
J. Appl. Prob. Spec. Vol. 48A, 235–247 (2011)
© Applied Probability Trust 2011

NEW FRONTIERS
IN APPLIED
PROBABILITY
A Festschrift for SØREN ASMUSSEN
Edited by P. GLYNN, T. MIKOSCH and T. ROLSKI

Part 5. Stochastic growth and branching

THE SIZE OF A MAJOR EPIDEMIC OF A VECTOR-BORNE
DISEASE

DARYL J. DALEY, The Australian National University and The University of Melbourne
Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010,
Australia. Email address: daryl.daley@anu.edu.au

RANDALL J. SWIFT, California State Polytechnic University, Pomona
Department of Mathematics, California State Polytechnic University, Pomona, CA 91768, USA.
Email address: rjswift@csupomona.edu

APPLIED PROBABILITY TRUST
AUGUST 2011

https://doi.org/10.1239/jap/1318940468 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940468


THE SIZE OF A MAJOR EPIDEMIC OF A VECTOR-BORNE
DISEASE

BY DARYL J. DALEY AND RANDALL J. SWIFT

Abstract

Based on a simple model due to Dietz, it is shown that the size of a major epidemic
of a vector-borne disease with basic reproduction ratio R0 > 1 is dominated by the
size of a standard SIR (susceptible–infected–removed) epidemic with direct host-to-host
transmission of disease and the same R0. Further bounds and numerical illustrations are
provided, broadly spanning situations where the size of the epidemic is short of infecting
almost all those susceptible. The total size is moderately sensitive to changes in the
population parameters that contribute to R0, so that the fluctuating behaviour in ‘annual’
epidemics is not surprising.
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Preamble

My (DJD’s) first contact with Søren Asmussen was indirect, through a note that I had
written years earlier establishing the criticality condition for a simple two-sex branching process
modelled in 1967 much as I heard it from Geoff Watterson while visiting Melbourne University.
Søren, then a student in Göteborg, discussed the criticality condition for related models by a
much simpler martingale argument, and some years later he came on an extended visit to
Canberra. Now an epidemic model can be construed as a branching process that takes place
on a pre-existing population, as distinct from a biological population that may grow. Models
for epidemic processes are arguably better formulated within a population setting, where at
the micro-level we describe what actions and interactions may occur as affecting individual
members of the population. Analysis of the model usually describes aggregate behaviour over
many individuals, and the stochastic element is largely confined to the model construction stage.
The ensuing discussion is no exception.

1. Introduction

We have recently considered data on annual outbreaks of dengue fever (DF) in Singapore
(see, e.g. Ooi et al. (2006) and, for a brief Australian perspective, my discussion (Daley (2010))
of Gani’s (2010) Knibbs lecture). Worldwide, dengue affects between 50 and 100 million
people a year. It passes unnoticed by the vast majority of people who are infected by it, and
they are subsequently immune to further attacks by that one of the four dengue viruses that
infected them, but its longer term effects can be more serious: subsequent attacks by any of the
other three dengue viruses can lead to the more serious dengue haemorrhagic fever or dengue
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236 D. J. DALEY AND R. J. SWIFT

shock syndrome. Gubler and Kuno (1997) gave a comprehensive survey of what was then
known of DF. The disease is spread chiefly by the Aedes aegypti female mosquito; for the sake
of simplicity, we regard the disease as being spread by a single virus. After ingesting blood from
an infected human, the virus develops in its mosquito host and makes its way to the salivary
tract whence it is subsequently injected into another human when the mosquito is successful
in taking another blood-meal prior to laying eggs. A generation cycle, from ingestion from
one infectious human until another human has become infectious via the mosquito biting them
both, is from two to three weeks’ duration.

A simple description of the population dynamics for DF, or indeed, for several similar
diseases involving vector-borne transmission, is given in Dietz (1974). A careful mathematical
analysis of the differential equations describing a related model is given in Esteva and Varga
(1998). The purpose of this note is to describe how the total size of a major outbreak of the
disease (‘epidemic’ in common parlance) can be determined for the model. What we show is
that, for many such outbreaks, the size is little different from that of a related standard ‘general
epidemic model’ in a closed homogeneously mixing population (which is often described as an
SIR compartmental model, denoting the three categories of susceptible, infectious, and removed
cases).

