Boundary Behavior of Solutions of the Helmholtz Equation

Kentaro Hirata

Abstract. This paper is concerned with the boundary behavior of solutions of the Helmholtz equation in \mathbb{R}^{n}. In particular, we give a Littlewood-type theorem to show that the approach region introduced by Korányi and Taylor (1983) is best possible.

1 Introduction

Let $n \geq 2$ and let us denote a typical point in \mathbb{R}^{n} by $x=\left(x_{1}, \ldots, x_{n}\right)$. The usual inner product and norm are written respectively as $\langle x, y\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}$ and $|x|=\sqrt{\langle x, x\rangle}$. The symbol $O(n)$ stands for the set of all orthogonal transformations on \mathbb{R}^{n}. Let $\lambda>0$. We consider the Helmholtz equation

$$
\begin{equation*}
\Delta u=\lambda^{2} u \quad \text { in } \mathbb{R}^{n} \tag{1.1}
\end{equation*}
$$

where $\Delta=\partial^{2} / \partial x_{1}^{2}+\cdots+\partial^{2} / \partial x_{n}^{2}$. It is known that the Martin boundary for positive solutions of (1.1) can be identified with the unit sphere S of \mathbb{R}^{n}, and that every positive solution u of (1.1) can be represented as $u=K \mu$ for some Radon measure μ on S, where

$$
K \mu(x)=\int_{S} e^{\lambda\langle x, y\rangle} d \mu(y) \quad \text { for } x \in \mathbb{R}^{n}
$$

See [4, Corollary to Theorem 4] and [9]. Let σ denote the surface measure on S. Since $K \sigma(x) \rightarrow+\infty$ as $x \rightarrow \infty$ (cf. Lemma 2.1), we investigate the behavior at infinity of the normalization $K \mu / K \sigma$. Let $e=(1,0, \ldots, 0)$ and let Ω be an unbounded subset of \mathbb{R}^{n} converging to e at ∞ in the sense that $|x /|x|-e| \rightarrow 0$ as $x \rightarrow \infty$ within Ω. We write $\Omega(y)$ for the image of Ω under an element of $O(n)$ mapping e to y. Then $\{\Omega(y): y \in S\}$ makes a collection of approach regions. By the notation $\Omega(y) \ni$ $x \rightarrow \infty$, we mean that $x \rightarrow \infty$ within $\Omega(y)$. Korányi and Taylor [9] considered the following approach region. For $\alpha>0$ and $y \in S$, define

$$
\mathcal{A}_{\alpha}(y)=\left\{x \in \mathbb{R}^{n}:|x-|x| y| \leq \alpha \sqrt{|x|}\right\}
$$

Theorem A Let $\alpha>0$ and let μ be a Radon measure on S. Then

$$
\lim _{\mathcal{A}_{\alpha}(y) \ni x \rightarrow \infty} \frac{K \mu}{K \sigma}(x)=\frac{d \mu}{d \sigma}(y) \quad \text { for } \sigma \text {-a.e. } y \in S .
$$

Received by the editors October 9, 2006.
AMS subject classification: Primary: 31B25; secondary: 35J05.
Keywords: boundary behavior, Helmholtz equation.
(c)Canadian Mathematical Society 2009.

This result corresponds to Fatou's theorem [5] for the boundary behavior of harmonic functions in the unit ball or the upper half space of \mathbb{R}^{n}, (see also $[8,12]$ for invariant harmonic functions in the unit ball of $\left(\mathbb{C}^{n}\right)$. The result corresponding to Nagel-Stein's theorem [11] was established by Berman and Singman [3] and Gowrisankaran and Singman [6]. These results show that there exists an unbounded subset Ω of \mathbb{R}^{n} converging to e at ∞ such that

$$
\limsup _{\Omega \ni x \rightarrow \infty} \frac{|x-|x| e|}{\sqrt{|x|}}=+\infty
$$

and that

$$
\lim _{\Omega(y) \ni x \rightarrow \infty} \frac{K \mu}{K \sigma}(x)=\frac{d \mu}{d \sigma}(y) \quad \text { for } \sigma \text {-a.e. } y \in S
$$

whenever μ is a Radon measure on S. Berman and Singman also showed its converse (see [3, Theorem B and Remark 1. 13(a)]).
Theorem B Let Ω be an unbounded subset of \mathbb{R}^{n} converging to e at ∞ and satisfying

$$
\begin{equation*}
\limsup _{\Omega \ni x \rightarrow \infty} \frac{|x-|x| e|}{\sqrt{|x|}}=+\infty \tag{1.2}
\end{equation*}
$$

