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Proof. (a) Since s ≥ L(knk), we have Z(s) =
⋃

i≤k φi(Z(s − L)) by Proposition 3.4. Let
j < l ≤ k. Then write s = (s − 2L) + (L/n j)n j + (L/nl)nl. By hypothesis, we have
s − 2L ≥ F (S ) + 1. So, Z(s − 2L) is nonempty. Pick (a1, . . . , ak) ∈ Z(s − 2L). We
then observe that(

a1, . . . , a j +
L
n j
, a j+1, . . . , ak

)
+

(
0, . . . ,

L
nl
, 0, . . . , 0

)
∈ φl(Z(s − L))

and (
a1, . . . , al +

L
nl
, al+1, . . . , ak

)
+

(
0, . . . ,

L
n j
, 0, . . . , 0

)
∈ φ j(Z(s − L))

represent the same factorization. Since j, l were arbitrary, we know that the images
φp(Z(s − L)) have pairwise nontrivial intersection.

The φp are all distance-preserving maps, so they conserve catenary degree locally
within their image. Pick x, y ∈ Z(s). Then we have x ∈ φ j(Z(s − L)) for some j ≤ k,
and y ∈ φl(Z(s − L)) for some l ≤ k. Now we have two cases.

Case 1. l = j. There is nothing to do; there exists a path with sufficiently small
catenary degree within φl(Z(s − L)), by distance preservation.

Case 2. l , j. Then there exists some element z ∈ φl(Z(s − L)) ∩ φ j(Z(s − L)). We
can move from x to z within φ j(Z(s − L)), and then from z to y within φl(Z(s − L)).
Each time we have sufficiently small catenary degree.

Thus, we have produced a c(s − L)-chain connecting x and y. We conclude that
c(s − L) ≥ c(s).

(b) Since s ≥ L(knk), we again have Z(s) =
⋃

i≤k φi(Z(s − L)) by Proposition 3.4.
Pick z ∈ Z(s). By Proposition 3.4, we have z = φi(z′) ∈ Z(s) for some z′ ∈ Z(s − L).
For an arbitrary j, let z′j ∈ Z j(s − L) be such that d(z′, z′j) = d(z′, Z j(s − L)). Let
z j = φi(z′j) ∈ Z j(s). Observe that

s − L − n j ≥ F (S ) + L + 1 + nk − L − n j ≥ F (S ) + 1 + nk − n j ≥ F (S ) + 1.

So, we have Z j(s − L) , ∅, and thus z′j exists. We have

d(z,Z j(s)) ≤ d(z, z j) = d(φi(z′), φi(z′j)) = d(z′, z′j) ≤ t(s − L).

Since z and j were arbitrary, let

d(z,Z j(s)) = max
i≤k

max
z′′∈Z(s)

d(z′′,Zi(s)) = t(s).

It follows that t(s − L) ≥ t(s). �

To approach periodicity for the related versions of the catenary degree, we will
need some further results. Given a factorization (a1, . . . , ak) of x with length a and
large values for all ai, we will produce in Lemma 3.7 a new factorization of x with
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length a. To begin with this process, pick some i, j, k satisfying 1 ≤ i < j < l ≤ k and
observe that

(. . . a j − nl, . . . , al + n j, . . .) (3.1)
is a factorization of x with length a + (n j − nl) = a − (nl − n j) and

(. . . ai + n j, . . . , a j − ni, . . .) (3.2)

is a factorization of x with length a + (n j − ni). If we apply the exchange (3.1) n j − ni
times, and exchange (3.2) nl − n j times, then we will produce a new factorization with
length a. But, we need a j to be sufficiently large. For this reason, we need an additional
definition.

Definition 3.6. Let S = 〈n1, . . . , nk〉 and assume that k ≥ 3 throughout. Define

ω(S ) :=
L
n1

+

⌈
L

n1n2

⌉
nk−1(nk − n1).

When there is no ambiguity, this value will simply be denoted by ω and we call ω the
toppling number of S .

Given Definition 3.6, we proceed with the previously promised lemma.

Lemma 3.7 (The toppling lemma). Let S be as in Definition 3.6 and suppose that s ∈ S .
Let z = (a1, . . . ,ak) ∈ Z(s) with a j ≥ ω for some j , 1, k. For any 1 ≤ i, l ≤ k with i, l , j,
there exists z′ ∈ Z(s), of the form(

. . . , ai +

⌈ L
n1n2

⌉
[(nl − n j)n j], . . . , a j −

⌈ L
n1n2

⌉
[n jnl − n jni]

, . . . , al +

⌈ L
n1n2

⌉
[(n j − ni)n j], . . .

