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ELLIPTIC UNITS AND CLASS FIELDS
OF GLOBAL FUNCTION FIELDS

SUNGHAN BAE AND PYUNG-LYUN KANG

ABSTRACT. Elliptic units of global function fields were first studied by D. Hayes in
the case that deg1 is assumed to be 1, and he obtained some class number formulas
using elliptic units. We generalize Hayes’ results to the case that deg1 is arbitrary.

0. Introduction. Let K be a global function field over a finite field Fq. Let 1 be
a fixed place of degree é, and A the subring of K consisting of those elements which
are regular outside 1. For a nontrivial character Ψ of Pic A the value LK(0, Ψ) can be
expressed using the invariants ò(∑) of ideals ∑ of A. (See Hayes [5] for the case é ≥ 1
and Gross and Rosen [2] for arbitrary é.)

In this note we define elements hµ j ∂i and [µ j ∂] for some pair of ideals µ and
∂ which generalize those in [4] for the case é ≥ 1. Then we show that [µ j A] (resp.
hµ j Ai) not only lies in the Hilbert class field HA (resp. normalizing field H̃A) of A, but
also generate the extension HA (resp. H̃A) over K. This is nothing but the analogue of the
fact that the ring class field of an imaginary quadratic field is generated by the quotient
∆(µ)Û∆(R) of discriminant functions ([10]). Finally using the elliptic units we get class
number formulas generalizing those obtained by Hayes in [5]. Oukhaba ([7], [8], [9])
also studied the elliptic units of function fields assuming that 1 is totally split.

1. Preliminaries. By an elliptic A-module we mean a Drinfeld module of rank one
on A. Let HA be the Hilbert class field of A as defined in [3]. Let K1 be the completion
of K at 1 and C the completion of the algebraic closure of K1. Then HA is the smallest
extension field of K with the property that every elliptic A-module defined over C is
isomorphic to an elliptic A-module defined over HA. We denote by Pic A the group of
all the isomorphism classes of fractional ideals of A and hA its order. Let hK be the class
number of the field K. Then hA ≥ hKé. Denote by î(1) the residue field at 1.

Let ö be an elliptic A-module. We say that ö is normalized if the leading coefficient
sö(x) of öx belongs to î(1) for any x 2 A n f0g. Fix a sign function sgn: KŁ

1 ! î(1)Ł.
We say that an elliptic A-module ö is sgn-normalized if ö is normalized and sö is equal
to a twisting of sgn. Then every elliptic A-module is isomorphic to a sgn-normalized
elliptic A-module. For details see [6]. Let Γ be an A-lattice of rank 1 in C. We say that
an A-lattice Γ is special if its associated elliptic A-module öΓ is sgn-normalized. For an
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A-lattice Γ in C define ò(Γ) to be an element of CŁ so that ò(Γ)Γ is special. Then ò(Γ) is
determined up to the multiplication by elements of î(1)Ł.

For an integral ideal µ of A, let öµ be the µ-isogeny defined in [3]. Then the elliptic
module µ Ł ö is defined to be the unique elliptic module satisfying (µ Ł ö)x Ð öµ ≥ öµ Ð öx.
Then we have the following lemma whose proof is straightforward.

LEMMA 1.1. i) For x 2 R, we have (x) Ł ö ≥ sö(x)�1ösö(x).
ii) (°�1ö°)µ ≥ °�qdeg µ

öµ°, for any ° 2 C and any integral ideal µ of A.
iii) sµŁö ≥ õdeg µ Ž sö, where õ is the qth power map and µ is an ideal of A.

LEMMA 1.2. Let ö1 and ö2 be two isomorphic sgn-normalized elliptic A-modules.
Then

sö1 ≥ sö2 .

PROOF. Pick c 2 CŁ such that ö2 ≥ c�1ö1c. Then cqé�1 2 î(1)Ł. Write a ≥ cqé�1.
Then sö2 (x) ≥ adeg xÛésö1 (x). Since their corresponding sign functions are the same, a
must be 1 by Lemma 4.2 of [6].

LEMMA 1.3. For each elliptic A-module ö there exist exactly qé�1
q�1 distinct sgn-

normalized elliptic A-modules which are isomorphic to ö.

