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THE COHOMOLOGY OF (A**, AX) 

LAWRENCE L. LARMORE 

1. Introduction. Let X be any connected C.W. complex. Let A2X be the 
2-fold symmetric product of X, the set of unordered pairs (not necessarily 
distinct) of elements of X. Let AX C X2 be the diagonal, and also (by a slight 
abuse of notation) let AX C A2X also denote the set of unordered pairs 
{x, x}. The purpose of this paper is to describe the cohomology, and twisted 
cohomology, of the pair (A2X, AX). If X is of finite type and if the reduced 
cohomology of X is explicitly given in terms of Moore generators (in effect, 
an isomorphism between the cohomology of X and the cohomology of a wedge 
product of Moore spaces), then the cohomology of (A2X, AX), with both 
twisted and untwisted coefficients, is explicitly given, also in terms of Moore 
generators (cf. Theorem 20). 

In a later paper, R. D. Rigdon and the author will show how, if M is a mani­
fold immersed in Euclidean space, one can define obstructions to regular 
homotopy of that immersion with an embedding, taking values in the co­
homology of (A2ikf, AM); basically an application of Haefliger's work [2]. 
These obstructions are sufficient to settle the question in the metastable range. 

2. The Mod 2 cohomology of (A2X, AX). In this section, all coefficients 
will be in Z2. 

Now if 7T : (K, L) —> (K\ L') is any relative 2-1 covering of C.W. complexes, 
i.e., 7r_1Z/ = L and T\K — L is a 2-1 covering, we have a long exact Thom-
Gysin sequence: 

. . . > Hn(K', V) JÙ Hn(K, L) J U Hn(K\ L') - ^ Hn+1(K', V) > . . . 

where m Ç Hl(Kr — U) is Wi of the 0-sphere bundle w\K — L. The multi­
plication by m is given by the composition: 

Hn{K',L') ®Hl{K' - U) ^Hn(K' - U', N - V) 

®H1(Kf - U) -*Hn+l(K' - Z/, N - U) ^H^iK^L') 

where N is some closed neighborhood of U such that L' is a strong deformation 
retract of X; both isomorphisms are given by excision and homotopy. 

LEMMA 1. If x G H*(K', U) and y £ H*(K, L), then d((T*x)y) = xdy. 

Proof. This follows immediately from the definitions of 6 and cup product 
at the cochain level. We leave the details to the reader. 
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L E M M A 2. If K/L is k-connected for some integer k, then K'/Lf is also k-con-
nected. 

Proof. We use induction on k. Suppose K/L is ^-connected and Kr/L' is 
(k — 1)-connected. Then K' /L' is ^-connected, immediately from the Thom-
Gysin sequence. 

Henceforth, let ir : (A2X, AX) —> (X2, AX) be the quot ient map, a relative 
2-1 covering. 

We pick a basepoint * £ X . Let also * denote (*, *) £ X 2 . T h e pair 
(X2 X Sœ, Sœ) is then of the homotopy type of (X2, *) : we shall freely 
identify their cohomology. Let TX = (X2 X S°°)/T, where T is the (free) 
action which exchanges coordinates of X 2 and which is the ant ipodal m a p 
on 5°°. Let t ing P œ = S°°/T, we then have a commutat ive diagram, where 
each row is an exact Thom-Gysin sequence: 

. . . >tf*(A2X, AX)-^H\X\ AX)JL>Hk(A2X, AX) -?L>H*\A*X, AX) > . . . 

(1) J Q* J p * |<2* J Q* 
. . . > Hk(TX, Pœ) - î l » H\X\ *) —?-> H*(TX, P J - ^ Hk+1(TX, PJ > . . . 

where P : X 2 X Sœ —> X 2 is the projection and Q : TX —> A2X is the cor­
responding map on the quotient spaces. 

Henceforth, let Kn = K(Z2, n) for any n, and let in be the fundamental 
class of Kn. Now Kn

2/AKn is (n — l ) -connected, hence, A2Kn/AKn is (n — 1)-
connected also; we then have t ha t TT* : Hn(A2Kn, AKn) - > H n ( A 2 K n / A K n ) is 
mono. Let Atn = ( T T * ) " 1 ^ ® 1 + 1 ® t j , and let I \ n = Q* Atn £ Hn(TKn, 

Poo)-

L E M M A 3. (i) H°(K0
2, *) = Z2 + Z2 + Z2 , generated by t0 ® 1, 1 ® to, 

a?zd to ® to-
(ii) If n > 0, Hn(Kn

2, *) = Z2 + Z2 , generated by in ® 1 awd 1 ® tn. 
(iii) H°(K0

2, AK0) ^ Z 2 + Z2 , generated by t0 (g) 1 and 1 ® t0. 
(iv) lfn>0, Hn(Kn

2, AKn) ^ Z2 , generated by in ® 1 + 1 ® t„. 
(v) Hn(A2Knj AKn) = Z2 , generated by At,n. 