Suppose in addition that Ω is invariant under all elements of $O(n)$ that preserve the point e. Then there exists a Radon measure μ on S such that

$$
\limsup _{\Omega(y) \ni x \rightarrow \infty} \frac{K \mu}{K \sigma}(x)=+\infty \quad \text { for every } y \in S
$$

Note that the second assumption on Ω cannot be omitted from their construction even if "lim sup" in (1.2) is replaced by "lim".

The purpose of this paper is to show the following Littlewood-type theorem. See [$1,2,7,10$] for harmonic or invariant harmonic functions.
Theorem 1.1 Let γ be a curve in \mathbb{R}^{n} converging to e at ∞ and satisfying

$$
\begin{equation*}
\lim _{\gamma \ni x \rightarrow \infty} \frac{|x-|x| e|}{\sqrt{|x|}}=+\infty . \tag{1.3}
\end{equation*}
$$

Then there exists a solution u of (1.1) such that $u / K \sigma$ is bounded in \mathbb{R}^{n} and that $u / K \sigma$ admits no limits as $x \rightarrow \infty$ along $T \gamma$ for every $T \in O(n)$.
Remark 1.2. We indeed construct u satisfying $-1 \leq u / K \sigma \leq 1$ and

$$
\liminf _{T \gamma \ni x \rightarrow \infty} \frac{u}{K \sigma}(x)=-1 \quad \text { and } \quad \limsup _{T \gamma \ni x \rightarrow \infty} \frac{u}{K \sigma}(x)=1
$$

for every $T \in O(n)$. Note that "lim" in (1.3) cannot be replaced by "lim sup" as mentioned above (cf. [3,6]).

The proof of Theorem 1.1 is based on our previous work [7] for invariant harmonic functions in the unit ball of \mathbb{C}^{n}, which was a refinement of Aikawa's method $[1,2]$ for harmonic functions in the unit disc or the upper half space of \mathbb{R}^{n}. In Section 4, we remark that our construction and estimates are applicable to show the analogue of Theorem B.

2 Lemmas

The symbol A denotes an absolute positive constant depending only on λ and the dimension n, and may change from line to line. The following estimate is found in [3, Lemma 4.1].

Lemma 2.1 There exists a constant $A>1$ such that

$$
\frac{1}{A} e^{\lambda|x|}|x|^{(1-n) / 2} \leq K \sigma(x) \leq A e^{\lambda|x|}|x|^{(1-n) / 2}
$$

whenever $|x| \geq 1$.
The surface ball of center $y \in S$ and radius $r>0$ is denoted by

$$
Q(y, r)=\{x \in S:|x-y|<r\}
$$

Then we observe that

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\sigma(Q(y, r))}{r^{n-1}}=\nu_{n-1} \tag{2.1}
\end{equation*}
$$

where ν_{n-1} is the volume of the unit ball of \mathbb{R}^{n-1}. Moreover, there exists a constant $A>1$ such that

$$
\begin{equation*}
\frac{1}{A} r^{n-1} \leq \sigma(Q(y, r)) \leq A r^{n-1} \quad \text { for } 0<r \leq 2 \tag{2.2}
\end{equation*}
$$

Let π be the radial projection onto S, i.e., $\pi(x)=x /|x|$ for $x \in \mathbb{R}^{n} \backslash\{0\}$. For a Radon measure μ on S, we define the maximal function $M_{(c)} \mu$ with parameter $c \geq 1$ by

$$
M_{(c)} \mu(x)=\sup \left\{\frac{\mu(Q(\pi(x), r))}{r^{n-1}}: r \geq \frac{c}{\sqrt{|x|}}\right\}
$$