PROOF. Let ö be a sgn-normalized elliptic A-module. For each ã 2 î(1)Ł, ã�1öã

is sgn-normalized. From the proof of the above lemma any sgn-normalized elliptic A-
module isomorphic to ö is of this form. Now the result follows from the fact thatã�1öã ≥

å�1öå if and only if ãÛå 2 FŁq.

Let ö be a sgn-normalized elliptic A-module. Then there exists w 2 CŁ such that
ö0 ≥ wöw�1 is defined over HA. Then wqé�1 2 HA. Let w0 ≥ wq�1, and H̃A ≥ HA(w0).
We call H̃A the normalizing field with respect to (A, sgn,1). Then every elliptic A-
module over C is isomorphic to a sgn-normalized module defined over H̃A. Let gPic A
be the quotient group of the group of fractional ideals modulo the subgroup of principal
ideals generated by an element x 2 K with sgn(x) ≥ 1.

THEOREM 1.4 ([6] SECTION 4). i) Gal(H̃AÛK) is isomorphic to gPic A, and

[H̃A : K] ≥
qé � 1
q � 1

Ð hA.

ii) H̃AÛK is unramified at any finite places.
iii) H̃AÛHA is totally ramified at 1 with the inertia group isomorphic to î(1)ŁÛFŁq.
iv) A finite place ƒ splits completely in H̃AÛK if and only if ƒ ≥ xA with sgn(x) 2 FŁq.
v) Let B̃ be the integral closure of A in H̃A. Then for a sgn-normalized elliptic A-

module ö and an ideal µ of A, the extended ideal µB̃ is a principal ideal and generated
by the constant term D(öµ) of öµ.

Let¡ be an ideal of A and ö a sgn-normalized module. Let Λ¡ be the set of ¡-torsion
points of ö. Put K̃¡ ≥ H̃A(Λ¡) be the field generated by ¡-torsion points of ö over H̃A.
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THEOREM 1.5 ([6] SECTION 4). i) K̃¡ is abelian over K, and independent of the
choice of the sgn-normalized module.

ii) Gal(K̃¡ÛH̃A) ' (AÛ¡)Ł .
iii) Let ï 2 Λ¡ and õµ be the Artin automorphism of Gal(K̃¡ÛK) associated to the

ideal µ. Then
ïõµ ≥ öµ(ï).

iv) Let G1 be the decomposition group of K̃¡ÛK at 1. Then G1 is the inertia group
at 1 and isomorphic to î(1)Ł.

v) Let H¡ be the fixed field of K̃¡ under G1 and N�
¡: K̃¡ ! H¡ be the corresponding

norm map. Then N�
¡(K̃Ł

¡) consists of totally positive elements. Here an element x is said
to be totally positive if sgn

�
õ(x)

�
≥ 1, for any automorphism õ over K.

vi) For ï 2 Λ¡ and õ 2 Gal(K̃¡ÛK), ïõ�1 is a unit in the ring of integers of
H̃¡ ≥ H̃AH¡, the fixed field of FŁq ² Gal(K̃¡ÛH̃A).

2. Elliptic units. We know that Gal(H̃AÛK) acts transitively on the set S of all the
sgn-normalized elliptic A-modules via ö 7! öõ, for õ 2 Gal(H̃AÛK). Now fix a sgn-

normalized elliptic A-module ö from qé�1
q�1 sgn-normalized elliptic A-modules associated

to the lattice A. Then the map õ 7! öõ sets up a one-to-one correspondence between
Gal(H̃AÛK) and S. If we identify ˜Pic A with Gal(H̃AÛK) via the Artin map µ 7! úµ, then
it is shown in [3] that öúµ ≥ µ Ł ö for integral ideals µ of A. One can define µ Ł ö for
any fractional ideal µ of A from this property. This sets up a one-to-one correspondence
between gPic A and S.

For two ideals µ and ∂ with µ integral, we define

hµ j ∂i ≥ D(ö
ú�1
µ∂
µ ) ≥ D

��
(µ∂) Ł ö

�
µ

�
,

and

[µ j ∂] ≥ hµ j ∂i
qé�1
q�1 ,

where D(öµ) is the constant term of öµ.

