LOCAL UNIQUE FACTORIZATION IN THE SEMIGROUP OF PATHS IN \mathbb{R}^n

^{ву} MOHAN S. PUTCHA

ABSTRACT. Let S denote the semigroup of all rectifiable, piecewise continuously differentiable paths in \mathbb{R}^n under concatenation. We prove a theorem to the effect that every finite collection of paths is contained in a subsemigroup of S which has the unique factorization property with respect to certain primes and straight lines. We also determine an abstract necessary sufficient condition for a subsemigroup of S to have this unique factorization property.

Throughout this paper, \mathbb{R} , \mathbb{R}^+ , Z^+ will denote the sets of all real numbers, positive reals, positive integers, respectively. *n* will denote a fixed positive integer and \mathbb{R}^n the Euclidean *n*-space. Let \mathcal{M} denote the set of all rectifiable, piecewise continuously differentiable functions *f* from [0, 1] into \mathbb{R}^n such that f(0) = 0 and *f* is not constant on any subinterval of [0, 1]. If $f, g \in \mathcal{M}$, then let $fg \in \mathcal{M}$ be defined by

$$fg(x) = \begin{cases} f(2x) & 0 \le x \le \frac{1}{2} \\ f(1) + g(2x - 1), & \frac{1}{2} \le x \le 1 \end{cases}$$

If $f, g \in \mathcal{M}$, then define $f \equiv g$ if $g = f \circ \phi$ for some strictly increasing, continuous self-map ϕ of [0, 1] with $\phi(0) = 0$, $\phi(1) = 1$. Then $S = \mathcal{M}/\equiv$ is a cancellative semigroup (see [2, 3] where \mathcal{D}_1^* was used to denote this semigroup). Let \mathcal{L} denote the set of all lines in S. If $u \in S$, then l(u) denotes the length of u. If $a \in \mathcal{L}$, $\alpha \in \mathbb{R}^+$, then let a^{α} denote the line parallel to a having length $\alpha l(a)$. If $a, b \in \mathcal{L}$, then we will write $a \sim b$ if a is parallel to be (i.e., $b = a^{\alpha}$ for some $\alpha \in \mathbb{R}^+$). If $A \subseteq S$, then let $\langle A \rangle$ denote the semigroup generated by A. If Γ is a set, then let $\mathcal{F} = \mathcal{F}(\Gamma)$ denote the free semigroup on Γ . If $\Lambda \subseteq \Gamma$, then let $\mathcal{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$ denote the semigroup of words in alphabet Γ such that for $A \in \Gamma \setminus \Lambda$ the exponents of A in the word are allowed to be positve real numbers. So $\mathcal{F}_{\mathbb{R}}(\Gamma \mid \Gamma) = \mathcal{F}(\Gamma)$ and $\mathcal{F}_{\mathbb{R}} = \mathcal{F}_{\mathbb{R}}(\Gamma) = \mathcal{F}_{\mathbb{R}}(\Gamma \mid \mathcal{O})$ is the free product of $|\Gamma|$ copies of positive reals under addition (see [3]). Let S^1 be the semigroup $S \cup \{1\}, 1 \notin S$ such that 1 is the identity element of S^1 . If $X \subseteq S$, then $X^1 = X \cup \{1\}$.

If $X \subseteq S$, then the power closure of X, $\overline{X} = \{u^i \mid u \in X, i \in \mathbb{Z}^+\} \cup \{u^{\alpha} \mid u \in X \cap \mathcal{L}, \alpha \in \mathbb{R}^+\}$. Let $a, b \in S, X, Y \subseteq S$. Then $a <_{X,Y} b$ is b = xay for some $x, y \in S^1$ such that $(x, y) \in (X^1 \times X^1) \setminus (Y^1 \times Y^1)$. Let T be a subsemigroup of S. Then T satisfies the descending chain condition if there is

6

Received by the editors April 3, 1978 and, in revised form, October 18, 1978.

A

no sequence in T of the following type

$$\cdots \underset{T,\mathscr{L}}{<} a_3 \underset{T,\mathscr{L}}{<} a_2 \underset{T,\mathscr{L}}{<} a_1$$

T is a weakly unitary subsemigroup of S if for all $a \in S$, the conditions $aT \cap T \neq \emptyset$ and $Ta \cap T \neq \emptyset$, together imply $a \in T$. This condition, due to Schützenberger, comes up naturally in the study of free semigroups [1; p. 119]. T is power closed if $\overline{T} = T$. T is free-like if T is weakly unitary, is power closed and satisfies the descending chain condition.