(vi) H°(TK0, PJ ^ Z 2 + Z2 , generated by I \ 0 and (TT*)" 1 ^ ® t0. 
(vii) lfn>0, Hn(TKn, PJ 9Ë Z2 , generated by Tin. 

Proof. Pa r t s (i), (ii), (iii), and (iv) are well-known. T h e other par t s follow 
immediately from these, using diagram (1). 

If x G Hn(X), choose a function f : X —> Kn which classifies x; then define 
Ax to be ( A 2 / ) * ( A t J £ Hn(A2X, AX) and Tx to be ( r / ) * ( T t J i f w ( r X , P œ ) . 

L E M M A 4. For a?ry x 6 Hn(X) and any n ^ 0: 

(i) TT*AX = 1 ® x + x ® 1 e # W (X 2 , AX) . 

(ii) Q*Ax = Tx. 
(iii) 7r*Tx = 1 ® X + X ® l £ ifW(X2, *). 
(iv) 6(x ® 1) = 0(1 ® x) = Tx. 
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Proof. We need only consider the universal example: X = Kn, x = in. 
If n = 0, the lemma follows trivially. If n > 0, a dimensionality argument is 
needed for (iv) ; we leave the details to the reader. 

LEMMA 5. A : 3*(X) ~^H*(A2X, AX) and T : H*(X) -*H*(TX, PJ are 
monomorphisms. 

Proof. Assume, for the moment, that A is a homomorphism. Now r = Q* o A, 
hence T is also a homomorphism. Suppose that x 9e 0. Then ir*Tx = 
x(x ) l + l ( x ) # ^ 0 , hence V is mono, hence A is mono. 

To prove that A is a homomorphism, it is sufficient to consider the universal 
example: U = Kn X Kn, u = in (x) 1, v = 1 (x) in\ we need only show that 
A(u + v) = Au + Av. By Lemma 2, A2U/AU is (n — 1)-connected, hence 
7T* : Hn(A2U, AU) -*Hn{U\ AU) is mono. Since 

TT*A(U + v) = (u + v) ® 1 + 1 (x) (u + v) = TT*(AZ/ + Av), 

we are done. 

LEMMA 6. For any x £ Hn(X), Ôx = m Ax, where Ô : Hn{X) = Hn(AX) -> 
Hn+1(A2X, AX) is the connecting homomorphism. 

Proof. It is sufficient to consider the universal example: X = Kn, x = in. 
If n = 0, we are done, since H1(A2K0, AKo) = 0. Assume n > 0. We have a 
commutative diagram with the bottom row exact, where each <5 is the ap­
propriate connecting homomorphism: 

H*(Kn) =Hn(AKn)^Z2 

Z2 ^ Hn(A2Kn, AKn) - ^ - > H^(A2Kni AKn) - ^ Hn^(Kn
2, AKn) 

Hence x £ mHn(A2Kn, AKn). According to Dold [1], Hn(A2Kn) ^ Z2, hence, 
by the exact cohomology sequence of the pair (A2Kn, AKn) and Lemma 3, 
we have that ôx 7e 0. Thus ôx = m Ax. 

LEMMA 7.1fx£ Hn(X) and y £ Hp(X),for any n, p ^ 0, then: 
(i) 6(xy (x) 1 + x (x) 3;) = AxA;y. 

(ii) mAxAy = 0. 

Proof. To prove (i), it is sufficient to consider the universal example: 
U = KnXKpj u = in (g) 1, v = 1 <g) h. Let B = AU U (Kn V i Q 2 C U2. 
Note that £/2/i3 is (n + p — l)-connected, hence A2U/irB is also. Consider 
the commutative diagram with exact rows: 
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0 >ir+p(A2C/, TB) -^-> Hn+P(U\B) -JL>Hn+p(A2U, <*B) 
m ' TT-tt+P+l (A2 U, TB) 

(2) Hn+V(A*U, AU) • >Hn+'(U\AU)- "-UH"+P(A*U, AU)-^H"^\^V, AU) 

Q* 0* 
H"^(VU, PJ —?-> Hn+v{U\ *) - A > Hn+V(TU, Pœ) -?LL> ir^iTU, PJ, 

and the exact sequence: 

(3) Hn+P(A2U, TTB) r H***UU,*U)- >Hn+p(irB,AU) 

where always j and k are appropriate inclusions of pairs. T h e remainder of 
the proof is simple diagram chasing, using the previous lemmas. Hn+p(U2, B) 
has dimension 3 over Z2 , with generators uv ® 1 + 1 (g) uv, u (g)v + v ®u, 
and u 0v + uv ® 1. Since T* o 7r* = 7r* and 0 o T* = 0, where T : U2 —> £/2 

exchanges coordinates, we can easily see t h a t Hn+P(A2U, irB) has dimension 2, 
with independent generators a and 0, where 7r*a = «?/ ® 1 + 1 ® uv and 
TT*/3 = w ®v + v ® w. Now TTB/AU^ (A2Kn/AKn) V (A2KP/AKP), hence 