2. The model

Let Xj(t) and Yj (t) denote the respective numbers of susceptibles and infectives at time t

in the populations of humans (j = 1) and female mosquitoes (j = 2). For our purposes, as
in Dietz (1974) and Esteva and Vargas (1998), we consider infection as occurring from just
the one virus. We regard the total size of the mosquito population as being capped, whether
naturally so or by a control programme (e.g. via larval source reduction in Singapore); it is
maintained by an influx of susceptible mosquitoes at constant rate A and a per capita death rate
µ2, whether susceptible or infectious. Then

Ẋ2 + Ẏ2 = A − µ2(X2 + Y2);
consequently,

X2(t) + Y2(t) = A

µ2
+

(
N2(0) − A

µ2

)
e−µ2t

for some initial population size N2(0). For a steady-state total size, Ẋ2 + Ẏ2 = 0 and X2 +Y2 =
A/µ2 = N2(0).

Each adult female mosquito bites humans at a rate γ say. If the human is DF infectious then
transmission from human to mosquito may occur, with overall contact-and-transmission rate γ2
say, while if the human is susceptible and the mosquito infectious, transmission from mosquito
to human may occur at overall rate γ1 say. Let N denote the size of the human population
where mosquitoes seek their blood meals, and assume that a mosquito successful in its quest
finds a susceptible with probability X1/N and an infectious human with probability Y1/N (and
some other, with probability 1 − (X1 + Y1)/N , but these are of no concern). Thus, the total
rates of infection transmission into the human and mosquito populations equal γ1(X1/N)Y2
and γ2(Y1/N)X2, respectively. Consequently, for the mosquitoes, we have

Ẋ2 = A − γ2
Y1

N
X2 − µ2X2, Ẏ2 = γ2

Y1

N
X2 − µ2Y2. (2.1)

Recall that humans have lifetimes many times larger than a year, and that the epidemic that
concerns us lasts maybe up to a dozen generations, still rather less than a year, so that we shall
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The size of a major epidemic of a vector-borne disease 237

regard the population as being of constant size N for the year, i.e. we ignore human births and
deaths. Infectious humans recover at a rate β1 say, so that considering, in addition to X1 and Y1,
the recovered (and thereafter immune) cases numbering Z1(t) say, we are led to the differential
equations

Ẋ1 = −γ1
X1

N
Y2, Ẏ1 = γ1

X1

N
Y2 − β1Y1, Ż1 = β1Y1, (2.2)

so that Ẋ1+Ẏ1+Ż1 = 0 and, thus, X1+Y1+Z1 = constant over any time interval where (2.2) is
a satisfactory total description of the evolution of the human population with mosquito contact.
It is convenient to let N1 denote this constant for the time interval, but note the distinction
between N1 here and N earlier.

3. First analyses

Some information on the evolution of (2.1) and (2.2) follows by integration over the time
interval (0, t) say:

log

(
X1(0)

X1(t)

)
= −

∫ t

0

1

X1(u)

dX1(u)

du
du = γ1

N

∫ t

0
Y2(u) du, (3.1a)

Z1(t) − Z1(0) = β1

∫ t

0
Y1(u) du, (3.1b)

Y2(t) − Y2(0) = γ2

N

∫ t

0
(N2 − Y2(u))Y1(u) du − µ2

∫ t

0
Y2(u) du

= γ2N2

N

∫ t

0
Y1(u) du − µ2

∫ t

0
Y2(u) du − γ2

N

∫ t

0
Y2(u)Y1(u) du. (3.1c)

Substituting (3.1a) and (3.1b) into (3.1c) yields

Y2(t) − Y2(0) = γ2N2

β1N
[Z1(t) − Z1(0)] − µ2N

γ1
log

(
X1(0)

X1(t)

)
− γ2

N

∫ t

0
Y1(u)Y2(u) du.

(3.2)

In Sections 5 and 6 we give a more detailed analysis of the equations in (3.1); it suffices here to
assert that when Y2(0) = Z1(0) = 0 and Y1(0) � X1(0), the behaviour as t → ∞ is such that
Yi(t) → 0 for i = 1, 2 and the number of susceptibles surviving the outbreak, X1(∞) ≈ θX1(0)

say, which must equal N1 − Z1(∞), where Z1(∞) ≈ (1 − θ)X1(0), satisfies

− log θ = γ1

N

∫ ∞

0
Y2(u) du and Z1(∞) = β1

∫ ∞

0
Y1(u) du.

Hence, from (3.2),

0 = γ1γ2N2X1(0)

