ELLIPTIC UNITS AND CLASS FIELDS OF GLOBAL FUNCTION FIELDS

SUNGHAN BAE AND PYUNG-LYUN KANG

ABSTRACT. Elliptic units of global function fields were first studied by D. Hayes in the case that deg ∞ is assumed to be 1, and he obtained some class number formulas using elliptic units. We generalize Hayes' results to the case that deg ∞ is arbitrary.

0. **Introduction.** Let *K* be a global function field over a finite field \mathbb{F}_q . Let ∞ be a fixed place of degree δ , and *A* the subring of *K* consisting of those elements which are regular outside ∞ . For a nontrivial character Ψ of Pic *A* the value $L_K(0, \Psi)$ can be expressed using the invariants $\xi(\mathfrak{c})$ of ideals \mathfrak{c} of *A*. (See Hayes [5] for the case $\delta = 1$ and Gross and Rosen [2] for arbitrary δ .)

In this note we define elements $\langle \alpha \mid b \rangle$ and $[\alpha \mid b]$ for some pair of ideals α and b which generalize those in [4] for the case $\delta = 1$. Then we show that $[\alpha \mid A]$ (resp. $\langle \alpha \mid A \rangle$) not only lies in the Hilbert class field H_A (resp. normalizing field \tilde{H}_A) of A, but also generate the extension H_A (resp. \tilde{H}_A) over K. This is nothing but the analogue of the fact that the ring class field of an imaginary quadratic field is generated by the quotient $\Delta(\alpha)/\Delta(R)$ of discriminant functions ([10]). Finally using the elliptic units we get class number formulas generalizing those obtained by Hayes in [5]. Oukhaba ([7], [8], [9]) also studied the elliptic units of function fields assuming that ∞ is totally split.

1. **Preliminaries.** By an elliptic *A*-module we mean a Drinfeld module of rank one on *A*. Let H_A be the *Hilbert class field* of *A* as defined in [3]. Let K_{∞} be the completion of *K* at ∞ and *C* the completion of the algebraic closure of K_{∞} . Then H_A is the smallest extension field of *K* with the property that every elliptic *A*-module defined over *C* is isomorphic to an elliptic *A*-module defined over H_A . We denote by Pic *A* the group of all the isomorphism classes of fractional ideals of *A* and h_A its order. Let h_K be the class number of the field *K*. Then $h_A = h_K \delta$. Denote by $\kappa(\infty)$ the residue field at ∞ .

Let ρ be an elliptic *A*-module. We say that ρ is *normalized* if the leading coefficient $s_{\rho}(x)$ of ρ_x belongs to $\kappa(\infty)$ for any $x \in A \setminus \{0\}$. Fix a sign function sgn: $K_{\infty}^* \to \kappa(\infty)^*$. We say that an elliptic *A*-module ρ is sgn-*normalized* if ρ is normalized and s_{ρ} is equal to a twisting of sgn. Then every elliptic *A*-module is isomorphic to a sgn-normalized elliptic *A*-module. For details see [6]. Let Γ be an *A*-lattice of rank 1 in *C*. We say that an *A*-lattice Γ is *special* if its associated elliptic *A*-module ρ^{Γ} is sgn-normalized. For an

The first author is supported in part by Non Directed Research Fund, Korea Research Foundation, 1996. The second author by BSRI-96-1427, Ministry of Education.

Received by the editors July 27, 1995; revised March 12, 1997.

AMS subject classification: 11R58, 11G09.

[©] Canadian Mathematical Society 1997.

³⁸⁵

A-lattice Γ in *C* define $\xi(\Gamma)$ to be an element of C^* so that $\xi(\Gamma)\Gamma$ is special. Then $\xi(\Gamma)$ is determined up to the multiplication by elements of $\kappa(\infty)^*$.

For an integral ideal α of A, let ρ_{α} be the α -isogeny defined in [3]. Then the elliptic module $\alpha * \rho$ is defined to be the unique elliptic module satisfying $(\alpha * \rho)_x \cdot \rho_{\alpha} = \rho_{\alpha} \cdot \rho_x$. Then we have the following lemma whose proof is straightforward.

LEMMA 1.1. *i)* For $x \in R$, we have $(x) * \rho = s_{\rho}(x)^{-1}\rho s_{\rho}(x)$. *ii)* $(\omega^{-1}\rho\omega)_{\alpha} = \omega^{-q^{\deg \alpha}}\rho_{\alpha}\omega$, for any $\omega \in C$ and any integral ideal α of A. *iii)* $s_{\alpha*\rho} = \sigma^{\deg \alpha} \circ s_{\rho}$, where σ is the qth power map and α is an ideal of A.

LEMMA 1.2. Let ρ_1 and ρ_2 be two isomorphic sgn-normalized elliptic A-modules. Then

$$s_{\rho_1} = s_{\rho_2}$$

PROOF. Pick $c \in C^*$ such that $\rho_2 = c^{-1}\rho_1 c$. Then $c^{q^{\delta}-1} \in \kappa(\infty)^*$. Write $a = c^{q^{\delta}-1}$. Then $s_{\rho_2}(x) = a^{\deg x/\delta} s_{\rho_1}(x)$. Since their corresponding sign functions are the same, *a* must be 1 by Lemma 4.2 of [6].