(in diagram (3)) &*(A^Az;) = 0. Using the exactness of (3) and the com-
muta t iv i ty of the upper left square of (2), we have t h a t j*a = A(uv) and 
j*/3 = A(uv) + AuAv. Now 

P * o j * : Hn+p(U2, B) ->Hn+p(U2, *) 

is obviously mono, by commuta t iv i ty of the two left squares and by the zero 
in the upper left corner. By Lemmas 1 and 4, 

6z(uv ® 1 + u ®v) = Tvd3(u ® 1) = TvTu G Hn+P(TU, P J , 

hence 

0 i O ® l + ^ ® z ; ) = a + /3 G Hn+P(A2U, TTB), 

hence 

0 2 ( ^ ® 1 + « ® v) = AuAv G Hn+P(A2U, AU); 

thus (i) is proved. P a r t (ii) is an immediate corollary. 

L E M M A 8. If x € Hn(X), y G HP(X), and z G H<(X), then AxAyAz = 
AxA^z) = A3/A(xz) + AsA(x^). 

Proof. I t is sufficient to consider the universal example, namely 
U = Kn X Kp X KQ, u = in ® 1 ® 1, v = 1 ® LP ® 1, and w = 1 ® 1 ® Lq. 
Let 

B = AUV (KnXKpX * ) 2 U (X , X * X Kq)
2 U (* X 2£, X i Q 2 . 
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We have a commutative diagram with the row and column exact: 

0 >Hn+p+q(A2U, *B)-^Hn+v+\U\B)JUHn+v+\h*U, TB) 

\j* I f 
iT+p+*(A2?7, AU) _z!^iY^+^(C/2 , AU) 

Hn+p+Q(irB, AU) ^Hn+p+Q((A2Kn/AKn) V (A2KP/AKP) V (A2Kq/AKq)) 

where j and k are appropriate inclusions of pairs. Now Hn+p+q(U2j B) has 
dimension 7 over Z2; its symmetric part, Ker 0, has four independent generators. 
It is a simple matter of diagram chasing to verify that7* : Hn+P+Q(A2U, irB) —> 
Hn+P+Q(A2U, AU) is mono, and its image has dimension 4, generated by 
A (uvw), AuA (vw), AyA (ww), and AwA iuv). Since k*AuAvAw = 0, AuAvAw must be 
a linear combination of those four generators. The stated result is the only 
possibility which agrees with Lemma 4. 

Let 

M : 2(X2/AX) -> (ZXy/AZX 

be defined as follows: for every x,y £ X and t £ / , let /*[[#, i\,t\ = [[x, 2], [3/, /]]. 
Let r : S(A2X/AZ) —» A22X/ASX be the corresponding map on the quotient 
spaces. 

LEMMA 9. / w awy x 6 Hn(X) and any i ^ 0, r*w'A(^x) = sraiAx (s = 
suspension isomorphism). 

Proof. Consider first the case where i = 0. Let X = Kn, x = in; the universal 
example. We have a commutative diagram: 

Z2 ^ Hn+\A2?Kn/A?Kn) - ^ # n + 1 ( ( 2 i Q 2 / A 2 i Q 

I r* I M* 
Z 2 ^ ^ + \ 2 ( A 2 X / A Z ) ) - ^ ^ ^ + 1 ( 2 ( X 2 / A X ) ) . 

Now M*7T*A0IW) = M * ( ^ ® 1 + 1 (8)56») = s (in 0 1 + 1 (x )0 = (2TT)*<>AIW. 
Since both groups on the left of the diagram have one generator each, A(sin) 
and sAun, respectively, T*A(si,n) = sAin. Now r comes from ju; thus multiplication 
by m commutes with r*, and we are done. 

LEMMA 10. If x £ Hn(X), Sq'Ax = 'Zi
j=omi-jASqjx for all i ^ 0. 

Proof. We use a 2-step induction process. The formula obviously holds if 
i = 0. We first show that the formula holds for (n, i) if it holds for (n, i — 1), 
provided n > i; secondly, we show that it holds for (n, i) if it holds for 
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(n + 1, i). In each case, we look at the universal example: X = Kn, x = in. 
Step I: Since i < n, Hn+i(Kn

2, AKn) is generated by elements of the form 
Sqhn 01 + 1 ®SqTin = Tr*ASqTLn, where / is an admissable monomial and 
Sq1 is the Steenrod square; hence multiplication by m is mono on HJ+i(A2Kn, 
AKn). By the Cartan formula and Lemma 6, we have 

t - i 

mASq\n = ôSqlALn = Sqlôt,n = Sq1 (m Ain) = m Sq1 Ain + m 2 ^ w i _ J _ ASq\n. 
JMO 

Cancelling ra, we are done. 
Step 2: Consider the map r : 2(A2Kn/AKn) -> A22Kn/A2Kn. By Lemma 9 

we have 

i i 

sSqlAin = r*SqlAsin = T*^ ml~3 AsSq3Ln = s^ ml~J ASq\n 
i = 0 ;=0 

Since s is an isomorphism, we are done. 