PROPOSITION 2.1. i) hµ j ∂i 2 H̃A and generates the ideal µB̃.
ii) For x 2 K, we have

hµ j x∂i ≥ s(µ∂)�1Łö(x)qdeg µ�1hµ j ∂i,

and
[µ j x∂] ≥ [µ j ∂].

iii) If ∑ is an integral ideal, then

hµ∑ j ∂i ≥ hµ j ∂ih∑ j µ∂i.

iv) For an ideal ∑,
hµ j ∂iú∑ ≥ hµ j ∂∑�1i.
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v) [µ j ∂] lies in HŁ
A, in fact, [µ j ∂] ≥ NH̃AÛHA

(hµ j ∂i).

vi) If x 2 µ�1, then

hxµ j ∂i ≥
x

s(µ∂)�1Łö(x)
hµ j ∂i,

and

[xµ j ∂] ≥ x̄
qé�1
q�1 [µ j ∂],

where x̄ ≥ x
sgn(x) .

vii) Let Ÿ be a prime ideal of HA and úŸ be the Artin automorphism in Gal(H̃AÛHA)
associated to the ideal Ÿ. Let xŸ 2 A be any generator of the principal ideal N(Ÿ) of
A. Then

hµ j ∂iúŸ ≥ s(µ∂)�1Łö(xŸ)1�qdeg µ
hµ j ∂i,

and
[µ j ∂]úŸ ≥ [µ j ∂].

PROOF. i) is clear from definition. ii) follows from�
(xµ∂)�1 Ł ö

�
µ
≥
�

(x�1) Ł
�
(µ∂)�1 Ł ö

��
µ

≥ s(µ∂)�1Łö(x)qdeg µ�
(µ∂)�1 Ł ö

�
µ
s(µ∂)�1Łö(x)�1.

Since �
(µ∂∑)�1 Ł ö

�
µ∑
≥
�
∑ Ł (µ∂∑)�1 Ł ö

�
µ

�
(µ∂∑)�1 Ł ö

�
∑

≥
�
(µ∂)�1 Ł ö

�
µ

�
(µ∂∑)�1 Ł ö

�
∑
,

we get iii). iv) follows from�
(µ∂)�1 Ł ö

�ú∑
µ
≥
�
∑ Ł (µ∂)�1 Ł ö

�
µ
≥
�
(µ∂∑�1)�1 Ł ö

�
µ
.

v) follows from the properties ii) and iv). The first statement of vi) follows easily from
the definitions and Lemma 1.1. For the second statement, let s(µ∂)�1Łö(x) ≥ sgn(x)qi

, for
some i. Then �

sgn(x)qi� qé�1
q�1 ≥

�
sgn(x)qé�1

� qi�1
q�1
�
sgn(x)

� qé�1
q�1 ≥ sgn(x)

qé�1
q�1 ,

since sgn(x)qé�1 ≥ 1. vii) follows easily from the fact that úŸ(ö) ≥ sö(xŸ)�1ösö(xŸ) ([6],
Proposition 4.7).

For an ideal µ of A one can define the invariant ò(µ) to be an element of CŁ such that
ò(µ)µ is the lattice associated to the elliptic A-module µ�1 Ł ö. Then this ò(µ) is well-
defined up to the multiplication by FŁq. Fix ò(A) from q� 1 possible values so that ò(A)A

is the lattice associated to the elliptic module ö and define ë(A) ≥ ò(A)
qé�1
q�1 . We can fix

ò(µ) (resp. ë(µ)) to be the element of CŁ such that

ò(A)
ò(µ)

≥ hµ j Ai (resp.
ë(A)
ë(µ)

≥ [µ j A]),

for each ideal µ of A.
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PROPOSITION 2.2. We have

ò(µ)
ò(µ∂)

≥ h∂ j µi (resp.
ë(µ)
ë(µ∂)

≥ [∂ j µ]),

and  
ò(µ)
ò(∂)

!ú∑
≥
ò(µ∑�1)
ò(∂∑�1)

(resp.
 
ë(µ)
ë(∂)

!ú∑
≥
ë(µ∑�1)
ë(∂∑�1)

).