β1µ2N2 (1 − θ) + log θ − γ1γ2

β1µ2N2

∫ ∞

0
Y2(u)β1Y1(u) du. (3.3)

Now express the two factors in the last integral as proportions y1(t) = Y1(t)/X1(0) and
y2(t) = Y2(t)/N2 of the initial numbers of susceptibles in their respective populations, since
then 0 < yj (t) < 1 for all t (we give more stringent bounds in Section 6). We also set

R0 = γ1γ2X1(0)N2

β1µ2N2 . (3.4)
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The condition R0 > 1 is necessary for a major epidemic, and we generally assume that it holds.
Then (3.3) can be written as

1 − θ + log θ

R0
:= 1 − θ + a log θ =

∫ ∞

0
β1y1(u)y2(u) du. (3.5)

It is an elementary consequence of the concavity in u of the function 1 − u + a log u, and
its gradient, a − 1, at u = 1, that, for 0 < a < 1, the function 1 − u + a log u − C has 0, 1, or
2 zeros in (0, 1] according to whether C is greater than, equal to, or less than 1 − a + a log a,
and that when the last condition holds and C ≥ 0, the two zeros are located within the intervals
(0, a) and (a, 1), respectively. Esteva and Vargas’s (1998) analysis shows that starting at any
time t ′ with X1(t

′) > aX1(0) and Y1(t
′) > 0 leads, for some t ′′, to some X1(t

′′) > 0 and
Y1(t

′′) > 0, and identifies θ as lying in (0, a).
When the last term in (3.3) is negligible, θ is approximately the smaller positive root of

R0(1 − u) + log u = 0,

i.e. θ̃ (R0) (see below, above (4.1)); in other words, the fraction of susceptibles surviving is little
different from the fraction of susceptibles surviving a standard SIR epidemic with the same
initial conditions and parameter R0 as in (3.4). No matter, when C > 0, we can conclude that

θ̃ (R0) < θ <
1

R0
. (3.6)

4. Total size in the general SIR epidemic model

For the deterministic general epidemic model in a homogeneously mixing population (see,
e.g. Daley and Gani (1999, Chapter 2)), it is known that, at the conclusion of a major outbreak of
a disease started from the immigration of an infectious case into a community of Ñ susceptibles,
the proportion θ̃ := θ̃ (r) of susceptibles surviving is approximately equal to the smaller positive
root of the equation

θ̃ = exp

[
−1 − θ̃

r

]
, or, equivalently, when θ̃ < 1, r = − log θ̃

1 − θ̃
, (4.1)

where r is the mean number of new infectives produced by a single infectious case introduced
into a population in which all other individuals are susceptible. Such a quantity r is often called
the basic reproduction ratio R0, and it is simple to check that θ̃ < 1 if and only if R0 > 1 (e.g.
use the concavity argument below (3.5)). Formulating the dynamics of this general model via a
transmission contact rate γ per infectious case and a recovery or removal rate β per infectious
case, as when there are X susceptibles and Y infectives in a population of total size Ñ , we write

Ẋ = −γ
X

Ñ
Y, Ẏ = γ

X

Ñ
Y − βY. (4.2)

Then, under the conditions for interpreting R0 as above, the mean rate at which an infectious
case produces new infectives is initially γX(0)/Ñ ; when these contacts occur with negligible
change in X(·)/Ñ for a mean duration 1/β, r = R0 = γX(0)/(βÑ), and R0 ≈ γ /β when
X(0) ≈ Ñ .

For an epidemic in this SIR model with R0 > 1, there is a critical time tcrit when the number
of susceptibles X(tcrit) reaches the critical size X(0)/R0 and the number of infectives peaks
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at Y (tcrit). Then Z(tcrit)/Z(∞) is the proportion of those ultimately infected who are infected
by time tcrit . By the definition of tcrit and using Ẋ in (4.2),

Z(tcrit) = β1

∫ tcrit

0
Y (u) du

= −β1

∫ t=tcrit

t=0

Ñ

γX
dX

= β1Ñ

γ

∫ 1

1/R0

dx

x

= β1Ñ

γ
log R0

= X(0)

R0
log R0.