LEMMA 1.3. For each elliptic A-module ρ there exist exactly $\frac{q^{\delta}-1}{q-1}$ distinct sgnnormalized elliptic A-modules which are isomorphic to ρ .

PROOF. Let ρ be a sgn-normalized elliptic *A*-module. For each $\alpha \in \kappa(\infty)^*$, $\alpha^{-1}\rho\alpha$ is sgn-normalized. From the proof of the above lemma any sgn-normalized elliptic *A*-module isomorphic to ρ is of this form. Now the result follows from the fact that $\alpha^{-1}\rho\alpha = \beta^{-1}\rho\beta$ if and only if $\alpha/\beta \in \mathbb{F}_q^*$.

Let ρ be a sgn-normalized elliptic *A*-module. Then there exists $w \in C^*$ such that $\rho' = w\rho w^{-1}$ is defined over H_A . Then $w^{q^{\delta}-1} \in H_A$. Let $w_0 = w^{q-1}$, and $\tilde{H}_A = H_A(w_0)$. We call \tilde{H}_A the *normalizing field* with respect to (A, sgn, ∞) . Then every elliptic *A*-module over *C* is isomorphic to a sgn-normalized module defined over \tilde{H}_A . Let $\tilde{Pic}A$ be the quotient group of the group of fractional ideals modulo the subgroup of principal ideals generated by an element $x \in K$ with sgn(x) = 1.

THEOREM 1.4 ([6] SECTION 4). *i*) Gal(\tilde{H}_A/K) is isomorphic to Pic A, and

$$[\tilde{H}_A:K] = \frac{q^{\delta}-1}{q-1} \cdot h_A$$

ii) \tilde{H}_A/K *is unramified at any finite places.*

iii) \tilde{H}_A/H_A is totally ramified at ∞ with the inertia group isomorphic to $\kappa(\infty)^*/\mathbb{F}_a^*$.

iv) A finite place \mathfrak{p} splits completely in \tilde{H}_A/K if and only if $\mathfrak{p} = xA$ with sgn $(x) \in \mathbb{F}_a^*$.

v) Let \tilde{B} be the integral closure of A in \tilde{H}_A . Then for a sgn-normalized elliptic A-module ρ and an ideal α of A, the extended ideal $\alpha \tilde{B}$ is a principal ideal and generated by the constant term $D(\rho_{\alpha})$ of ρ_{α} .

Let \mathfrak{m} be an ideal of A and ρ a sgn-normalized module. Let $\Lambda_{\mathfrak{m}}$ be the set of \mathfrak{m} -torsion points of ρ . Put $\tilde{K}_{\mathfrak{m}} = \tilde{H}_A(\Lambda_{\mathfrak{m}})$ be the field generated by \mathfrak{m} -torsion points of ρ over \tilde{H}_A .

THEOREM 1.5 ([6] SECTION 4). *i*) \tilde{K}_{m} is abelian over K, and independent of the choice of the sgn-normalized module.

ii) $\operatorname{Gal}(\tilde{K}_{\mathfrak{m}}/\tilde{H}_A) \simeq (A/\mathfrak{m})^*$.

iii) Let $\lambda \in \Lambda_{\mathfrak{m}}$ and $\sigma_{\mathfrak{a}}$ be the Artin automorphism of $\operatorname{Gal}(\tilde{K}_{\mathfrak{m}}/K)$ associated to the ideal \mathfrak{a} . Then

$$\lambda^{\sigma_{\mathfrak{a}}} = \rho_{\mathfrak{a}}(\lambda).$$

iv) Let G_{∞} be the decomposition group of $\tilde{K}_{\mathfrak{m}}/K$ at ∞ . Then G_{∞} is the inertia group at ∞ and isomorphic to $\kappa(\infty)^*$.

v) Let $H_{\mathfrak{m}}$ be the fixed field of $\tilde{K}_{\mathfrak{m}}$ under G_{∞} and $N_{\mathfrak{m}}^{-}$: $\tilde{K}_{\mathfrak{m}} \to H_{\mathfrak{m}}$ be the corresponding norm map. Then $N_{\mathfrak{m}}^{-}(\tilde{K}_{\mathfrak{m}}^{*})$ consists of totally positive elements. Here an element x is said to be totally positive if $\operatorname{sgn}(\sigma(x)) = 1$, for any automorphism σ over K.

vi) For $\lambda \in \Lambda_{\mathfrak{m}}$ and $\sigma \in \operatorname{Gal}(\tilde{K}_{\mathfrak{m}}/K)$, $\lambda^{\sigma-1}$ is a unit in the ring of integers of $\tilde{H}_{\mathfrak{m}} = \tilde{H}_A H_{\mathfrak{m}}$, the fixed field of $\mathbb{F}_q^* \subset \operatorname{Gal}(\tilde{K}_{\mathfrak{m}}/\tilde{H}_A)$.