Let N be a subgroup of G ≥ Gal(HAÛK) of order n. Let L ≥ HN
A and qL be the

number of constants in L. Define IN to be the group of ideals µ of A with associated
Artin automorphism úµ 2 N, PN the G-submodule of HŁ

A generated by ë(A)Ûë(µ) with
µ 2 N, and EN ≥ PN \ BŁ, where B is the integral closure of A in HA. Put P ≥ PG and
E ≥ EG. We call the elements of PN the elliptic numbers of level N and the elements of
EN the elliptic units of level N. The map µ 7! ú�1

µ : IN ! G makes HŁ
A into an IN-module.

Define
fN : IN �! PN

by fN(µ) ≥ ë(R)Ûë(µ). Then it is easy to see that fN(µ∂) ≥ fN(µ)fN(∂)ú
�1
µ . Let

M ≥ fx̄
qé�1
q�1 : x 2 KŁg.

It is clear from the definition that M is a subgroup of KŁ and contained in PN for every
N. Then it is not hard to see that EN \ M ≥ f1g and so the natural map EN ! PNÛM is
injective. Let SN be a set of n� 1 prime ideals of A which maps bijectively onto N n f1g
via the Artin map, and P0

N be the subgroup of PN generated by fN(ƒ) with ƒ 2 SN. The
following are simple generalizations of those given in [5];

N1. For ô 2 PN and õ 2 G, ôõ�1 2 EN, and so the composition f ŁN of fN with the
natural map PN ! PNÛEN is a group homomorphism.

N2. PN ≥ P0
NMEN and P ≥ P0

GM.
N3. P0

N is a free group freely generated by fN(ƒ), ƒ 2 SN.
N4. PNÛMEN ' N.
N5. The elliptic numbers are totally positive, and so P \ FŁqé ≥ E \ FŁqé ≥ f1g and

P \ KŁ ≥ M.
N6. Each element of Põ�1 is the (q � 1)-st power of a unit in HA for any õ 2 G.
The proofs are mostly the same as in [5], so we only prove N6. Let ƒ be a prime

ideal of A. Let ï be any root of ö
ú�1
ƒ
ƒ . Let Ñƒ: K̃ƒ ! H̃A, Nƒ: K̃ƒ ! HA, N�

ƒ : K̃ƒ ! H̃ƒ,
N+
ƒ:! HA, and N: H̃A ! HA be the norm maps. Then from the definition,

hƒ j Ai ≥ Ñƒ(ï).

From v) of Proposition 2.1 we have [ƒ j A] ≥ N(hƒ j Ai). Thus

f (ƒ) ≥ N
�
Ñƒ(ï)

�
≥ Nƒ(ï) ≥ N+

ƒ

�
N�

ƒ (ï)
�
≥ N+

ƒ(ïq�1).

Hence f (ƒ)õ�1 ≥ N+
ƒ(ïõ�1)q�1, since ïõ�1 lies in H̃ƒ. Therefore N6 follows.

https://doi.org/10.4153/CMB-1997-046-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-046-8


390 S. BAE AND P.-L. KANG

3. v1
�
ò(∑)

�
and the value of L-function at 0 and generators of class fields. Fix

a valuation v1 on C extending the normalized valuation of K at 1. For an integral ideal
∑ of A define the partial zeta function

ê∑(s) ≥
X
x2∑

jxj�s
1 .

Put S ≥ q�s. Then
ê∑(s) ≥ Z∑(S) ≥

X
x2∑

Sdeg x.

It is shown in ([1], (4.10)) that

v1
�
ò(∑)

�
≥ �Z0∑(1)Ûé.

Now we are going to evaluate Z0∑(1) for any integral ideal ∑ of A with degree c.
For each integer i we define

iŁ ≥ inffn : n ½ i, n � 0(é)g

and
iŁ ≥ supfn : n � i, n � 0(é)g.

Let m ≥ m∑ ≥ (c + 2g � 1)Ł and n ≥ n∑ ≥ 1 � g + m � c, where g is the genus of the
smooth curve associated to K. Let

‡(∑) ≥ �

m�cŁ
éX

t≥0
téjFt(∑)j,

where Ft(∑) ≥ fx 2 ∑ : deg x ≥ té + cŁg. Using the equation (2.5), Chapter III of [1],

Z0∑(1) ≥ �‡(∑) � cŁ � m∑q
n∑ +

éqn∑

qé � 1
.