)
,

and |z| = |z′|.

We refer to the process of changing z into z′ in Lemma 3.7 as toppling a j to ai
and al.
Proof. Observe that

|z′| = |z| +
⌈ L
n1n2

⌉
((nl − n j)n j − (n jnl − n jni) + (n j − ni)n j)

= |z| +
⌈ L
n1n2

⌉
(nln j − n2

j − n jnl + n jni + n2
j − nin j) = |z| +

⌈ L
n1n2

⌉
(0) = |z|

and hence |z| = |z′|. Also,
k∑

i=1

a′ini =

k∑
i=1

aini +

⌈ L
n1n2

⌉
((nl − n j)n jni − (n jnl − n jni)n j + (n j − ni)n jnl)

=

k∑
i=1

aini +

⌈ L
n1n2

⌉
(nln jni − n2

jni − n2
jnl + n2

jni + n2
jnl − nin jnl)

=

k∑
i=1

aini +

⌈ L
n1n2

⌉
(0) =

k∑
i=1

aini.
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So, z and z′ are factorizations of the same element. Furthermore,

a j −

⌈ L
n1n2

⌉
[(n j − ni)nl + (nl − n j)ni] ≥ ω −

⌈ L
n1n2

⌉
n j(nl − ni)

≥ ω −
⌈ L
n1n2

⌉
nk−1(nk − n1)

=
L
n1

+

⌈ L
n1n2

⌉
nk−1(nk − n1) −

⌈ L
n1n2

⌉
nk−1(nk − n1) =

L
n1

>
L
n j
.

So, all of the coefficients are positive (that is, z′ ∈ Z(s)). This completes the proof. �

Note that z′ as constructed in Lemma 3.7 is in the image of three maps. First,
z′ ∈ φ j(Z(s − L)) by the last calculation in the above proof. Moreover,

ai +

⌈ L
n1n2

⌉
[(nl − n j)n j] ≥

⌈ L
n1n2

⌉
[(1)n2] ≥

L
n1
≥

L
ni

and so z′ ∈ φi(Z(s − L)). Similarly,

al +

⌈ L
n1n2

⌉
[(n j − ni)n j] ≥

⌈ L
n1n2

⌉
[(1)n2] ≥

L
n1
≥

L
nl

and so z′ ∈ φl(Z(s − L)). Thus,

z′ ∈ φ j(Z(s − L)) ∩ φi(Z(s − L)) ∩ φl(Z(s − L)).

Lemma 3.7 now allows us to prove an analogue of Theorem 3.5 for the sequence
{ceq(s)}s∈S .

Theorem 3.8. Let S = 〈n1, . . . , nk〉 be a numerical monoid and suppose that s ∈ S . If

N =

⌈ (k − 1)ω
1 − (n1/nk)

⌉
and s ≥ Nknk, then ceq(s − L) ≥ ceq(s).

Proof. Pick any two factorizations z = (a1, . . . ,ak) and z′ = (b1, . . . ,bk) of s of the same
length. Observe for a j = maxi≤k ai that

ka jnk ≥

k∑
i=1

aini = s ≥ kNnk

and so a j ≥ N. Hence, it is clear using the definitions that a j ≥ N ≥ ω ≥ L/n j. The
same can be said for bl = maxi≤k bi ≥ L/nl.

Case 1: j = l. Then z and z′ are factorizations in φ j=l(Z(s − L)), so there exists a
ceq(s − L)-chain connecting them in φ j=l(Z(s − L)). Thus, ceq(s) ≤ ceq(s − L).

Case 2: j , 1, k and l , j. Note that this case is symmetric to the case l , 1, k and
j , l. Observe that z ∈ φ j(Z(s − L)) and z′ ∈ φl(Z(s − L)).
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Case 2a: l < j. Topple z to some z′′ by toppling a j to al and ak.

Case 2b: l > j. Topple z to some z′′ by toppling a j to a1 and al.
Note that z′′ ∈ φl(Z(s − L)) ∩ φ j(Z(s − L)). We can construct a ceq(s − L)-chain from

z to z′′ in φ j(Z(s − L)), and then from z′′ to z′ in φl(Z(s − L)). Combining these chains,
we have a ceq(s − L) chain from z to z′, so ceq(s) ≤ ceq(s − L).