2. **Elliptic units.** We know that $\operatorname{Gal}(\tilde{H}_A/K)$ acts transitively on the set *S* of all the sgn-normalized elliptic *A*-modules via $\rho \mapsto \rho^{\sigma}$, for $\sigma \in \operatorname{Gal}(\tilde{H}_A/K)$. Now fix a sgn-normalized elliptic *A*-module ρ from $\frac{q^{\delta}-1}{q-1}$ sgn-normalized elliptic *A*-modules associated to the lattice *A*. Then the map $\sigma \mapsto \rho^{\sigma}$ sets up a one-to-one correspondence between $\operatorname{Gal}(\tilde{H}_A/K)$ and *S*. If we identify Pič *A* with $\operatorname{Gal}(\tilde{H}_A/K)$ via the Artin map $\alpha \mapsto \tau_{\alpha}$, then it is shown in [3] that $\rho^{\tau_{\alpha}} = \alpha * \rho$ for integral ideals α of *A*. One can define $\alpha * \rho$ for any fractional ideal α of *A* from this property. This sets up a one-to-one correspondence between Pic *A* and *S*.

For two ideals α and β with α integral, we define

$$\langle \mathfrak{a} \mid \mathfrak{b} \rangle = D(\rho_{\mathfrak{a}}^{\tau_{\mathfrak{a}\mathfrak{b}}^{-1}}) = D\Big(\Big((\mathfrak{a}\mathfrak{b}) * \rho\Big)_{\mathfrak{a}}\Big),$$

and

$$[\mathfrak{a} \mid \mathfrak{b}] = \langle \mathfrak{a} \mid \mathfrak{b} \rangle^{\frac{q^{r-1}}{q-1}},$$

δ.

where $D(\rho_{\alpha})$ is the constant term of ρ_{α} .

PROPOSITION 2.1. *i*) $\langle \alpha \mid b \rangle \in \tilde{H}_A$ and generates the ideal $\alpha \tilde{B}$. *ii*) For $x \in K$, we have

$$\langle \mathfrak{a} \mid x\mathfrak{b} \rangle = s_{(\mathfrak{a}\mathfrak{b})^{-1}*\rho}(x)^{q^{\deg\mathfrak{a}}-1} \langle \mathfrak{a} \mid \mathfrak{b} \rangle,$$

and

$$[\mathfrak{a} \mid x\mathfrak{b}] = [\mathfrak{a} \mid \mathfrak{b}].$$

iii) If c is an integral ideal, then

$$\langle \mathfrak{a}\mathfrak{c} \mid \mathfrak{b} \rangle = \langle \mathfrak{a} \mid \mathfrak{b} \rangle \langle \mathfrak{c} \mid \mathfrak{a}\mathfrak{b} \rangle$$

iv) For an ideal c,

$$\langle \mathfrak{a} \mid \mathfrak{b} \rangle^{\tau_{\mathfrak{c}}} = \langle \mathfrak{a} \mid \mathfrak{b} \mathfrak{c}^{-1} \rangle$$

v)
$$[\alpha \mid b]$$
 lies in H_A^* , in fact, $[\alpha \mid b] = N_{\tilde{H}_A/H_A}(\langle \alpha \mid b \rangle)$
vi) If $x \in \alpha^{-1}$, then
 $x = \sqrt{\alpha + b}$

 $\langle x \mathfrak{a} \mid \mathfrak{b} \rangle = \frac{x}{s_{(\mathfrak{a}\mathfrak{b})^{-1}*\rho}(x)} \langle \mathfrak{a} \mid \mathfrak{b} \rangle,$

and

$$[x\mathfrak{a} \mid \mathfrak{b}] = \bar{x}^{\frac{q^{\theta}-1}{q-1}}[\mathfrak{a} \mid \mathfrak{b}],$$

where $\bar{x} = \frac{x}{\operatorname{sgn}(x)}$.

vii) Let \mathfrak{P} be a prime ideal of H_A and $\tau_{\mathfrak{P}}$ be the Artin automorphism in $\operatorname{Gal}(\tilde{H}_A/H_A)$ associated to the ideal \mathfrak{P} . Let $x_{\mathfrak{P}} \in A$ be any generator of the principal ideal $N(\mathfrak{P})$ of A. Then

$$\mathfrak{a} \mid \mathfrak{b}
angle^{ au_{\mathfrak{P}}} = s_{(\mathfrak{a}\mathfrak{b})^{-1}*
ho}(x_{\mathfrak{P}})^{1-q^{\deg \mathfrak{a}}} \langle \mathfrak{a} \mid \mathfrak{b}
angle,$$

and

$$[\mathfrak{a} \mid \mathfrak{b}]^{\tau_{\mathfrak{P}}} = [\mathfrak{a} \mid \mathfrak{b}].$$