Lemma 2.2 Let $c \geq 1$ and let μ be a Radon measure on S. Then

$$
\frac{K \mu}{K \sigma}(x) \leq A\left(|x|^{(n-1) / 2} \mu(Q(\pi(x), c / \sqrt{|x|}))+\frac{1}{c} M_{(c)} \mu(x)\right)
$$

whenever $|x| \geq 1$.
Proof Let $|x| \geq 1$. Since $|x|-\langle x, y\rangle=|x||\pi(x)-y|^{2} / 2$ for $y \in S$, it follows from Lemma 2.1 that

$$
\begin{equation*}
\frac{K \mu}{K \sigma}(x) \leq A|x|^{(n-1) / 2} \int_{S} e^{-(\lambda / 2)|x||\pi(x)-y|^{2}} d \mu(y) \tag{2.3}
\end{equation*}
$$

Let $Q_{1}=Q(\pi(x), c / \sqrt{|x|})$ and $Q_{j}=Q(\pi(x), j c / \sqrt{|x|}) \backslash Q(\pi(x),(j-1) c / \sqrt{|x|})$ for $j=2, \ldots, N$, where N is the smallest integer such that $N c / \sqrt{|x|}>2$. Then for $j=1, \ldots, N$,

$$
\int_{Q_{j}} e^{-(\lambda / 2)|x||\pi(x)-y|^{2}} d \mu(y) \leq e^{-(\lambda / 2)((j-1) c)^{2}} \mu(Q(\pi(x), j c / \sqrt{|x|}))
$$

Therefore the right-hand side of (2.3) is bounded by

$$
A\left(|x|^{(n-1) / 2} \mu(Q(\pi(x), c / \sqrt{|x|}))+\sum_{j \geq 2} e^{-(\lambda / 2)((j-1) c)^{2}}(j c)^{n-1} M_{(c)} \mu(x)\right)
$$

Since $\sum_{j \geq 2} e^{-(\lambda / 2)((j-1) c)^{2}}(j c)^{n-1} \leq A / c$, we obtain the required estimate.
For an integrable function f on S, we write $K f=K(f d \sigma)$ and $M_{(c)} f=$ $M_{(c)}(|f| d \sigma)$.

Lemma 2.3 The following statements hold.

(i) Let μ be a Radon measure on S. Then $\frac{K \mu}{K \sigma}(x) \leq A M_{(1)} \mu(x)$ whenever $|x| \geq 1$.
(ii) Let $y \in S, 0<r<1$ and $c \geq 1$. Suppose that f is a Borel measurable function on S such that $f=1$ on $Q(y, c r)$ and $|f| \leq 1$ on S. Then $\frac{K f}{K \sigma}(t y) \geq 1-\frac{A}{c}$ whenever $\sqrt{t} \geq 1 / r$.

Proof Lemma 2.2 with $c=1$ gives (i). To show (ii), let $g=(1-f) / 2$. Then $g=0$ on $Q(y, c r)$ and $|g| \leq 1$ on S. Observe from Lemma 2.2 and (2.2) that if $\sqrt{t} \geq 1 / r$, then

$$
\frac{K g}{K \sigma}(t y) \leq \frac{A}{c} M_{(c)} g(t y) \leq \frac{A}{c} \sup \left\{\frac{\sigma(Q(y, \rho))}{\rho^{n-1}}: \rho \geq \frac{c}{\sqrt{t}}\right\} \leq \frac{A}{c}
$$