Let Z2[ra] be the algebra of finite polynomials in m with coefficients in 
Z2. H*(A2X, AX) is a commutative associative graded algebra over Z2[ra]. 
The cohomology of the pair (A2X, AX) is then fully described by the following 
theorem: 

THEOREM 11 (structure theorem). As an algebra over Z2[m], H*(A2X, AX) is 
generated by all Ax for x £ H*(X), subject only to the following relations (H* = 
reduced cohomology): 

(i) A(x -\- y) = Ax + Ay for all x, y £ H*(X). 
(ii) mAxAy = 0 for all x, y G H*{X). 

(iii) AxAyAz = AxA(^) + AyA(xz) + AzA(xy) for all x, y, z (E 3*(X). 
(iv) (Ax)2 = J2%omn-jASqjx for all x £ #W(V), « > 0. 

Proof. Let H* be the commutative associative graded algebra over Z2[m] 
generated by {Ax : x Ç i?*(X)j subject to the relations (i) through (iv) above; 
i.e., H* is what the theorem claims H* (A2X, AX) to be. Let 1* : H* -> # * (A2X, 
AX) be the graded Z2[ra]-homomorphism which takes Ax to Ax for all x; t* is 
well-defined by Lemmas 5, 7, 8, and 10. Consider the diagram of groups and 
homomorphisms : 

H\X\AX)-J-, H* J!L> H*+1 -^Hk+\X\AX)-J- H*+1 

H\X\ AX) -?—Hk(A2X, AX) -^!—Hk+l(A2X, AX) -^Hk+\X2, AX) -^—Hk+1(A2X, AX) 

where 

a (Ax) = x (x ) l + l(x)x, a {AxAy) = xy (x) 1 + 1 (g>x;y + x(x);y + ;y(x)x, 

and a(miAx) = 0 for all x, y £ H*(X) and all i ^ 1; and where 
0(x (g) 1 + 1 ® x) = 0 and Q(x (g) y + xy (x) 1) = AxA;y for all x, y £ B*(X). 
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By the definition of A, and also by L e m m a 7, the diagram is commuta t ive . 
T h e bot tom row is the Thom-Gysin sequence, and it is a rout ine algebraic 
exercise t h a t the top row is also exact. We prove t h a t ik is an isomorphism by 
induction on k. Clearly it is if k ^ 0. Suppose ik is an isomorphism. By the 
5-lemma, ik+l is one-to-one. Using t h a t fact and the 5-lemma again, we have 
t h a t ik+l is onto . T h u s t* : H* —» i7*(A2X, AX) is an isomorphism, as claimed. 

3. T h e c o h o m o l o g y of (A2X, AX) w i t h o t h e r coef f ic ients . Let G be a 
cyclic group, and let G[m] be the sheaf of coefficients over A2X — AX, locally 
isomorphic to G, twisted by m. Le t M £ H1(A2X — AX\Z[m\) be the twisted 
integer class representing m; M = (ô)Tl, where 1 £ H°(A2X — A X ; Z 2 ) is the 
uni t and (d)T is the Bokstein of the sequence 

Z[m] > Z[m] > Z2 , 

hence 2M = 0. We have two long exact sequences, where 6 and 6T are the 
transfer maps : 

. . . > Fln-\A2X, AX; G[m]) ^ L Hn(A2X, AX; G) - ^ > Hn(X2, AX; G) -A-> Hn(A2X, AX; G[m]) - ^ . . . 

. . . > lf~\A2X, AX; G) - ^ H{A2X, AX; G[m]) ^XH\X2, AX; G) -J-> h\A2X, AX; G) - ^ . . . . 

T h e compositions 6 o 7r* and 6T o (w*)T are both multiplication by 2. 
Let p ^ 1 be an integer, and let K = K(G, p). We define Ah Ç HP(A2K, 

AK; G[m\) by the equat ion (ir*)TAip = LP 0 1 — 1 ® LP, where ip is the funda­
menta l class of K. If x e H*(X; G), let Ax = (A2/)*A^, where f : X-+K 
classifies x. 