PROOF. i) is clear from definition. ii) follows from

<

$$((x\mathfrak{a}\mathfrak{b})^{-1}*\rho)_{\mathfrak{a}} = ((x^{-1})*((\mathfrak{a}\mathfrak{b})^{-1}*\rho))_{\mathfrak{a}} = s_{(\mathfrak{a}\mathfrak{b})^{-1}*\rho}(x)^{q^{\deg\mathfrak{a}}}((\mathfrak{a}\mathfrak{b})^{-1}*\rho)_{\mathfrak{a}}s_{(\mathfrak{a}\mathfrak{b})^{-1}*\rho}(x)^{-1}.$$

Since

$$(\mathfrak{abc})^{-1} * \rho \Big)_{\mathfrak{ac}} = \left(\mathfrak{c} * (\mathfrak{abc})^{-1} * \rho \right)_{\mathfrak{a}} \left((\mathfrak{abc})^{-1} * \rho \right)_{\mathfrak{a}} \\ = \left((\mathfrak{ab})^{-1} * \rho \right)_{\mathfrak{a}} \left((\mathfrak{abc})^{-1} * \rho \right)_{\mathfrak{c}},$$

we get iii). iv) follows from

$$\left((\mathfrak{ab})^{-1}*\rho\right)_{\mathfrak{a}}^{\tau_{\mathfrak{c}}}=\left(\mathfrak{c}*(\mathfrak{ab})^{-1}*\rho\right)_{\mathfrak{a}}=\left((\mathfrak{ab}\mathfrak{c}^{-1})^{-1}*\rho\right)_{\mathfrak{a}}$$

v) follows from the properties ii) and iv). The first statement of vi) follows easily from the definitions and Lemma 1.1. For the second statement, let $s_{(al)^{-1}*\rho}(x) = \operatorname{sgn}(x)^{q^{i}}$, for some *i*. Then

$$\left(\operatorname{sgn}(x)^{q^{i}}\right)^{\frac{q^{\delta}-1}{q-1}} = \left(\operatorname{sgn}(x)^{q^{\delta}-1}\right)^{\frac{q^{i}-1}{q-1}} \left(\operatorname{sgn}(x)\right)^{\frac{q^{\delta}-1}{q-1}} = \operatorname{sgn}(x)^{\frac{q^{\delta}-1}{q-1}}$$

since $\operatorname{sgn}(x)^{q^{\delta}-1} = 1$. vii) follows easily from the fact that $\tau_{\mathfrak{P}}(\rho) = s_{\rho}(x_{\mathfrak{P}})^{-1}\rho s_{\rho}(x_{\mathfrak{P}})$ ([6], Proposition 4.7).

For an ideal α of A one can define the invariant $\xi(\alpha)$ to be an element of C^* such that $\xi(\alpha)\alpha$ is the lattice associated to the elliptic A-module $\alpha^{-1} * \rho$. Then this $\xi(\alpha)$ is well-defined up to the multiplication by \mathbb{F}_q^* . Fix $\xi(A)$ from q-1 possible values so that $\xi(A)A$ is the lattice associated to the elliptic module ρ and define $\eta(A) = \xi(A)^{\frac{q^{\delta}-1}{q-1}}$. We can fix $\xi(\alpha)$ (resp. $\eta(\alpha)$) to be the element of C^* such that

$$\frac{\xi(A)}{\xi(\mathfrak{a})} = \langle \mathfrak{a} \mid A \rangle \quad (\text{resp. } \frac{\eta(A)}{\eta(\mathfrak{a})} = [\mathfrak{a} \mid A]),$$

for each ideal α of A.

https://doi.org/10.4153/CMB-1997-046-8 Published online by Cambridge University Press

388

PROPOSITION 2.2. We have

$$\frac{\xi(\mathfrak{a})}{\xi(\mathfrak{a}\mathfrak{b})} = \langle \mathfrak{b} \mid \mathfrak{a} \rangle \quad (resp. \ \frac{\eta(\mathfrak{a})}{\eta(\mathfrak{a}\mathfrak{b})} = [\mathfrak{b} \mid \mathfrak{a}]),$$

and

$$\left(\frac{\xi(\mathfrak{a})}{\xi(\mathfrak{b})}\right)^{\tau_{\mathfrak{c}}} = \frac{\xi(\mathfrak{a}\mathfrak{c}^{-1})}{\xi(\mathfrak{b}\mathfrak{c}^{-1})} \quad (resp. \left(\frac{\eta(\mathfrak{a})}{\eta(\mathfrak{b})}\right)^{\tau_{\mathfrak{c}}} = \frac{\eta(\mathfrak{a}\mathfrak{c}^{-1})}{\eta(\mathfrak{b}\mathfrak{c}^{-1})}).$$