Since $K f=K \sigma-2 K g$, we obtain (ii)
For a set E, let $\operatorname{diam} E=\sup \{|x-y|: x, y \in E\}$.
Lemma 2.4 Let γ be a curve in \mathbb{R}^{n} converging to e at ∞ and satisfying (1.3). Then there exist sequences of numbers $\left\{a_{j}\right\}_{j \geq 1},\left\{b_{j}\right\}_{j \geq 1}$ and subarcs $\left\{\gamma_{j}\right\}_{j \geq 1}$ of γ with the following properties:
(i) $1<a_{1}<b_{1}<\cdots<a_{j}<b_{j}<a_{j+1}<b_{j+1}<\cdots \rightarrow+\infty$,
(ii) $a_{j} \leq \sqrt{|x|} \leq b_{j}$ for $x \in \gamma_{j}$,
(iii) $b_{j-1} \operatorname{diam} \pi\left(\gamma_{j}\right) \leq 1$ if $j \geq 2$,
(iv) $\lim _{j \rightarrow+\infty} a_{j} \operatorname{diam} \pi\left(\gamma_{j}\right)=+\infty$.

Proof Let $\left\{\alpha_{j}\right\}$ be a sequence such that $\alpha_{j} \rightarrow+\infty$ as $j \rightarrow+\infty$, and let us choose $\left\{a_{j}\right\},\left\{b_{j}\right\}$, and $\left\{\gamma_{j}\right\}$ inductively. By (1.3), we find $a_{1}>\max \left\{1, \inf _{x \in \gamma} \sqrt{|x|}\right\}$ with

$$
\sqrt{|x|}|\pi(x)-e| \geq \alpha_{1} \quad \text { for } x \in \gamma \cap\left\{\sqrt{|x|} \geq a_{1}\right\}
$$

Let γ^{\prime} be the connected component of $\gamma \cap\left\{\sqrt{|x|} \geq a_{1}\right\}$ that converges to ∞, and let $x_{1} \in \gamma^{\prime} \cap\left\{\sqrt{|x|}=a_{1}\right\}$. Then $\operatorname{diam} \pi\left(\gamma^{\prime}\right) \geq\left|\pi\left(x_{1}\right)-e\right| \geq \frac{\alpha_{1}}{a_{1}}$. Let $\gamma^{\prime \prime}$ be a subarc of γ^{\prime} starting from x_{1} toward ∞ such that

$$
\sup _{x \in \gamma^{\prime \prime}} \sqrt{|x|}<+\infty \quad \text { and } \quad \operatorname{diam} \pi\left(\gamma^{\prime \prime}\right) \geq \frac{1}{2} \operatorname{diam} \pi\left(\gamma^{\prime}\right)
$$

We take $b_{1}>\sup _{x \in \gamma^{\prime \prime}} \sqrt{|x|}$. Let γ_{1} be the connected component of $\gamma \cap\left\{a_{1} \leq\right.$ $\left.\sqrt{|x|} \leq b_{1}\right\}$ containing $\gamma^{\prime \prime}$. Then $\operatorname{diam} \pi\left(\gamma_{1}\right) \geq \frac{\alpha_{1}}{2 a_{1}}$. We next choose a_{2}, b_{2} and γ_{2} as
follows. By (1.3) and the fact that $|\pi(x)-e| \rightarrow 0$ as $x \rightarrow \infty$ along γ, we find $a_{2}>b_{1}$ such that

$$
\begin{equation*}
\frac{1}{2 b_{1}} \geq|\pi(x)-e| \geq \frac{\alpha_{2}}{\sqrt{|x|}} \quad \text { for } x \in \gamma \cap\left\{\sqrt{|x|} \geq a_{2}\right\} \tag{2.4}
\end{equation*}
$$

Repeat the above process to get $b_{2}>a_{2}$ and γ_{2} such that $a_{2} \leq \sqrt{|x|} \leq b_{2}$ for $x \in \gamma_{2}$ and $\operatorname{diam} \pi\left(\gamma_{2}\right) \geq \alpha_{2} / 2 a_{2}$. Then (2.4) also yields that

$$
\operatorname{diam} \pi\left(\gamma_{2}\right) \leq 2 \sup _{x \in \gamma_{2}}|\pi(x)-e| \leq \frac{1}{b_{1}}
$$

Continue this process to obtain the required sequences.