REMARK. Intersection of free-like subsemigroups of S is again free-like.

THEOREM 1. Let T be a free-like subsemigroup of S. Then $T \cong \mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$ for some Γ , Λ .

Proof. Let $\mathscr{L}_t = T \cap \mathscr{L}$. Then $T \setminus \mathscr{L}_t$ is a subsemigroup of T. Let $D = \{a \mid a \in T \setminus \mathscr{L}_t, a \neq bc$ for any $b, c \in T \setminus \mathscr{L}_t\}$. We first show that $T \setminus \mathscr{L}_t = \langle D \rangle$. For suppose $a \in T \setminus \mathscr{L}_t$, $a \notin \langle D \rangle$. Then a = bc for some $b, c \in T \setminus \mathscr{L}_t$. So $b <_{T,\mathscr{L}} a$, $c <_{T,\mathscr{L}} a$. Either $b \notin \langle D \rangle$ or $c \notin \langle D \rangle$. Thus there exists $a_1 \in T \setminus \mathscr{L}_t$ such that $a_1 \notin \langle D \rangle$, $a_1 <_{T,\mathscr{L}} a$. Continuing, we find a sequence $\{a_i\}_{i \in \mathbb{Z}^+}$ in $T \setminus (\mathscr{L}_t \cup \langle D \rangle)$ such that

$$\cdots \underset{T,\mathscr{L}}{<} a_2 \underset{T,\mathscr{L}}{<} a_1 \underset{T,\mathscr{L}}{<} a.$$

This violates the descending chain condition of T. So $T \setminus \mathscr{L}_t = \langle D \rangle$. Let $P_1 = \{a \mid a \in D, a \notin bT$ for any $b \in \mathscr{L}_t\}$, $P_2 = \{a \mid a \in D, a \notin Tb$ for any $b \in \mathscr{L}_t\}$, $P = P_1 \cap P_2$. We claim that $D \subseteq \langle \mathscr{L}_t \rangle^1 P_1^1$. For suppose $a \in D$, $a \notin \langle \mathscr{L}_t \rangle^1 P_1^1$. Then there exists $b_1 \in \mathscr{L}_t$ such that $a = b_1 a_1$, $a_1 \in T \setminus \mathscr{L}_t$, $a_1 \notin b_1^{\alpha} T$ for any $\alpha \in \mathbb{R}^+$. Then clearly $a_1 \in D$ and so $a_1 \notin \langle \mathscr{L}_t \rangle^1 P_1^1$. Continuing we find a sequence $\{b_i\}_{i \in \mathbb{Z}^+}$ in \mathscr{L}_t , $\{a_i\}_{i \in \mathbb{Z}^+}$ in D such that $b_i x b_{i+1}$ for any i and for any $i \in \mathbb{Z}^+$, $a_i = b_{i+1} a_{i+1}$. So $a_i = b_{i+1} b_{i+2} a_{i+2}$ and $a_{i+2} <_{T,\mathscr{L}} a_i$. So

$$\cdots \underset{T,\mathscr{L}}{<} a_6 \underset{T,\mathscr{L}}{<} a_4 \underset{T,\mathscr{L}}{<} a_2 \underset{T,\mathscr{L}}{<} a_4$$