Let p ^ 1 and q ^ 1 be integers, and let Kp = K(G, p) and i£ ç = K(G, q). 
Let « = LP (x) 1 and 0 = 1 (x) i^, elements of H*(KP X i£ç; G). Let £/ = 
i£p X Kq, and B = (KPV KqY U A [ / C £/2. Now TT : (U\ B) -> (A2U, irB) 
is a relative 2-1 covering, and U2/B is (£ + q — 1)-connected, hence, using the 
Thom-Gysin sequence of t h a t covering, we can verify t h a t 

(TT*)T : H^(A2U, irB; G[m\) -> H»+<(IP, B) 

is a monomorphism. I t is also not difficult to show t h a t a = a (x) /3 — 
( —1)^/3 ® a mus t lie in the image of (7r*)T. W e then define A (a, /3) to be 
( A 2 J ) * ( ( T T * ) T ) - V G iP+«(A2Z7, AU; G[m]), where j : (A2Z7, AJ7) -> (A2£7, TT£) 
is the inclusion. If x £ i P ( X ; G) and y G # * ( X ; G), let / : X -> ̂  and 
g : X -^ Kq be maps which classify x and 3>, respectively: we then define 
A(x, y) to be ( A 2 ( / X g))*A(a, 0) G iP + *(A 2 X, AX; G[m\). W e immediately 
have : 

Remark 12. A (3/, x) = ( - l ) P 5 + 1 A ( x , y ) . 

Now, if G has odd order, both Gysin sequences split, since M has order 2. 
Hence: 
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Remark 13. If G has odd order, 7r* and (TT*)T are both mono; in fact, 
H*(A2X, AX; G) and i7*(A2X, AX) G[m\) are isomorphic to the symmetric and 
antisymmetric parts of i7*(X2, AX; G), respectively. 

Let k be an odd prime. Then 

A* = #*(A2X, AX; Z4) © #*(A2X, AX; Zk[m\) £* 77*(X2, AX; Z,) 

is a commutative graded algebra over Zk in the obvious way. Similar to 
Theorem 11, we have: 

THEOREM 14. If k is an odd prime and X is a connected C.W. complex, then 
iJ*(A2X, AX; Zk) 0 J7*(A2X, AX; Zk[m]), considered as a commutative graded 
algebra over Zfc, is generated only by elements of the form: 

(i) Ax G iP(A2X, AX; Zk[m\) for all x G H*(X; Zk), p ^ 1 
(ii) A(x, y) G iP+*(A2X, AX; Zk[m\) for all x G HP(X; Zk), y G H«(X; Zk), 

subject only to the following relations (where in each case, dim x = dim x' = p, 
dim y = q, dim z = r, and dim ze; = 5): 

(i) A(x + x') = Ax + Ax', 
(ii) AxA/yAz = Ax^s + A(x, yz) — A(xy, z) + ( — l)QTA(xz, y), 

(iii) A(y,x) = (-l)PQ+1A(x, y), 
(iv) A(x + x', y) = A(x, y) + A(xf, y), 
(v) AxA(y,z) = ( —1)PÇA3/Axz — AxyAz, 

(vi) A(x, y)A(s;, w) = ( — l)(r+Q)sAxwAyz + ( — l)Qr+1AxzAyw. 

We omit the proof, which is trivial given Remark 13. 

Henceforth, for any integers r and s, we let (3T
S be the Bokstein of the 

coefficient sequence Zs —» ZTS —> Z r ; we also let pr denote reduction mod r from 
any coefficient group whose order is infinite or a multiple of r. Let ( /?/) r and 
(pr)

T denote the twisted versions of these. Directly from the definitions of 
A and A and from Remark 13, we conclude: 

Remark 15. For any x G H*(X\ Zt), t a power of an odd prime, (/3t
t)TAx = 

APt'x. 

Remark 16. For any x, y G H* (X; Z t) , t a power of an odd prime, pt
l(AxAy) = 

Apt
lxAy + (-lyAxAPSy^nd (l3t

t)TA(x,y) = A(pt
lx,y) + (-l)^A(x, (3t

ly) 
where p = dim x. 

Now let Kn = K(Z2, n)y for n ^ 1, and let ^ be the fundamental class of 
Kn. First, consider even n. By Theorem 11, (Atw)2 and (Ai^S^A^ + ScpSq1 Ain 

are both non-zero; thus pAtw has order 4, where p is the Pontrjagin square. We 
define Tin G H2n(A2Kn, AKn; Z4) to satisfy the equations: 

P2ÏC» = £ m2iASçrUi», 
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and 

/54
2Ttn = AinASqin + ^ m21 ASqn~2lSq1Ln. 

Note that Tiw differs from pAiw by an element of order 2, hence Tcn also has 
order 4. Suppose, secondly, that ^ is odd. Let y = J^j^~1)mn~2iASq2iLn. By 
Lemma 10 and Theorem 11, Sq^ + my = 0, but y $ Im(5gx + m). Thus 3; is 
the reduction of a twisted Z4 class of order 4, which we call Tcw. A quick check 
of the Thom-Gysin sequence shows that y cannot be the reduction of a twisted 
Z8 class, hence (/34

2)TTtw ^ 0. Now {fi^)Trîin must lie in the kernel, but not 
the image, of Sq1 + m; the only candidate, up to indeterminacy, is 

| ( n - l ) 

z= AinASq1in + AinSq1Ln+ X) mn~2% ASq2lSqlLn. 