3 Construction

Throughout this section, we suppose that $\left\{a_{j}\right\}_{j \geq 1},\left\{b_{j}\right\}_{j \geq 1}$, and $\left\{\gamma_{j}\right\}_{j \geq 1}$ are as in Lemma 2.4. Let

$$
\begin{equation*}
\ell_{j}=\frac{\operatorname{diam} \pi\left(\gamma_{j}\right)}{3}, \quad c_{j}=\sqrt{a_{j} \operatorname{diam} \pi\left(\gamma_{j}\right)}, \quad \text { and } \quad \rho_{j}=\frac{c_{j}}{a_{j}} . \tag{3.1}
\end{equation*}
$$

Then, by Lemma 2.4,

$$
\begin{equation*}
\lim _{j \rightarrow+\infty} \ell_{j}=0, \quad \lim _{j \rightarrow+\infty} \frac{\rho_{j}}{\ell_{j}}=0, \quad \text { and } \quad \lim _{j \rightarrow+\infty} c_{j}=+\infty \tag{3.2}
\end{equation*}
$$

Therefore, in the construction below we may assume that $\rho_{j}<\ell_{j}$ for every $j \in \mathbb{N}$. For each $j \in \mathbb{N}$, we choose finitely many points $\left\{y_{j}^{\nu}\right\}_{\nu}$ in S such that
(i) $S=\bigcup_{\nu} Q\left(y_{j}^{\nu}, \ell_{j}\right)$,
(ii) $Q\left(y_{j}^{\mu}, \ell_{j} / 2\right) \cap Q\left(y_{j}^{\nu}, \ell_{j} / 2\right)=\varnothing$ if $\mu \neq \nu$.

For example, a maximal family of pairwise disjoint surface balls $\left\{Q\left(y_{j}^{\nu}, \ell_{j} / 2\right)\right\}_{\nu}$ satisfies (i) and (ii). We define

$$
\begin{align*}
M_{j} & =\bigcup_{\nu}\left\{y \in S:\left|y-y_{j}^{\nu}\right|=\ell_{j}\right\} \tag{3.3}\\
G_{j} & =\left\{x \in \mathbb{R}^{n}: a_{j} \leq \sqrt{|x|} \leq b_{j} \text { and } \pi(x) \in M_{j}\right\} . \tag{3.4}
\end{align*}
$$

Then we have the following.
Lemma 3.1 $T \gamma_{j} \cap G_{j} \neq \varnothing$ for any $T \in O(n)$ and $j \in \mathbb{N}$.
Proof By (i), we find ν with $\pi\left(T \gamma_{j}\right) \cap Q\left(y_{j}^{\nu}, \ell_{j}\right) \neq \varnothing$. Since diam $\pi\left(T \gamma_{j}\right)=$ $\operatorname{diam} \pi\left(\gamma_{j}\right)=3 \ell_{j}$, we see that $\pi\left(T \gamma_{j}\right) \cap M_{j} \neq \varnothing$. Therefore it follows from $T \gamma_{j} \subset$ $\left\{a_{j} \leq \sqrt{|x|} \leq b_{j}\right\}$ that $T \gamma_{j} \cap G_{j} \neq \varnothing$.

Let $R_{j}^{\nu}=\left\{y \in S: \ell_{j}-\rho_{j}<\left|y-y_{j}^{\nu}\right|<\ell_{j}+\rho_{j}\right\}$ and define

$$
\begin{equation*}
E_{j}=\bigcup_{\nu} R_{j}^{\nu} \tag{3.5}
\end{equation*}
$$

Note that $Q\left(y, \rho_{j}\right) \subset E_{j}$ if $y \in M_{j}$. By X_{E} we denote the characteristic function of E.
Lemma 3.2 The following properties for the above $\left\{E_{j}\right\}_{j \geq 1}$ hold.
(i) $\lim _{j \rightarrow+\infty}\left(\sup \left\{\frac{K X_{E_{j}}}{K \sigma}(x): \sqrt{|x|} \leq b_{j-1}\right\}\right)=0$.
(ii) $\lim _{j \rightarrow+\infty} \sigma\left(E_{j}\right)=0$.