Since Z(∞) = (1 − θ̃ )X(0), with θ̃ := θ̃ (R0) as above (4.1), we have

Z(tcrit)

Z(∞)
= (log R0)/R0

1 − θ̃
= − log R0

log θ̃
. (4.3)

This relation shows, by virtue of θ̃ being determined by R0, that the ratio of the size of the
supercritical phase of the epidemic to its total size determines R0. In turn, with R0 and Z(∞)

known, we can deduce the value of X(0), since θ̃ is then determined, and X(0) = Z(∞)/(1−θ̃ ).
In Table 1 we present the values of the ratio (4.3) for R0 ≥ 1: the closer R0 is to 1, the closer

this ratio is to its maximum value of 0.5. This table also shows that small decreases in the ratio
correspond to large increases in R0. Consequently, given the imprecision that can surround

Table 1: Proportions of the size of the epidemic and R0.

R0 Z(tcrit)/Z(∞)

1.0 0.5000
1.1 0.4919
1.2 0.4843
1.3 0.4771
1.4 0.4703
1.6 0.4575
1.8 0.4458
2.0 0.4350
2.5 0.4106
3.0 0.3893
3.5 0.3705
4.0 0.3536
5.0 0.3241
6.0 0.2994
8.0 0.2586

10.0 0.2272
15.0 0.1804
20.0 0.1495

https://doi.org/10.1239/jap/1318940468 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940468


240 D. J. DALEY AND R. J. SWIFT

reported disease incidence data, particularly (as with DF) when the rate of asymptomatic cases
can exceed 90%, the use of the formulae just given to determine R0 or X(0) cannot be expected
to yield very precise estimates.

5. Total size of an epidemic of a vector-borne disease

We return to the setting where a human disease is spread by an insect vector rather than
by direct human contact. Typically, as around (2.2), the duration of a human lifetime is many
magnitudes larger than an insect lifetime, the infectious duration of humans may be of the
order of magnitude of an insect’s lifetime, and the duration of the epidemic is about the length
of several mean insect lifetimes. Then we can approximate the dynamics of an epidemic by
regarding the human population as of fixed size N for the duration of the epidemic. (In a
companion paper in preparation, we consider how this may help our understanding of annual
epidemic outbreaks in Singapore.) For (2.1) and (2.2), there are three independent relations:

Ẋ1 = −γ1
X1

N
Y2, (5.1a)

Ẏ1 = γ1
X1

N
Y2 − β1Y1, (5.1b)

Ẏ2 = γ2
Y1

N
X2 − µ2Y2. (5.1c)

They are a particular case of a more general model in Esteva and Vargas (1998) in which
population sizes are not constant but only stationary.

We can compute the basic reproduction ratio R0 (see, e.g. Daley and Gani (1999, p. 87)) as
the product of the mean number of infected mosquitoes produced by a single infectious human
introduced into a population of susceptible humans and susceptible mosquitoes (this equals
γ1(1/N)X2(0)(1/β1) =: r1 say), and, in a similar population, the mean number of infectious
humans produced by a single infectious mosquito (this equals γ2(X1(0)/N)(1/µ2) =: r2 say),
namely,

R0 = r1r2 = γ1X2(0)

β1N

γ2X1(0)

µ2N
= γ1γ2X1(0)X2(0)

β1µ2N2 = γ1γ2X1(0)N2

β1µ2N2 , (5.2)

as in (3.4). Observe that R0 increases as the insect population size N2 (or the capped rate
A) and initial number of susceptible humans X1(0) increase; furthermore, R0 would increase
with γ1 and γ2 as a result of increased population density, but this may be offset by a decrease
with increased N . The other parameters, β1 and µ2, are biological and not dependent on the
sociological organization of the populations, except if, for example, infectious humans are
isolated from contact with any mosquitoes (this would correspond to increasing β1).

Now Z1(t) = β1
∫ t

0 Y1(u) du. Equivalently, z1(t) = β1
∫ t

0 y1(u) du after the normalizations

(X1, Y1, Z1)(t) = (x1, y1, z1)(t)X1(0) and (X2, Y2)(t) = (x2, y2)(t)N2.