We can thus insist that (j34
2)rTiw = z. Using Kn as a universal example, we 

can define Tx for any x £ Hn(X; Z2) ; Tx 6 H2n(A2X, AX; 5) , where 5 = Z4 

if w is even, S = Z4[w] if n is odd. Tx has order 4 if and only if Sq^x 7^ 0. 
If x Ç Hn{X; Zr), where n ^ 1 and r ^ 4 is a power of 2, we can, using the 

appropriate universal example, define Tx £ H2n(A2X, AX; S), where S = Z2r 

if n is even, 5 = Z2r[ra] if w is odd; such that, if n is even, 

P2TX = X) m2iASqn~2ip2x and £r
2Tx = Ap2xApr

2x; 

and if w is odd, 

| ( n - l ) 

(p2)rTx = X) mn~2iASq2i
P2x, and (Pr

2)T?x = Ap2xA0r
2x. 

In either case, Tx has order 2r if and only if /3r
2x ^ 0. We leave the details to 

the reader. 

3. The category of coefficients. We define a category C, which we call 
the category of coefficients, as follows. The objects of C are all Abelian groups. 
If A and B are objects, we let 

Hom c G4,£ ) = Hom c °( ,4 ,£) e H o m c 1 ^ ^ ) , 

a graded Abelian group, where Horn c° {A, B) = H o m ( i , 5 ) a n d H o m c
1 ( i , J B ) = 

Ext(A, B), both Horn and Ext being over the integers. Let a ÇHom c (5 , C) 
and jS G Horn c(A, B), for any three objects^!, B, and C. If dega = deg/3 = 0, 
let a o j8 be the ordinary composition. If deg a = deg/3 = 1, let a o fi = 0. If 
deg a = 0 and deg/3 = 1, a o ft is defined by the pushout diagram: 

0 : 0 -> £ -> E -* ,4 -> 0 

\a = 
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while if dega = 1 and deg/3 = 0, a o /3 is given by the pullback: 

a o / 3 : 0 - > C - > £ ' -> 4 -» 0 

: 0 - > C - £ - > 0 . 

Composition in C is then a homomorphism of degree 0: 

Horn c (5, C) ® H o m c ( i , 5 ) -> Homc(i4, C) 

Let ^4* be the category of all graded Abelian groups and homomorphisms. 
We define a C-module to be a functor H* : C —> A* such that H* : Hornc(A, 
B) —» HomA*(ii*G4), H*(B)) is a homomorphism of degree 0 for any A, 
B £ C. If if* and if"* are C-modules, and k is an integer, we say y : if* —> if'* 
is a C-module map of degree k if, for every A £ C, y(A) (i HomA*(H*(A), 
H'*(A)), and, for every A, B £ C and every a £ Hornc(^4, 5 ) , the following 
diagram is commutative: 

H*(A) - ^ 0 fl*(S) 

7(^4) 

i?'*(,4) 
H"(a) 

y(B) 

H'*(B). 

H'* and <5 : if'* -> H"* 
A G C. Direct sum of 

We define composition of C-module maps y : if* —-s 
by the equation (8 o y)(A) = 8(A) o y(A) for all 
C-modules is also defined in the obvious way. 

If H* : C —> A* is a C-module, and if x G Hk(A) for some integer & and 
some i G C, we say that x is an element of H* of degree k with coefficients 
in ^4. 

The obvious example of a C-module is, of course, the cohomology of a 
C.W. pair, (K, L), H*(K, L) = H* : C-> A* defined by: H*(A) = H*(K, 
L; A) for any Abelian group A ; H*(a) = a* if a <E Horn(^4, 5 ) , and i?*(a) = 
0, the Bokstein o( a : 0 -+ B -+ E -> A -+ 0, if a £ Ext (A, B). 

Let p be a prime. 4̂ C-module 

if* : C->^4* 

we call £-adic if H*(A) has no torsion other than ^-torsion for any A £ C. 
The ^-component of the cohomology of (K, L) is a £-adic C-module; we leave 
the details to the reader. 

Pick any Abelian group G. Let 1G £ Hom(C, G) be the identity map. We 
define a C-module FG* : C-* A* as follows: for any A £ C, .FG*(^4) = 
H o m c ( G , ^ ) ; for any A, B Ç C and a £ H o m c ( i , 5 ) , TV (a) : Hom c(C, 
^4)—»Homc(G, .B) is composition by a. We call FG* the free C-module 
generated by lG. Let £ be a prime. Let [i7^*]? be the £-adic C-module where 
[FG*]p(i) and [FG*]p(a) are the ^-components of FG*(A) and FG*(a), re-
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spectively, for any object A and map a. We call [FG*]P the free £-adic C-
module generated by 1G. 