Proof Since the value $\sigma\left(R_{j}^{\nu}\right)$ is independent of ν, we write $\sigma_{j}=\sigma\left(R_{j}^{\nu}\right)$. For a moment, we fix j and let $\sqrt{|x|} \leq b_{j-1}$. By Lemma 2.3(i)

$$
\begin{aligned}
\frac{K X_{E_{j}}}{K \sigma}(x) & \leq A M_{(1)} X_{E_{j}}(x) \leq A \sup \left\{\sum_{\nu} \frac{\sigma\left(R_{j}^{\nu} \cap Q(\pi(x), r)\right)}{r^{n-1}}: r \geq \frac{1}{\sqrt{|x|}}\right\} \\
& \leq A \sup \left\{\frac{\sigma_{j}}{r^{n-1}} N_{j}: r \geq \frac{1}{\sqrt{|x|}}\right\}
\end{aligned}
$$

where N_{j} is the number of ν such that $R_{j}^{\nu} \cap Q(\pi(x), r) \neq \varnothing$. If $r \geq 1 / \sqrt{|x|}$, then $r \geq 1 / b_{j-1} \geq \operatorname{diam} \pi\left(\gamma_{j}\right)=3 \ell_{j}$ by Lemma 2.4. Therefore $R_{j}^{\nu} \cap Q(\pi(x), r) \neq \varnothing$ implies $Q\left(y_{j}^{\nu}, \ell_{j} / 2\right) \subset Q(\pi(x), 2 r)$. It follows from (ii) that $N_{j} \leq A\left(r / \ell_{j}\right)^{n-1}$. Hence we obtain

$$
\begin{equation*}
\sup \left\{\frac{K X_{E_{j}}}{K \sigma}(x): \sqrt{|x|} \leq b_{j-1}\right\} \leq A \frac{\sigma_{j}}{\ell_{j}^{n-1}} \tag{3.6}
\end{equation*}
$$

Observe from (2.1) and (3.2) that

$$
\begin{aligned}
& \frac{\sigma_{j}}{\ell_{j}^{n-1}}=\left(\frac{\ell_{j}+\rho_{j}}{\ell_{j}}\right)^{n-1} \frac{\sigma\left(Q\left(y, \ell_{j}+\rho_{j}\right)\right)}{\left(\ell_{j}+\rho_{j}\right)^{n-1}} \\
&-\left(\frac{\ell_{j}-\rho_{j}}{\ell_{j}}\right)^{n-1} \frac{\sigma\left(Q\left(y, \ell_{j}-\rho_{j}\right)\right)}{\left(\ell_{j}-\rho_{j}\right)^{n-1}} \rightarrow 0 \quad \text { as } j \rightarrow+\infty
\end{aligned}
$$

This together with (3.6) concludes (i).
Taking $x=0$ in (i), we obtain

$$
\sigma\left(E_{j}\right)=\sigma(S) \frac{K X_{E_{j}}}{K \sigma}(0) \rightarrow 0 \quad \text { as } j \rightarrow+\infty
$$

Thus (ii) follows.

Proof of Theorem 1.1 In view of Lemma 3.2, taking a subsequence of j if necessary, we may assume that

$$
\begin{equation*}
\frac{K \mathcal{X}_{E_{j}}}{K \sigma}(x) \leq 2^{-j} \quad \text { for } \sqrt{|x|} \leq b_{j-1} \tag{3.7}
\end{equation*}
$$

and $\sigma\left(E_{j}\right) \leq 2^{-j}$. Then $\sigma\left(\bigcap_{k} \bigcup_{i \geq k} E_{i}\right)=0$. For $j \in \mathbb{N}$, let

$$
f_{j}(y)= \begin{cases}(-1)^{I_{j}(y)} & \text { if } y \in \bigcup_{1 \leq i \leq j} E_{i} \\ 0 & \text { if } y \notin \bigcup_{1 \leq i \leq j} E_{i}\end{cases}
$$