This violates the descending chain condition of *T*. Hence, $D \subseteq \langle \mathscr{L}_t \rangle^1 P_1^1$. Similarly $D \subseteq P_2^1 \langle \mathscr{L}_t \rangle^1$. Let $a \in D$. Then a = bc for some $b \in \langle \mathscr{L}_t \rangle^1$, $c \in P_1^1$. Now c = dh for some $d \in P_2^1$, $h \in \langle \mathscr{L}_t \rangle^1$. Since $c \in P_1^1$, $d \in P_1^1 \cap P_2^1 = P^1$. So a = bdh, b, $h \in \langle \mathscr{L}_t \rangle^1$, $d \in P^1$. Thus $D \subseteq \langle \mathscr{L}_t \rangle^1 P^1 \langle \mathscr{L}_t \rangle^1$. Since $T \setminus \mathscr{L}_t = \langle D \rangle$ we see that $T = \langle P \cup \mathscr{L}_t \rangle$. Let $\mathscr{L}_u = \{a \mid a \in \mathscr{L}_t, l(a) = 1\}$. If $a, b \in \mathscr{L}_u$, then $a \sim b$ implies a = b. Also $\overline{\mathscr{L}}_u = \mathscr{L}_t$. So clearly $\langle \mathscr{L}_t \rangle \cong \mathscr{F}_{\mathbb{R}}(\mathscr{L}_u)$. Also it is clear that $T = \langle P \cup \overline{\mathscr{L}}_u \rangle$. Let $\Gamma = P \cup \mathscr{L}_u$, $\Lambda = P$. We claim that $T \cong \mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$. To see this, let $a \in T$, $a = a_1 \cdots a_m = b_1 \cdots b_p$ where a_1, \ldots, a_m , $b_1, \ldots, b_p \in P \cup \mathscr{L}_t$ such that if a_i , $a_{i+1} \in \mathscr{L}_t$, then $a_i x a_{i+1}$ and if b_j , $b_{j+1} \in \mathscr{L}_t$, then $b_i x b_{j+1}$. We must show that m = p and $a_i = b_i$ for all *i*. Let $u = a_2 \cdots a_m$, $v = b_2 \cdots b_p$. Then $a_1 u = b_1 v$. First suppose $a_1 \in \mathscr{L}_t$. We claim that $b_1 \in \mathscr{L}_t$. For suppose $b_1 \in P$. Since $b_1 \notin \mathscr{L}_t$.

472

[December

 $l(b_1) > l(a_1)$. So $b_1 = a_1c$ for some $c \in S$. Then a_1 , v, a_1c , $cv = u \in T$. Since T is weakly unitary, $c \in T$. This contradicts the fact that $b_1 \in P$. So $b_1 \in \mathscr{L}_t$. Then clearly $a_1 \sim b_1$. We claim that $a_1 = b_1$. Otherwise by symmetry assume $l(a_1) < l(b_1)$. Then $b_1 = a_1c$ for some $c \in \mathscr{L}$. Since $c \sim a_1$, T is power closed, $c \in \mathscr{L}_t$. Also,

$$a_2 \cdots a_m = cv$$

As above, $a_2 \in \mathcal{L}_t$, $a_2 \sim c \sim a_1$, a contradiction. So $a_1 = b_1$. Next assume a_1 , $b_1 \in P$. Suppose $l(a_1) < l(b_1)$. Then $b_1 = a_1c$ for some $c \in S$. So a_1c , a_1 , cv = u, $v \in T$ and so $c \in T$. If $c \in \mathcal{L}_t$, we get a contradiction to the fact that $b_1 \in P$. Otherwise we get a contradiction to the fact that $b_1 \in D$. Thus $a_1 = b_1$ in all cases. We are now done by induction.

REMARK. Let T be a free-like subsemigroup of S, $T \cong \mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$. If the elements of Λ are thought of as primes, then T has the unique factorization property with respect to primes and lines.

COROLLARY 2. Let T be a subsemigroup of S such that $T \cap \mathcal{L} = \emptyset$. Then T is free if and only if T is free-like.

REMARK. The converse of Theorem 1 is false for the following reason. Let K be a proper subsemigroup of $(\mathbb{R}^+, +)$ such that $K \cong (\mathbb{R}^+, +)$. Let $u \in \mathcal{L}$ and set $T = \{u^{\alpha} \mid \alpha \in \mathbb{R}^+\}$. Then clearly $T \cong (\mathbb{R}^+, +)$ but T is not free-like.

THEOREM 3. Let T be a power-closed subsemigroup of S. If $T \cong \mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$ for some Γ , Λ , then T is free-like.