Let *N* be a subgroup of $G = \text{Gal}(H_A/K)$ of order *n*. Let $L = H_A^N$ and q_L be the number of constants in *L*. Define I_N to be the group of ideals α of *A* with associated Artin automorphism $\tau_{\alpha} \in N$, P_N the *G*-submodule of H_A^* generated by $\eta(A)/\eta(\alpha)$ with $\alpha \in N$, and $E_N = P_N \cap B^*$, where *B* is the integral closure of A in H_A . Put $P = P_G$ and $E = E_G$. We call the elements of P_N the *elliptic numbers of level N* and the elements of E_N the *elliptic units of level N*. The map $\alpha \mapsto \tau_{\alpha}^{-1} \colon I_N \to G$ makes H_A^* into an I_N -module. Define

$$f_N: I_N \longrightarrow P_N$$

by $f_N(\mathfrak{a}) = \eta(R) / \eta(\mathfrak{a})$. Then it is easy to see that $f_N(\mathfrak{a}\mathfrak{b}) = f_N(\mathfrak{a})f_N(\mathfrak{b})^{\tau_{\mathfrak{a}}^{-1}}$. Let

$$M = \{ \bar{x}^{\frac{q^0 - 1}{q - 1}} : x \in K^* \}$$

It is clear from the definition that M is a subgroup of K^* and contained in P_N for every N. Then it is not hard to see that $E_N \cap M = \{1\}$ and so the natural map $E_N \to P_N/M$ is injective. Let S_N be a set of n-1 prime ideals of A which maps bijectively onto $N \setminus \{1\}$ via the Artin map, and P'_N be the subgroup of P_N generated by $f_N(\mathfrak{p})$ with $\mathfrak{p} \in S_N$. The following are simple generalizations of those given in [5];

- N1. For $\pi \in P_N$ and $\sigma \in G$, $\pi^{\sigma-1} \in E_N$, and so the composition f_N^* of f_N with the natural map $P_N \to P_N/E_N$ is a group homomorphism.
- N2. $P_N = P'_N M E_N$ and $P = P'_G M$.
- N3. P'_N is a free group freely generated by $f_N(\mathfrak{p}), \mathfrak{p} \in S_N$.
- N4. $P_N/ME_N \simeq N$.
- N5. The elliptic numbers are totally positive, and so $P \cap \mathbb{F}_{q^{\delta}}^* = E \cap \mathbb{F}_{q^{\delta}}^* = \{1\}$ and $P \cap K^* = M$.

N6. Each element of $P^{\sigma-1}$ is the (q-1)-st power of a unit in H_A for any $\sigma \in G$.

The proofs are mostly the same as in [5], so we only prove N6. Let \mathfrak{p} be a prime ideal of A. Let λ be any root of $\rho_{\mathfrak{p}}^{\tau_{\mathfrak{p}}^{-1}}$. Let $\tilde{N}_{\mathfrak{p}}: \tilde{K}_{\mathfrak{p}} \to \tilde{H}_A, N_{\mathfrak{p}}: \tilde{K}_{\mathfrak{p}} \to H_A, N_{\mathfrak{p}}^-: \tilde{K}_{\mathfrak{p}} \to \tilde{H}_{\mathfrak{p}}, N_{\mathfrak{p}}^+: \to H_A$, and $N: \tilde{H}_A \to H_A$ be the norm maps. Then from the definition,

$$\langle \mathfrak{p} \mid A \rangle = \tilde{N}_{\mathfrak{p}}(\lambda).$$

From v) of Proposition 2.1 we have $[\mathfrak{p} \mid A] = N(\langle \mathfrak{p} \mid A \rangle)$. Thus

$$f(\mathfrak{p}) = Nig(ilde{N}_{\mathfrak{p}}(\lambda)ig) = N_{\mathfrak{p}}(\lambda) = N_{\mathfrak{p}}^+ig(N_{\mathfrak{p}}^-(\lambda)ig) = N_{\mathfrak{p}}^+(\lambda^{q-1}).$$

Hence $f(\mathfrak{p})^{\sigma-1} = N_{\mathfrak{p}}^{+}(\lambda^{\sigma-1})^{q-1}$, since $\lambda^{\sigma-1}$ lies in $\tilde{H}_{\mathfrak{p}}$. Therefore N6 follows.

j

3. $v_{\infty}(\xi(\mathfrak{c}))$ and the value of *L*-function at 0 and generators of class fields. Fix a valuation v_{∞} on *C* extending the normalized valuation of *K* at ∞ . For an integral ideal \mathfrak{c} of *A* define the partial zeta function

$$\zeta_{\mathfrak{c}}(s) = \sum_{x \in \mathfrak{c}} |x|_{\infty}^{-s}.$$

Put $S = q^{-s}$. Then

$$\zeta_{\mathfrak{c}}(s) = Z_{\mathfrak{c}}(S) = \sum_{x \in \mathfrak{c}} S^{\deg x}.$$

It is shown in ([1], (4.10)) that

$$v_{\infty}(\xi(\mathfrak{c})) = -Z'_{\mathfrak{c}}(1)/\delta.$$

Now we are going to evaluate $Z'_{c}(1)$ for any integral ideal c of A with degree c.