where $I_{j}(y)=\max \left\{i: y \in E_{i}, 1 \leq i \leq j\right\}$. Then we see that f_{j} converges σ-a.e. on S to

$$
f(y)= \begin{cases}(-1)^{I(y)} & \text { if } y \in \bigcup_{i \geq 1} E_{i} \backslash \bigcap_{k} \bigcup_{i \geq k} E_{i} \\ 0 & \text { if } y \notin \bigcup_{i \geq 1} E_{i} \text { or } y \in \bigcap_{k} \bigcup_{i \geq k} E_{i}\end{cases}
$$

where $I(y)=\max \left\{i: y \in E_{i}\right\}$ for $y \in \bigcup_{i \geq 1} E_{i} \backslash \bigcap_{k} \bigcup_{i \geq k} E_{i}$. Also, we have the following:

$$
\left|f_{j}\right| \leq 1, \quad\left|f_{j+1}-f_{j}\right| \leq 2 X_{E_{j+1}} \text { on } S ; \quad f_{j}=(-1)^{j} \text { on } E_{j} ; \quad K f_{j} \rightarrow K f \text { on } \mathbb{R}^{n}
$$

Let $T \in O(n)$. By Lemma 3.1, we find $x_{j} \in T \gamma \cap G_{j}$ for each $j \in \mathbb{N}$. Then $a_{j} \leq \sqrt{\left|x_{j}\right|} \leq b_{j}$ and $Q\left(\pi\left(x_{j}\right), c_{j} / a_{j}\right) \subset E_{j}$. If j is even, then Lemma 2.3(ii) and (3.7) give

$$
\begin{aligned}
\frac{K f}{K \sigma}\left(x_{j}\right) & =\frac{K f_{j}}{K \sigma}\left(x_{j}\right)+\sum_{k \geq j} \frac{K\left(f_{k+1}-f_{k}\right)}{K \sigma}\left(x_{j}\right) \\
& \geq \frac{K f_{j}}{K \sigma}\left(x_{j}\right)-2 \sum_{k \geq j} \frac{K X_{E_{k+1}}}{K \sigma}\left(x_{j}\right) \geq 1-\frac{A}{c_{j}}-2^{1-j}
\end{aligned}
$$

Similarly, if j is odd, then

$$
\frac{K f}{K \sigma}\left(x_{j}\right) \leq-1+\frac{A}{c_{j}}+2^{1-j}
$$

Hence we conclude from (3.2) that

$$
\liminf _{T \gamma \ni x \rightarrow \infty} \frac{K f}{K \sigma}(x)=-1<1=\limsup _{T \gamma \ni x \rightarrow \infty} \frac{K f}{K \sigma}(x) .
$$

Obviously, $u=K f$ is a solution of (1.1) such that $-1 \leq u / K \sigma \leq 1$ on \mathbb{R}^{n}. Thus the proof of Theorem 1.1 is complete.

4 Remark

Our construction and estimates in Sections 2 and 3 are applicable to show the analogue of Theorem B.

Theorem 4.1 Let Ω be an unbounded subset of \mathbb{R}^{n} converging to e at ∞ and satisfying (1.2). Suppose in addition that Ω is invariant under all elements of $O(n)$ that preserve the point e. Then there exists a solution u of (1.1) such that $u / K \sigma$ is bounded in \mathbb{R}^{n} and that $u / K \sigma$ admits no limits as $x \rightarrow \infty$ along $\Omega(y)$ for every $y \in S$.
Proof We give a sketch of the proof, and its detail is left to the reader. By the assumption on Ω, we find a sequence $\left\{x_{j}\right\}$ in Ω converging to e at ∞ such that

$$
\lim _{j \rightarrow+\infty} \frac{\left|x_{j}-\left|x_{j}\right| e\right|}{\sqrt{\left|x_{j}\right|}}=+\infty
$$