Therefore we get

PROPOSITION 3.2. We have

év1
�
ò(∑)

�
≥ ‡(∑) + cŁ + m∑q

n∑ �
éqn∑

qé � 1
.

Now let Ψ be a nontrivial character of Gal(HAÛK). Then we can view Ψ as a function
on the ideals µ of A. Let

LA(s, Ψ) ≥
Y

ƒ prime

 
1�

Ψ(ƒ)
N(ƒ)�s

!�1

.

Then LA(s, Ψ) ≥ (1 � q�és)LK(s, Ψ). It is shown in [2] Proposition 7.9 that

L0A(0, Ψ) ≥ �
1

q � 1

X
∑

Ψ(∑)
�

deg ∑ � év1
�
ò(∑)

��
.

Then using L’hospital’s rule we see that

LK(0, Ψ) ≥
1

é(q � 1)

X
∑

Ψ(∑)
�
év1

�
ò(∑)

�
� deg ∑

�
.

Here ∑ runs over any set of representatives of Pic A. Define ï(∑) ≥ év1
�
ò(∑)

�
� deg ∑.

Then ï(∑) depends only on the class of Pic A.

https://doi.org/10.4153/CMB-1997-046-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-046-8


ELLIPTIC UNITS AND CLASS FIELDS 391

THEOREM 3.3. Let Ψ be a nontrivial character on Pic A. Then we have

L(0, Ψ) ≥
1

é(q � 1)

X
∑

Ψ(∑)ï(∑),

where the sum runs over a complete set of representatives of Pic A.

Now following the same methods in the proof of Satz 2 of [10] replacing log by
logq, Af (Ψ) by

P
∑ Ψ(∑)ï(∑), and ∆(µ)

∆(Rf ) by ë(µ)
ë(A) , we can get without difficulty the following

theorem.

THEOREM 3.4. Let Ω be a subfield of HA containing K and let ¤ be the subgroup
of Pic A corresponding to Ω. If » 2 Pic A n ¤, then

Ω ≥ K
�
NHA

Ω ([µ j A]n)
�
,

for any integral ideal µ 2 » and any positive integer n.

COROLLARY 3.5. We have

HA ≥ K([µ j A]),

where µ is any integral ideal of A which is not principal.

COROLLARY 3.6. Let µ be an integral ideal of A of degree prime to é. Then

H̃A ≥ K(hµ j Ai).

PROOF. Clearly µ is not principal. Since sign functions are surjective, part vii) of
Proposition 2.1 implies that

[K(hµ j Ai) : K([µ j A])] ≥
qé � 1
q � 1

.

Since K(hµ j Ai) ² H̃A and HA ≥ K([µ j A]), we get the result.

4. Class number formulas. For a subgroup N of G, define s(N) ≥
P
õ2N õ and

eN ≥ s(N)
n . Let IN be the augmentation ideal of Z[N] and I ≥ IG. Define

‡: HŁ

A �! Z[G]

by x 7!
P
õ2G v1(xõ)õ�1, and

‡Ł: HŁ

A �! Q
 I

by x 7! (1 � eG)‡(x). Then for x 2 BŁ we have ‡(x) ≥ ‡Ł(x) 2 I. Define

° ≥
X
∑

�
ï(∑) � ï(A)

�
ú∑.
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PROPOSITION 4.1. We have

‡Ł(PN) ≥
qé � 1
é(q � 1)

°INZ[G],

and
Ker(‡Ł) \ P ≥ M.

Therefore ‡Ł gives an isomorphism of PÛM onto qé�1
é(q�1)°INZ[G].

Let qF be the number of constants of a function field F. Then it is well-known that
the function Z(s) ≥ (q�s

F � 1)ê(s) has the value hFÛ(qF � 1) at s ≥ 0. Thus for Galois
extension L of K we have

(qK � 1)hL

d(qL � 1)hK
≥

Y
üÂ≥1

LK(0,ü),

where ü runs through the nontrivial characters of Gal(LÛK) and d is the dimension of
FqL over FqK . Thus we get

det° ≥
�
é(q � 1)

�hA�1 (q � 1)hHA

é(qé � 1)hK
.

by Theorem 3.3 viewing ° as an endomorphism on the free group I of rank hA�1. Then
we have the following theorems whose proofs are exactly the same as in [5] up to the
factor qé�1

é(q�1) .