If if* : C —» A* is any C-module, and if {xt} are elements of JET", we say 
that if* is freely generated by {Xi} (freely generated by { x î | as a £-adic 
C-module) if if* is isomorphic to a direct sum of free C-modules (free £-adic 
C-modules) such that each xt corresponds to the generator of one summand. 

Note that the cohomology of any Moore space is a free C-module on one 
generator, its fundamental class. 

THEOREM 17. Let (K, L) be a C.W. pair of finite type. Then 
(i) if* (K, L) is freely generated as a C-module by a countable set of cohomology 

elements, and 
(ii) the p-component of H* (K, L) is freely generated as a p-adic C-module by a 

countable set. 
Furthermore, in both cases, we may specify that each generator have coefficients in 
a cyclic group of infinite or prime power order. 

Proof. To prove (i), write H*(K, L; Z) as a countable direct sum, J2f=i^i 
for some N ^ co, where each St has pure degree and is cyclic of infinite or 
prime power order. For each i, let yt be a generator of St. If yi has infinite 
order, let xt = y i. If yi has order m = qk, q a prime, pick x{ £ H*(K, L; Zm) 
such that /3mXi = yu where /3m is the Bokstein of the coefficient sequence 
Z —> Z —> Zm. A simple cohomology argument, which we leave to the reader, 
show ŝ that {xf} is the desired set of generators. From this set, omit all xt of 
order a power of a prime other than p; the set of remaining generators will 
freely generate the ^-component of H*(K, L), as a p-adic C-module; (ii) is 
proved. 

For example, let Pn be real projective ^-space. Then H*(Pn) is freely 
generated, as a C-module, by {1, u, uz, u5, . . . un~x\ if n is even, and by 
{1, u, u\ u\ . . . un~2, t] if n is odd, where 1 G H°(Pn; Z); u £ Hl(Pn; Z2) is 
the fundamental class; and t Ç Hn(Pn; Z) is the top class, of infinite order, 
if n is odd. 

Another important example of a C-module is twisted cohomology. Again, 
suppose (K, L) is a C.W. pair, and pick a G if10^5 ^2). For any Abelian 
group A, let A [a] = A (x) Z[a], where Z[a] is the twisted integer sheaf over K, 
twisted by a. Let H*(K, L; [a]) : C-^ A* be the C-module where H*(Ky 

L\ [a]) (A) = H*(K, L; A [a]) for all A. If a : A -> B is a map, H*(K, L; 
[a]) (a) = (a ® 1)*; while if a Ç Ext (A, B), H*(K, L; [a])[a) is the Bokstein of 

a (x) 1 : 0 -> A[a] -+ E[a] -> 5[a] -^ 0. 

Analogous to Theorem 12, we have: 

THEOREM 18. If (K, L) is a C.W. pair of finite type, and if a G Hl{K\ Z2)> 
then: 
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(i) H*(K, L\ [a]) is freely generated as a C-module by a countable set, and 
(ii) the p-component of H* (K, L; [a]) is freely generated, as a p-adic C-module, 

by a countable set. 
Furthermore, in both cases, we may assume that all generators have coefficients in 
cyclic groups of infinite or prime power order. 

We leave the proof, analogous to that of Theorem 12, to the reader. As an 
example, consider twisted cohomology of real projective space, H*(Pn; [u]), 
which is generated by {1, u2, uA, . . . un~1} if n is odd, and by {1, u2, ui, . . . un~2, 
t\ if n is even; where 1 Ç H°(Pn; Z2), and t £ Hn(Pn; Z[u\) is the top class, of 
infinite order, if n is even. 

The generators of the cohomology, or twisted cohomology, of a pair, which 
are given by Theorem 17, or 18, we call Moore generators. 

5. The structure of #*(A2X, AX) and #*(A2X, AX;[m]) as C-modules. 
We shall need a lemma: 

LEMMA 19. If G* and H* are free C-modules and if y : G* —> H* is a C-module 
map such that y(Zp) : G*(ZP) —> H*(ZP) is an isomorphism for each prime p, 
then y is an isomorphism. 

We leave the proof to the reader. The central idea is that if /3 is the Bokstein 
of the coefficient sequence 

A^BXC, 

and if F* is a free C-module, the following triangle is exact: 

F*(A)-^—>F*(B) 

F*(C) . 