Case 3: a1 ≥ N and bk ≥ N or b1 ≥ N and ak ≥ N. Without loss of generality, let
a1 ≥ N and bk ≥ N. We have

k∑
i=1

ai =

k∑
i=1

bi =⇒

k∑
i=1

ai − bk =

k−1∑
i=1

bi

=⇒

k∑
i=1

ai − bk ≤ (k − 1)bm =⇒

∑k
i=1 ai − bk

k − 1
≤ bm,

where bm = maxi,k bi. We also have

k∑
i=1

aini =

k∑
i=1

bini =⇒ bk =

∑k
i=1 aini −

∑k−1
i=1 bini

nk

=⇒ bk =

k∑
i=1

ai
ni

nk
−

k−1∑
i=1

bi
ni

nk
.

Combining these results,

bm ≥

∑k
i=1 ai − (

∑k
i=1 ai(ni/nk) −

∑k−1
i=1 bi(ni/nk))

k − 1

≥

∑k
i=1 ai(1 − (ni/nk)) +

∑k−1
i=1 bi(ni/nk)

k − 1

≥

∑k−1
i=2 ai(1 − (ni/nk)) + bi(ni/nk)

k − 1
+

a1(1 − (n1/nk)) + b1(n1/nk)
k − 1

≥
a1(1 − (n1/nk))

k − 1
≥

N(1 − (n1/nk))
k − 1

≥ ω

for some 1 ≤ m < k. If m = 1, then both a1 and b1 > ω, and we are in Case 1. If m , 1,
then bm > ω for some m , 1, k, and we are in Case 2. So, regardless of which pair
of equal-length factorizations we choose, we can construct a ceq(s)-chain connecting
them. We conclude that ceq(s − L) ≥ ceq(s), which completes the proof. �

We prove a version of Theorem 3.8 for the sequence {cadj(s)}s∈S .

Theorem 3.9. Let S = 〈n1, . . . , nk〉 be a numerical monoid and suppose that s ∈ S .
Suppose further that

N =

⌈ (k − 1)ω + ∆max

1 − (n1/nk)

⌉
,

where ∆max = max ∆(S ). If s ≥ kN, then cadj(s − L) ≥ cadj(s).
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Proof. We note that, by [5], ∆max is finite. Pick a, b ∈ L(s) that are adjacent. Then
a = b + ∆ for some ∆ ∈ ∆(s). It is sufficient to show that there exist x, y ∈ Z(s) such
that |x| = a, |y| = b and x, y ∈ φi(Z(s − L)) for some i ≤ k. For this would imply that
Za−(L/ni)(s − L) and Zb−(L/ni)(s − L) are nonempty, so we can pick p ∈ Za−(L/ni)(s − L)
and q ∈ Zb−(L/ni)(s − L) such that d(p, q) = d(Za−(L/ni)(s − L), Zb−(L/ni)(s − L)). Since
a − (L/ni) and b − (L/ni) are adjacent, we get d(Za−(L/ni)(s − L), Zb−(L/ni)(s − L)) ≤
cadj(s − L). Hence,

d(Za(s),Zb(s)) ≤ d(φi(p), φi(q)) = d(p, q)
= d(Za−(L/ni)(s − L),Zb−(L/ni)(s − L)) ≤ cadj(s − L).

So, our goal is to show that there exist x, y ∈ φi(Z(s)) with x ∈ Za(s) and y ∈ Zb(s).
Pick za = (a1, . . . , ak) ∈ Za(s) and zb = (b1, . . . , bk) ∈ Zb(s). As before, ai ≥ N and

b j ≥ N for some i, j ≤ k. We break our argument into five cases.

Case 1: i = j. Then za ∈ φi(Z(s − L)) ∩ Za(s) and zb ∈ φi(Z(s − L)) ∩ Zb(s). This
completes the argument for Case 1.

Case 2: i , 1, k. This case breaks into two subcases.

Case 2a: j > i. Topple ai to produce a factorization (a′1, . . . , a
′
k), where a′1 ≥ L/n1,

a′i ≥ L/ni and a′j ≥ L/n j.

Case 2b: j < i. Topple ai to produce a factorization (a′1, . . . , a
′
k), where a′j ≥ L/n j,

a′i ≥ L/ni and a′k ≥ L/nk.

We have (a′1, . . . , a
′
k) ∈ φ j(Z(s − L)) ∩ Za(s). Since zb ∈ φ j(Z(s − L)) ∩ Zb(s), we are

done with Case 2.

Case 3: b j , b1, bk. This case also breaks into two subcases.

Case 3a: i > j. Topple b j to produce a factorization (b′1, . . . , b
′
k), where b′1 ≥ L/n1,

b′j ≥ L/n j and b′i ≥ L/ni.

Case 3b: i < j. Topple b j to produce a factorization (b′1, . . . , b
′
k), where b′i ≥ (L/ni),

b′j ≥ L/n j and b′k ≥ L/nk.