Proof. Let $\mathscr{L}_t = T \cap \mathscr{L}$. Let $\phi: T \to \mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$ be the given isomorphism. Let $a \in S$, $b, c \in T$ such that $ab, ca \in T$. Then (ca)b = c(ab). So $\phi(ca)\phi(b) = \phi(c)\phi(ab)$. There exists $u \in \mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$ such that either $\phi(ca) = \phi(c)u$ or $\phi(c) = \phi(ca)u$. Let $a_1 = \phi^{-1}(u) \in T$. Then $caa_1 = c$ or $ca = ca_1$. First case being ruled out, $a = a_1 \in T$. So T is weakly unitary in S. Let $\mathscr{X} = \{A^{\alpha} \mid A \in \Gamma \setminus \Lambda, \alpha \in \mathbb{R}^+\}$. If $a, b \in \mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$, then define a < b if b = xay for some $x, y \in \mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)^1$ such that $(x, y) \notin \mathscr{H}^1 \times \mathscr{H}^1$. Clearly $(\mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda), <)$ satisfies the descending chain condition. Thus to show that T satisfies the descending chain condition, we must show that $\phi(\mathscr{L}_1) = \mathscr{H}$. If $a \in \mathscr{L}_t$, then for each $i \in Z^+$, there exists $a_i \in T$, such that $a_i^i = a$. Moreover by the author [2], the elements of \mathscr{L}_t are characterized by this property. The same holds true for \mathscr{H} in $\mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$. This proves that $\phi(\mathscr{L}_1) = \mathscr{H}$, completing the proof.

THEOREM 4. Every finite subset of S is contained in a free-like subsemigroup of S.

Proof. Let $a_1, \ldots, a_m \in S$. Let k be the smallest non-negative integer such that there exist $b_1, \ldots, b_k \in S$ such that $a_1, \ldots, a_m \in \langle b_1, \ldots, b_k, \mathscr{L} \rangle$ (k = 0)

1979]

December

means $a_1, \ldots, a_m \in \langle \mathscr{L} \rangle$. Let $\mathscr{L}_u = \{a \mid a \in \mathscr{L}, l(a) = 1\}, T = \langle b_1, \ldots, b_k, \overline{\mathscr{L}}_u \rangle = \langle b_1, \ldots, b_k, \mathscr{L} \rangle$. We will show that T is free-like. Let $\Gamma = \{b_1, \ldots, b_k\} \cup \mathscr{L}_u$, $\Lambda = \{b_1, \ldots, b_k\}$. We claim that $T \cong \mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$. Suppose not. Then it is easily seen that there exist $A_1, \ldots, A_r, B_1, \ldots, B_s \in \Lambda \cup \mathscr{L}$ such that

$$(1) A_1 \cdots A_r = B_1 \cdots B_s$$

and either A_1 or $B_1 \in \Lambda$ and so that if both $A_1, B_1 \in \Lambda$, then $A_1 \neq B_1$. Let $\{A_1,\ldots,A_r, B_1,\ldots,B_s\} \cap \mathcal{L} = \{c_1,\ldots,c_t\}$. Introduce variables x_1,\ldots,x_k , y_1, \ldots, y_t , and words $w_1 = w_1(x_1, \ldots, x_k, y_1, \ldots, y_t), \quad w_2 = w_2(x_1, \ldots, x_k, y_1, \ldots, y_t)$ y_1, \ldots, y_t such that $A_1 \cdots A_t$ is formally equal to $w_1(b_1, \ldots, b_k, c_1, \ldots, c_t)$ and $B_1 \cdots B_s$ is formally equal to $w_2(b_1, \ldots, b_k, c_1, \ldots, c_t)$. We can express $\{1, \ldots, t\}$ as a disjoint union of T_1, \ldots, T_p such that for $\alpha, \beta \in \{1, \ldots, t\}c_{\alpha} \sim c_{\beta}$ if and only if α , β lie in same T_i . For $j=1,\ldots,p$, let $M_i = \{(y_i, l(c_i) \mid j \in T_i\}$. In the notation of [3], consider the constrained word equation $\mathcal{A} =$ $\{w_1, w_2; M_1, \ldots, M_n\}$ in free variables x_1, \ldots, x_k and constrained variables y_1, \ldots, y_t . Then $\mu = (b_1, \ldots, b_k, c_1, \ldots, c_t)$ is a solution of \mathcal{A} . By [3; Theorem 5.2], μ follows from a solution ν of \mathcal{A} in some $\mathcal{F}_{\mathbb{R}}(\Gamma' \mid \Lambda')$. Moreover a close examination of the proof of [3; Lemma 3.13], shows that in fact we can choose Λ' such that $|\Lambda'| < k$ (this is because of the non-triviality of (1)). There exists $\phi: \Gamma' \to S, \ \phi(\Gamma' \setminus \Lambda') \subseteq \mathscr{L}$, such that the natural extension $\hat{\phi}: \mathscr{F}_{\mathbb{D}}(\Gamma' \mid \Lambda') \to S$ has the property that if $\nu = (u_1, \ldots, u_k, v_1, \ldots, v_l)$, then $\hat{\phi}(u_i) = b_i$, $\hat{\phi}(v_i) = c_i$. $\phi(\Lambda') = \{d_1, \ldots, d_{\theta}\}.$ So $\theta < k$. Also $b_1, \ldots, b_k \in \hat{\phi}(\mathscr{F}_{\mathbb{R}}(\Gamma' \mid \Lambda')) =$ Let $\langle \phi(\Lambda') \cup \overline{\phi(\Gamma' \setminus \Lambda')} \rangle$. So $b_1, \ldots, b_k \in \langle d_1, \ldots, d_{\theta}, \mathscr{L} \rangle$. Hence $a_1, \ldots, a_m \in \mathcal{L}$ $\langle d_1, \ldots, d_{\theta}, \mathcal{L} \rangle$ contradicting the minimality of k. This contradiction shows that $T \cong \mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$. We are done by Theorem 3.