For each integer *i* we define

$$i^* = \inf\{n : n \ge i, n \equiv 0(\delta)\}$$

and

$$i_* = \sup\{n : n \le i, n \equiv 0(\delta)\}$$

Let $m = m_c = (c + 2g - 1)^*$ and $n = n_c = 1 - g + m - c$, where g is the genus of the smooth curve associated to K. Let

$$\ell(\mathfrak{c}) = -\sum_{t=0}^{\frac{m-c_*}{\delta}} t\delta |F_t(\mathfrak{c})|,$$

where $F_t(c) = \{x \in c : \deg x = t\delta + c_*\}$. Using the equation (2.5), Chapter III of [1],

$$Z'_{\mathfrak{c}}(1) = -\ell(\mathfrak{c}) - c_* - m_{\mathfrak{c}}q^{n_{\mathfrak{c}}} + \frac{\delta q^{n_{\mathfrak{c}}}}{q^{\delta} - 1}.$$

Therefore we get

PROPOSITION 3.2. We have

$$\delta v_{\infty}(\xi(\mathfrak{c})) = \ell(\mathfrak{c}) + c_* + m_{\mathfrak{c}} q^{n_{\mathfrak{c}}} - \frac{\delta q^{n_{\mathfrak{c}}}}{q^{\delta} - 1}.$$

Now let Ψ be a nontrivial character of $\text{Gal}(H_A/K)$. Then we can view Ψ as a function on the ideals α of A. Let

$$L_A(s, \Psi) = \prod_{\mathfrak{p prime}} \left(1 - \frac{\Psi(\mathfrak{p})}{N(\mathfrak{p})^{-s}}\right)^{-1}.$$

Then $L_A(s, \Psi) = (1 - q^{-\delta s})L_K(s, \Psi)$. It is shown in [2] Proposition 7.9 that

$$L'_{A}(0,\Psi) = -\frac{1}{q-1} \sum_{\mathfrak{c}} \overline{\Psi(\mathfrak{c})} \Big(\deg \mathfrak{c} - \delta \nu_{\infty} \big(\xi(\mathfrak{c})\big) \Big).$$

Then using L'hospital's rule we see that

$$L_{K}(0,\Psi) = \frac{1}{\delta(q-1)} \sum_{\mathfrak{c}} \overline{\Psi(\mathfrak{c})} \Big(\delta v_{\infty} \big(\xi(\mathfrak{c}) \big) - \deg \mathfrak{c} \Big)$$

Here \mathfrak{c} runs over any set of representatives of Pic A. Define $\lambda(\mathfrak{c}) = \delta v_{\infty}(\xi(\mathfrak{c})) - \deg \mathfrak{c}$. Then $\lambda(\mathfrak{c})$ depends only on the class of Pic A.

390

THEOREM 3.3. Let Ψ be a nontrivial character on Pic A. Then we have

$$L(0,\Psi) = \frac{1}{\delta(q-1)} \sum_{\mathfrak{c}} \overline{\Psi(\mathfrak{c})} \lambda(\mathfrak{c}),$$

where the sum runs over a complete set of representatives of Pic A.

Now following the same methods in the proof of Satz 2 of [10] replacing log by $\log_q, A_f(\Psi)$ by $\sum_{\mathfrak{c}} \overline{\Psi(\mathfrak{c})}\lambda(\mathfrak{c})$, and $\frac{\Delta(\mathfrak{a})}{\Delta(R_f)}$ by $\frac{\eta(\mathfrak{a})}{\eta(A)}$, we can get without difficulty the following theorem.

THEOREM 3.4. Let Ω be a subfield of H_A containing K and let \mathfrak{A} be the subgroup of Pic A corresponding to Ω . If $\mathfrak{t} \in \operatorname{Pic} A \setminus \mathfrak{A}$, then

$$\Omega = K(N_{\Omega}^{H_A}([\mathfrak{a} \mid A]^n)),$$

for any integral ideal $\alpha \in t$ and any positive integer n.

COROLLARY 3.5. We have

$$H_A = K([\mathfrak{a} \mid A]),$$

where α is any integral ideal of A which is not principal.

COROLLARY 3.6. Let α be an integral ideal of A of degree prime to δ . Then

$$\tilde{H}_A = K(\langle \mathfrak{a} \mid A \rangle).$$

PROOF. Clearly α is not principal. Since sign functions are surjective, part vii) of Proposition 2.1 implies that

$$[K(\langle \mathfrak{a} \mid A \rangle) : K([\mathfrak{a} \mid A])] = \frac{q^{\delta} - 1}{q - 1}$$

Since $K(\langle \alpha \mid A \rangle) \subset \tilde{H}_A$ and $H_A = K([\alpha \mid A])$, we get the result.