We have (b′1, . . . , b′k) ∈ φi(Z(s − L)) ∩ Zb(s). We also know that (a1, . . . , ak) ∈
φi(Z(s − L)) ∩ Za(s) by hypothesis. This completes Case 3.

Case 4: i = k and j = 1. Set am = maxi,k ai. If m = 1, then (a1, . . . ,ak) and (b1, . . . ,bk)
are both in the image of φ1 and we are done. Thus, we assume that m > 1. We have

k∑
i=1

ai =

k∑
i=1

bi + ∆ =⇒ am(k − 1) ≥
k−1∑
i=1

ai =

k∑
i=1

bi − ak + ∆

=⇒ am ≥

∑k
i=1 bi − ak + ∆

k − 1
.
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We also get

k∑
i=1

aini =

k∑
i=1

bini and ak =

∑k
i=1 bini −

∑k−1
i=1 aini

nk
=

k∑
i=1

bi
ni

nk
−

k−1∑
i=1

ai
ni

nk
.

Combining the above two results, we get

am ≥

∑k
i=1 bi − (

∑k
i=1 bi(ni/nk) −

∑k−1
i=1 ai(ni/nk)) + ∆

k − 1

=⇒ am ≥

∑k
i=1 bi(1 − (ni/nk)) +

∑k−1
i=1 ai(ni/nk) + ∆

k − 1

=

∑k−1
i=2 bi(1 − (ni/nk)) + ai(ni/nk)

k − 1
+

b1(1 − (n1/nk)) + a1(n1/nk) + ∆

k − 1

≥
b1(1 − (n1/nk)) + ∆

k − 1

≥
N(1 − (n1/nk)) + ∆

k − 1
=
ω(k − 1) + ∆max + ∆

k − 1
≥ ω.

Topple am to produce a factorization (a′1, . . . , a
′
k), with a′1 ≥ L/n1, a′m ≥ L/n j and

a′k ≥ L/nk. We have (a′1, . . . , a
′
k) ∈ φ1(Z(s − L)) ∩ Za(s). We also have (b1, . . . , bk) ∈

φ1(Z(s − L)) ∩ Zb(s) by hypothesis. This completes Case 4.

Case 5: i = 1 and j = k. We have

k∑
i=1

ai =

k∑
i=1

bi + ∆ =⇒

k∑
i=1

ai − bk − ∆ =

k−1∑
i=1

bi ≤ (k − 1)bm =⇒ bm ≥

∑k
i=1 ai − bk − ∆

k − 1
,

where bm = maxi,k bi. We also get

k∑
i=1

aini =

k∑
i=1

bini =⇒ bk =

∑k
i=1 aini −

∑k−1
i=1 bini

nk
=

k∑
i=1

ai
ni

nk
−

k−1∑
i=1

bi
ni

nk
.

Combining the above two results, we get

bm ≥

∑k
i=1 ai − (

∑k
i=1 ai(ni/nk) −

∑k−1
i=1 bi(ni/nk)) − ∆

k − 1

=⇒ bm ≥

∑k
i=1 ai(1 − (ni/nk)) +

∑k−1
i=1 bi(ni/nk) − ∆

k − 1

=

∑k−1
i=2 ai(1 − (ni/nk)) + bi(ni/nk)

k − 1
+

a1(1 − (n1/nk)) + b1(n1/nk) − ∆

k − 1

≥
a1(1 − (n1/nk)) − ∆

k − 1
≥

N(1 − (n1/nk)) − ∆max

k − 1
≥ ω.

Topple bm to produce a factorization (b′1, . . . , b
′
k), where b′1 ≥ L/n1 and b′m ≥ L/n j.

Then (b′1, . . . , b
′
k) ∈ φ1(Z(s − L)) ∩ Zb(s). We also know that (a1, . . . , ak) ∈ φ1(Z(s − L))

∩ Za(s) by hypothesis. This completes Case 5.
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We have covered all of the possible pairings of i and j. We conclude that
d(Za(s), Zb(s)) ≤ cadj(s − L). But, a, b were arbitrary adjacent elements of L(s). It
follows that cadj(s) ≤ cadj(s − L). This completes the proof. �

We previously noted that cmon(s) = max {ceq(s), cadj(s)}. From Theorems 3.8
and 3.9, we readily obtain the following result.

Corollary 3.10. Let S = 〈n1, . . . , nk〉 be a numerical monoid and suppose that s ∈ S .
If

N =
(k − 1)ω + ∆max

1 − (n1/nk)
and s ≥ kN, then cmon(s − L) ≥ cmon(s).

Combining Theorems 3.5, 3.8 and 3.9 and Corollary 3.10 with Lemma 3.2 yields a
proof of Theorem 3.1.
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