REMARK. Let $a_1, \ldots, a_m \in S$. Then by the above theorem and the remark preceding Theorem 1, there is a unique minimal free-like subsemigroup of S containing a_1, \ldots, a_m .

 $\mathscr{F}_{\mathbb{R}}(\Gamma)$ is clearly embeddable in a group (in fact in the free product of $|\Gamma|$ copies of reals under addition). So by [1, Theorem 12.6], we have,

THEOREM 5. S is embeddable in a group.

CONJECTURE. Let T be a subsemigroup of S. Then T can be embedded in $\mathscr{F}_{\mathbb{R}}(\Gamma)$ for some Γ if and only if T satisfies the descending chain condition.

EXAMPLE. We give an example of a subsemigroup T of S such that T is embeddable in a free semigroup but T is not contained in a free-like subsemigroup of S. We can choose sequences $a_1, a_2, \ldots, b_1, b_2, \ldots, c_1, c_2, \ldots$, in $S \setminus \mathscr{L}$ such that the following properties are true: $(1)a_{i+1}b_i = a_i$, $i = 1, 2, \ldots$, (2) $l(c_i) \ge 3l(a_i)$, $i = 1, 2, \ldots$, (3) no segment of b_i is a segment of b_j for $i \ne j$, (4) no segment of c_i is a segment of c_j for $i \ne j$, and (5) b_i is not an initial segment of a_j for any i, j. Let T be the subsemigroup of S generated by c_i , $c_i a_i$, $a_i c_i$, $c_{i+1}b_i$, $b_i c_{i+1}$, $i = 1, 2, \ldots$ We claim that T is not contained in any free-like subsemigroup of S. For suppose $T \subseteq R \subseteq S$ and R is free-like. Then clearly $a_i, b_i \in T$ for all *i*. So

$$\cdots \underset{\mathsf{T},\mathscr{L}}{<} a_3 \underset{\mathsf{T},\mathscr{L}}{<} a_2 \underset{\mathsf{T},\mathscr{L}}{<} a_1,$$

a contradiction. On the other hand T can be embedded in a free semigroup. To see this, let \mathscr{F} be the free semigroup on the letters $A_1, A_2, \ldots, B_1, B_2, \ldots, C_1, C_2, \ldots$ Let K be the subsemigroup of \mathscr{F} generated by $C_i, C_iA_i, A_iC_i, C_{i+1}B_i, B_iC_{i+1}, i = 1, 2, \ldots$ Then it can be shown that $T \cong K$ with $c_i, c_ia_i, a_ic_i, c_{i+1}b_i, b_ic_{i+1}$, corresponding to $C_i, C_iA_i, A_iC_i, C_{i+1}B_i, B_iC_{i+1}$, respectively.

REFERENCES

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 2 Amer. Math. Soc., Providence, R.I., 1967.

2. M. S. Putcha, Word equations of paths, Journal of Algebra, (accepted).

3. —, Word equations in some geometric semigroups, Pacific Journal of Mathematics, **75** (1978) 243-266.

DEPARTMENT OF MATHEMATICS NORTH CAROLINA STATE UNIVERSITY RALEIGH, NORTH CAROLINA 27650 U.S.A.