4. **Class number formulas.** For a subgroup *N* of *G*, define $s(N) = \sum_{\sigma \in N} \sigma$ and $e_N = \frac{s(N)}{n}$. Let I_N be the augmentation ideal of $\mathbb{Z}[N]$ and $I = I_G$. Define

$$\ell: H^*_A \longrightarrow \mathbb{Z}[G]$$

by $x \mapsto \sum_{\sigma \in G} v_{\infty}(x^{\sigma})\sigma^{-1}$, and

$$\ell^*: H^*_A \longrightarrow \mathbb{Q} \otimes I$$

by $x \mapsto (1 - e_G)\ell(x)$. Then for $x \in B^*$ we have $\ell(x) = \ell^*(x) \in I$. Define

$$\omega = \sum_{\mathfrak{c}} (\lambda(\mathfrak{c}) - \lambda(A)) \tau_{\mathfrak{c}}.$$

PROPOSITION 4.1. We have

$$\ell^*(P_N) = \frac{q^{\delta} - 1}{\delta(q-1)} \omega I_N \mathbb{Z}[G],$$

and

$$\operatorname{Ker}(\ell^*) \cap P = M$$

Therefore ℓ^* gives an isomorphism of P/M onto $\frac{q^{\delta}-1}{\delta(q-1)}\omega I_N\mathbb{Z}[G]$.

Let q_F be the number of constants of a function field F. Then it is well-known that the function $Z(s) = (q_F^{-s} - 1)\zeta(s)$ has the value $h_F/(q_F - 1)$ at s = 0. Thus for Galois extension L of K we have

$$\frac{(q_K-1)h_L}{d(q_L-1)h_K} = \prod_{\chi \neq 1} L_K(0,\chi),$$

where χ runs through the nontrivial characters of Gal(L/K) and *d* is the dimension of \mathbb{F}_{q_L} over \mathbb{F}_{q_K} . Thus we get

$$\det \omega = \left(\delta(q-1)\right)^{h_A - 1} \frac{(q-1)h_{H_A}}{\delta(q^{\delta} - 1)h_K}.$$

by Theorem 3.3 viewing ω as an endomorphism on the free group *I* of rank $h_A - 1$. Then we have the following theorems whose proofs are exactly the same as in [5] up to the factor $\frac{q^2-1}{\delta(q-1)}$.

THEOREM 4.2. P_N/M is G-isomorphic to $I_N\mathbb{Z}[G]$ and E_N is G-isomorphic to I_NI , and so $E_N = P_N^I$.

THEOREM 4.3. Every elliptic unit is the (q-1)-st power of a unit in \tilde{H}_A .

With the aid of Theorem 4.2 we can show that $E_N = \text{Ker} N_{H_A/L}$ on E and $L \cap E/N_{H_A/L}(E) \simeq \mu_n(G)/N$, where $\mu_n(G)$ is the subgroup of elements G whose orders divide n. Theorem 4.3 enables us to define

$$ar{E}_N=\{x\in C: x^{q-1}\in E_N\}\subset B^*.$$

Now we are able to give several class number formulas.

THEOREM 4.4. We have

(4.4.1)
$$[O_L^* : \mathbb{F}_{q_L}^*(L \cap E)] = (q^{\delta} - 1)^{[L:K]-1} \frac{h_{O_L}}{|\mu_n(G)|} \frac{q-1}{q_L - 1}$$

(4.4.2)
$$[O_L^*: \mathbb{F}_{q_L}^* N_{H_A/L}(E)] = (q^{\delta} - 1)^{[L:K] - 1} \frac{h_{O_L}}{n} \frac{q - 1}{q_L - 1},$$

(4.4.3)
$$[O_L^*: \mathbb{F}_{q_L}^* N_{H_A/L}(\bar{E})] = \left(\frac{q^{\diamond} - 1}{q - 1}\right)^{[L:K] - 1} \frac{h_{O_L}}{n} \frac{q - 1}{q_L - 1}$$

(4.4.3)
$$[B^*: \mathbb{F}_{q^{\delta}}^* E_N E^N] = (q^{\delta} - 1)^{h_A - 1} \frac{n^{|L:K|} h_B}{|\mu_n(G)|} \frac{q - 1}{q^{\delta} - 1},$$

(4.4.5)
$$[B^*: \mathbb{F}_{q^{\delta}}^* E_N O_L^*] = (q^{\delta} - 1)^{h_A - [L:K]} \frac{n^{[L:K]} h_B}{h_{O_L}} \frac{q - 1}{q^{\delta} - 1},$$

392

and

(4.4.6)
$$[B^*: \mathbb{F}_{q^{\delta}}^* \bar{E}_N O_L^*] = \left(\frac{q^{\delta} - 1}{q - 1}\right)^{h_A - [L:K]} \frac{n^{[L:K]} h_B}{h_{O_L}} \frac{q - 1}{q^{\delta} - 1}.$$