THEOREM 4.2. PNÛM is G-isomorphic to INZ[G] and EN is G-isomorphic to INI,
and so EN ≥ PI

N.

THEOREM 4.3. Every elliptic unit is the (q � 1)-st power of a unit in H̃A.

With the aid of Theorem 4.2 we can show that EN ≥ Ker NHAÛL on E and L \

EÛNHAÛL(E) ' ñn(G)ÛN, where ñn(G) is the subgroup of elements G whose orders
divide n. Theorem 4.3 enables us to define

ĒN ≥ fx 2 C : xq�1 2 ENg ² BŁ.

Now we are able to give several class number formulas.

THEOREM 4.4. We have

(4.4.1) [OŁ

L : FŁqL
(L \ E)] ≥ (qé � 1)[L:K]�1 hOL

jñn(G)j
q � 1
qL � 1

(4.4.2) [OŁ

L : FŁqL
NHAÛL(E)] ≥ (qé � 1)[L:K]�1 hOL

n
q � 1
qL � 1

,

(4.4.3) [OŁ

L : FŁqL
NHAÛL(Ē)] ≥

�qé � 1
q � 1

�[L:K]�1 hOL

n
q � 1
qL � 1

,

(4.4.3) [BŁ : FŁqéENEN] ≥ (qé � 1)hA�1 n[L:K]hB

jñn(G)j
q � 1
qé � 1

,

(4.4.5) [BŁ : FŁqéENOŁ

L] ≥ (qé � 1)hA�[L:K] n[L:K]hB

hOL

q � 1
qé � 1

,
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and

(4. 4. 6) [BŁ : FŁqé ĒNOŁ

L] ≥
�qé � 1

q � 1

�hA�[L:K] n[L:K]hB

hOL

q � 1
qé � 1

.

PROOF. Let qL ≥ qe and d ≥ é

e . We first note that éhK ≥ hA, dhL ≥ RLhOL
and

det°jIN ≥
�
é(q � 1)

�[L:K]�1 (q�1)hL

e(qL�1)hK
, where RL is the regulator of OL. Then

[‡(OŁ

L) : ‡(L \ E)] ≥
1

RL

"
IN :

qé � 1
é(q � 1)

°(I2)N
#

≥
1

RL
[IN : °IN][°IN : °(I2)N]

"
°(I2)N :

qé � 1
é(q � 1)

°(I2)N
#

≥
1

RL
det°jIN [IN : (I2)N]

"
(I2)N :

qé � 1
é(q � 1)

(I2)N
#

≥
1

RL
det°jIN jGnj

 
qé � 1
é(q � 1)

![L:K]�1

≥ (qé � 1)[L:K]�1 hOL

jñn(G)j
q� 1
qL � 1

.

Thus we get (4.4.1) and (4.4.2) is an immediate consequence of (4.4.1) and the fact that
L \ EÛNHAÛL(E) ' ñn(G)ÛN. It is known in the proof of Corollary 4.5 of [5] that

[FŁqNHAÛL(Ē) : FŁqNHAÛL(E)] ≥ (q � 1)[L:K]�1.

But it is easy to see that

[FŁqL
NHAÛL(Ē) : FŁqNHAÛL(Ē)] ≥

qL � 1
q � 1

and

[FŁqL
NHAÛL(E) : FŁqNHAÛL(E)] ≥

qL � 1
q � 1

.

Hence we get (4.4.3) from (4.4.2). Exactly the same proof of Proposition 4.6 of [5] would
give (4.4.4). (4.4.5) follows from (4.4.1) and (4.4.4) with the equality that

[FŁqéO
Ł

L : FŁqéE
N] ≥ [OŁ

L : FŁqL
EN].

(4.4.6) is an immediate consequence of (4.4.5) using the fact that

[FŁqé ĒNOŁ

L : FŁqéENOŁ

L] ≥ [FŁqé ĒN : FŁqéEN]

≥
1

q � 1
[ĒN : EN]

≥ (q � 1)hA�[L:K].
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