Taking a subsequence of j if necessary, we may assume that $\sqrt{\left|x_{j-1}\right|}\left|\pi\left(x_{j}\right)-e\right| \leq 1$. Let $\omega_{j}=\left\{T_{e}\left(x_{j}\right): T_{e} \in O(n)\right.$ preserves $\left.e\right\}$ and let $\omega=\bigcup_{j} \omega_{j}$. Note that ω is a subset of Ω converging to e at ∞. Let $a_{j}=b_{j}=\sqrt{\left|x_{j}\right|}$ and define

$$
\ell_{j}=\frac{\left|\pi\left(x_{j}\right)-e\right|}{3}, \quad c_{j}=\sqrt{a_{j}\left|\pi\left(x_{j}\right)-e\right|}, \quad \text { and } \quad \rho_{j}=\frac{c_{j}}{a_{j}}
$$

in place of (3.1). Then these satisfy (3.2) and $3 \ell_{j} \leq 1 / b_{j-1}$. Let M_{j}, G_{j}, and E_{j} be as in (3.3), (3.4), and (3.5) respectively. Then the conclusions in Lemma 3.2 hold in this setting as well. Note that ω_{j} and G_{j} lie on the sphere of center at the origin and radius $\left|x_{j}\right|$. Let $T \in O(n)$. Since $\left\{y \in S:|y-T e|=3 \ell_{j}\right\} \subset \pi\left(T \omega_{j}\right)$, we see that $\pi\left(T \omega_{j}\right) \cap M_{j} \neq \varnothing$, and so $T \omega_{j} \cap G_{j} \neq \varnothing$. Hence we observe the existence of f such that

$$
\liminf _{T \omega \ni x \rightarrow \infty} \frac{K f}{K \sigma}(x) \neq \limsup _{T \omega \ni x \rightarrow \infty} \frac{K f}{K \sigma}(x) \quad \text { for every } T \in O(n)
$$

Thus $K f / K \sigma$ admits no limits as $x \rightarrow \infty$ along $\Omega(y)$ for every $y \in S$.
Acknowledgment The author would like to thank the referee for helpful suggestions.

References

[1] H. Aikawa, Harmonic functions having no tangential limits. Proc. Amer. Math. Soc. 108(1990), no. 2, 457-464.
[2] ,Harmonic functions and Green potentials having no tangential limits. J. London Math. Soc. (2) 43(1991), no. 1, 125-136.
[3] R. Berman and D. Singman, Boundary behavior of positive solutions of the Helmholtz equation and associated potentials. Michigan Math. J. 38(1991), no. 3, 381-393.
[4] F. T. Brawn, The Martin boundary of $\left.R^{n} \times\right] 0,1$ [. J. London Math. Soc. (2) 5(1972), 59-66.
[5] P. Fatou, Séries trigonométriques et séries de Taylor. Acta Math. 30(1906), no. 1, 335-400.
[6] K. Gowrisankaran and D. Singman, Thin sets and boundary behavior of solutions of the Helmholtz equation. Potential Anal. 9(1998), no. 4, 383-398.
[7] K. Hirata, Sharpness of the Korányi approach region. Proc. Amer. Math. Soc. 133(2005), no. 8, 2309-2317.
[8] A. Korányi, Harmonic functions on Hermitian hyperbolic space. Trans. Amer. Math. Soc. 135(1969), 507-516.
[9] A. Korányi and J. C. Taylor, Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation. Illinois J. Math. 27(1983), no. 1, 77-93.
[10] J. E. Littlewood, On a theorem of Fatou. J. London Math. Soc. 2(1927), 172-176.
[11] A. Nagel and E. M. Stein, On certain maximal functions and approach regions. Adv. in Math. 54(1984), no. 1, 83-106.
[12] J. Sueiro, On maximal functions and Poisson-Szegö integrals. Trans. Amer. Math. Soc. 298(1986), no. 2, 653-669.

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
Current address
Faculty of Education and Human Studies, Akita University, Akita 010-8502, Japan
e-mail: hirata@math.akita-u.ac.jp