PROOF. Let $q_L = q^e$ and $d = \frac{\delta}{e}$. We first note that $\delta h_K = h_A$, $dh_L = R_L h_{O_L}$ and det $\omega|_{I^N} = \left(\delta(q-1)\right)^{[L:K]-1} \frac{(q-1)h_L}{e(q_L-1)h_K}$, where R_L is the regulator of O_L . Then

$$\begin{split} [\ell(O_L^*):\ell(L\cap E)] &= \frac{1}{R_L} \bigg[I^N : \frac{q^{\delta} - 1}{\delta(q - 1)} \omega(I^2)^N \bigg] \\ &= \frac{1}{R_L} [I^N : \omega I^N] [\omega I^N : \omega(I^2)^N] \bigg[\omega(I^2)^N : \frac{q^{\delta} - 1}{\delta(q - 1)} \omega(I^2)^N \bigg] \\ &= \frac{1}{R_L} \det \omega|_{I^N} [I^N : (I^2)^N] \bigg[(I^2)^N : \frac{q^{\delta} - 1}{\delta(q - 1)} (I^2)^N \bigg] \\ &= \frac{1}{R_L} \det \omega|_{I^N} |G^n| \bigg(\frac{q^{\delta} - 1}{\delta(q - 1)} \bigg)^{[L:K] - 1} \\ &= (q^{\delta} - 1)^{[L:K] - 1} \frac{hO_L}{|\mu_n(G)|} \frac{q - 1}{q_L - 1}. \end{split}$$

Thus we get (4.4.1) and (4.4.2) is an immediate consequence of (4.4.1) and the fact that $L \cap E/N_{H_A/L}(E) \simeq \mu_n(G)/N$. It is known in the proof of Corollary 4.5 of [5] that

$$[\mathbb{F}_{q}^{*}N_{H_{A}/L}(\bar{E}):\mathbb{F}_{q}^{*}N_{H_{A}/L}(E)] = (q-1)^{[L:K]-1}$$

But it is easy to see that

$$[\mathbb{F}_{q_L}^* N_{H_A/L}(\bar{E}) : \mathbb{F}_q^* N_{H_A/L}(\bar{E})] = \frac{q_L - 1}{q - 1}$$

and

$$[\mathbb{F}_{q_L}^* N_{H_A/L}(E) : \mathbb{F}_q^* N_{H_A/L}(E)] = \frac{q_L - 1}{q - 1}.$$

Hence we get (4.4.3) from (4.4.2). Exactly the same proof of Proposition 4.6 of [5] would give (4.4.4). (4.4.5) follows from (4.4.1) and (4.4.4) with the equality that

$$[\mathbb{F}_{q^{\delta}}^* O_L^* : \mathbb{F}_{q^{\delta}}^* E^N] = [O_L^* : \mathbb{F}_{q_L}^* E^N].$$

(4.4.6) is an immediate consequence of (4.4.5) using the fact that

$$\begin{split} [\mathbb{F}_{q^{\delta}}^{*}\bar{E}_{N}O_{L}^{*}:\mathbb{F}_{q^{\delta}}^{*}E_{N}O_{L}^{*}] &= [\mathbb{F}_{q^{\delta}}^{*}\bar{E}_{N}:\mathbb{F}_{q^{\delta}}^{*}E_{N}] \\ &= \frac{1}{q-1}[\bar{E}_{N}:E_{N}] \\ &= (q-1)^{h_{A}-[L:K]}. \end{split}$$

https://doi.org/10.4153/CMB-1997-046-8 Published online by Cambridge University Press

S. BAE AND P.-L. KANG

REFERENCES

- 1. E. U. Gekeler, Drinfeld Modular Curves. Lecture Notes in Math. 1231, Springer-Verlag, Berlin, Heidelberg, 1986.
- 2. B. Gross and M. Rosen, Fourier Series and the Special Values of L-functions. Adv. in Math. 69(1988), 1-31.
- 3. D. Hayes, Explicit Class Field Theory in Global Function Fields. Stud. Algebra and Number Theory (ed. G. C. Rota), Academic Press, 1979, 173-219.
- 4. ____
- _____, Analytic Class Number Formulas in Global Function Fields. Invent. Math. **65**(1981), 49–69. ______, Elliptic Units in Function Fields. Number theory related to Fermat's Last Theorem, Prog. in Math., 5.__ 1982, 321-340.
- 6. _____, Stickelberger Elements in Function Fields. Compositio Math. 55(1985), 209–239.
- 7. H. Oukhaba, Groups of Elliptic Units in Global Function Fields. The Arithmetic of Function Fields (eds. Goss, Hayes, Rosen), Walter de Gruyter, New York, 1992, 87-102.
- 8. _____, On Discriminant Functions Associated to Drinfeld Modules of Rank 1. J. Number Theory 48(1994), 46-61.
- _, Construction of Elliptic Units in Function Fields. London Math. Soc. Lecture Note Series 215 9. _ (1995), 187-208.
- 10. R. Schertz, Zur Theorie der Ringklassenkörper uber imaginäre-quadratischen Zahlkörpern. J. Number Theory 10(1978), 70-82.

Department of Mathematics KAIST Taejon, 305-701 Korea

Department of Mathematics ChoongNam National University Taejon, 302-764 Korea