Consider now, as before, X to be any connected C.W. complex of finite 
type. Let * G X be a base-point. Now H*(X, *) is a free C-module; let<3T = 
{xi, x2, . . .} be a set of Moore generators, as given by Theorem 17. Using «$JT, 
one may obtain a complete list of Moore generators for if*(A2X, AX) and also 
fori?*(A2X, AX; [m]): 

THEOREM 20. (I) H*(A2X, AX) is freely generated, as a C-module, by all 
elements of the following types: 

(i) m2iAp2xfor all x G £" of order infinite or a power of 2, 0 ^ 2i < dim x, 
(ii) m2iA(3r

2xfor all x £ 3? of order r, a power of 2, 0 ^ 2i ^ dim x, 
(iii) Txfor all x G 3£ of order a power of 2 and of even dimension, 
(iv) AxA/3/x for all x G 3C of finite order r, provided r is a power of 2 or 

dim x is odd, 
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(v) (Ax)2 for all x G 9C of odd or infinite order and even dimension, 
(vi) AXfAXj if Xi, Xj G 9C both have infinite order and i < j , 

(vii) AXfAprXjfor all xu Xj G ££ ; if xt has order r < oo , xjy has order s ^ oo , 
a multiple of r; and i < j if r = s, 

(viii) AXiAt3s
rXj for all xu Xj G S£ such that xt has order r < co, Xj has order 

s < oo, a multiple of r; and i < j if r = s. 
(II) H*(A2X, AX) [m]) is freely generated, as a C-module, by all elements of 

the following types: 
(i) Ax for all x G 9£, 

(ii) m2i+1Ap2x for all x G ££ of order infinite or a power of 2, 0 < 2i + 1 < 
dim x, 

(iii) m2i+1A/3r
2x for all x G S£ of order r, a power of 2, 0 < 2i + 1 ^ dim x, 

(iv) Tx for all x G SC of order a power of 2 and of odd dimension, 
(v) A(x, fi/x) for all x G 3C of finite order r, provided r is a power of 2 or 

dim x is even, 
(vi) A(x, x) for all x G 3C of odd or infinite order and odd dimension, 

(vii) A(xu Xj) for all xu xs G 3£, both of infinite order, if i < j , 
(viii) A(Xi, prXj)for allXi,Xj G 3£', if x i has order r < oo , x j Has order s ^co, 

a multiple of r, and i < j if r = s, 
(ix) A(xt, /3s

rXj) for all xu Xj G 3T such that xt has order r < oo, Xj has 
order s ^ oo , a multiple of r, and i < j if r = 5. 

Proof. Let G* be the formal free C-module generated by the elements 
specified in the statement of (I), and let y : G* —> H* (A2X, AX) be the 
C-module map which sends each element to itself. We may routinely check, 
using Theorems 11 and 14, that y(Zp) is an isomorphism for each prime p. 
By Lemma 19, (I) is proved. (II) is proved similarly. 

6. Projective spaces. For any n ^ 1, let Pn be real projective w-space. 
Let * G Pn be a basepoint. Now if n is even, H*(Pn, *), as a C-module, has 
only generators of order 2, namely u, uz, . . . un~l, i.e., odd powers of the 
fundamental class u G Hl(Pn, *; Z2). Thus, as a C-module, H*(A2Pn, APn) has 
only Moore generators of order 2, namely m2iAuk for all 1 ^ ï ^ n, 0 ^ 2i ^ k, 
and u2i+1Auk for all 1 ^ 2i + 1 < k ^ n\ while H*(A2Pn, APn; [m]) has 
Moore generators Tu2i+l of order 4 for all 1 ^ 2i + 1 < n; as well as Au2i+1 

for all 1 ^ 2i + 1 < n, and m2i+1Auk and A(w2î'+\ uk) for all 2 ^ k ^ w, 
1 ^ 2i + 1 < w, f order 2. Thus, 

# * ( A 2 P w , A P „ ; Z ) ^ 0 Z 2 
s 

H*(A2Pn, APn; Z[m]) ^ @Z2@@Z, 
s-8 8 

u f[hk],ifk^n A e J 1 , if k = 3 modulo 4 
where s = < r . 1 , 7n .f 7 ^ and 5 = < _ . 

([w + 1 — i&J, it & > n (0, otherwise. 
Suppose now that n is odd. if* (Pn, *) has Moore generators u, u3, . . . z^~2 of 
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order 2, and r £ Hn(Pn, *; Z), the top class, of infinite order. Thus, by Theorem 
20, H*(A2Pn, APn) has only Moore generators of order 2, while H*(A2Pn, 
APn\ [m]) has Moore generators AT and A(r, r) of infinite order, and yu2i+1 for 
all 0 < 2i + 1 < », of order 4; the others all have order 2. Hence, for all 
1 S k S 2», we have: 

Hk(A2Pn,APn;Z)^@Z2 
s 

Hk(A2Pn, APn; Z[m]) ^®Z,@G 
t 

where s = [|fe] if ife g », 5 = [» + 1 - p ] if jfe > », Ô = 1 if jfe = 3 (mod 4), 0 
otherwise, and G = Z\ if k = 3 (mod 4), G = Z if k = » or 2», and G = 0 
otherwise; and t = s — 8 — ( — l)kiîk>n,t = s — ôiîk^n. 
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