Equations (5.1) can be integrated and manipulated as follows:

log

(
X1(0)

X1(t)

)
= log

(
1

x1(t)

)
= γ1

N

∫ t

0
Y2(u) du = γ1N2

N

∫ t

0
y2(u) du, (5.3a)
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y2(t) = Y2(t)

N2

= γ2X1(0)

N

∫ t

0
y1(u) du − µ2

∫ t

0
y2(u) du − γ2X1(0)

N

∫ t

0
y2(u)y1(u) du

= γ2X1(0)

β1N
z1(t) − µ2N

γ1N2
log

(
1

x1(t)

)
− γ2X1(0)

β1N
y2(ϑ2t )z1(t) (5.3b)

= r2

κ
z1(t) −

[
1

r1κ
+ r2

r1κ
y1(ϑ1t )

]
log

(
1

x1(t)

)
. (5.3c)

Here κ = β1/µ2 and in the last terms of (5.3b) and (5.3c) we have used the integral mean value
theorem so ϑjt lies in (0, t) for j = 1, 2. In the limit t → ∞, and using θ again as below (3.2),
so

θ = x1(∞) = 1 − Z1(∞)

X1(0)
, (5.4)

we have, for some finite positive ϑj > 0 and j = 1, 2,

0 = γ2

β1
(1 − θ)[1 − y2(ϑ2)] + log θ

r1
= γ2

β1
(1 − θ) + 1

r1

[
1 + γ2

µ2
y1(ϑ1)

]
log θ

(ϑj > 0, else we should have yj (ϑj ) = 0 for such j , but
∫ ∞

0 y1(u)y2(u) du > 0).
We summarize our discussion to date in a formal statement which is based on the exact

equation for θ , namely,

1 − θ + log θ

R0
= β1

∫ ∞

0
y1(u)y2(u) du. (5.5)

Proposition 5.1. A vector-borne epidemic in a population as in Section 2 and with dynamics
described by the differential equations (2.1) and (2.2) behaves as a major outbreak when R0 in
(5.2) is greater than 1. The total size (1 − θ)X1(0) of such an outbreak has θ̃ (R0) < θ < 1/R0
and satisfies

R0 := r1r2 := γ1N2

β1N

γ2X1(0)

µ2N
= − log θ

(1 − θ)[1 − y2(ϑ2)] = − log θ [1 + (γ2/µ2)y1(ϑ1)]
1 − θ

,

(5.6)
where y1(ϑ1) and y2(ϑ2) are intermediate positive values of Y1(·)/X1(0) and Y2(·)/N2,
respectively.

An equivalent version of (5.6) can be phrased in terms of R1 = γ1γ2N2/(β1µ2N
2) as

R1 = − log θ

X1(0)(1 − θ)[1 − y2(ϑ2)] = −[1 + (γ2/µ2)y1(ϑ1)] log θ

X1(0)(1 − θ)
,

with y1(ϑ1) and y2(ϑ2) as before. This parameter R1 is the same for any initial number
of susceptibles X1(0) for the same sizes N and N2 of the human and vector populations,
respectively, being dependent on only the mosquito contact-and-transmission rate(s) γj and
death rate µ2, and the human infectious recovery (or ‘removal’) rate β1.
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6. Further analysis of the vector-borne epidemic differential equations

We return to the differential equation system (5.1a)–(5.1c), deriving upper and lower bounds
on the proportion θ in (5.5), and upper bounds on the quantities yj (ϑj ) (j = 1, 2) introduced
into (5.4) via the integral mean value theorem. We illustrate the bounds together with values
of θ in Table 2 below, and in Section 7 we indicate that our approach also gives information on
the model extended to incorporate two or more categories of humans.

In the models we have considered, it is basically irrelevant whether we use time or the
number (or proportion) of susceptibles as the argument of the functions Y1(·) and Z1(·) because
the mapping X1 : t ∈ [0, ∞) �→ {X1(0) > x > X1(∞)} is one-to-one; let t (X1) denote the
functional inverse ofX1(t). It is convenient to replace the argument ofY1 etc. by the standardized
susceptible-like variable x := X1(t)/X1(0), and to write y1(x) = Y1(t[xX1(0)])/N1 and
y2(x) = Y2(t[xX1(0)])/N2. We can now rewrite (5.1a)–(5.1c) as just two differential equations
with reference to X1 as the independent variable; in terms of our standardized variables, r1 and
r2 in (5.2) and κ in (5.3c), they read

dy1

dx
= −1 + 1

r1

y1

y2

1

x
, (6.1)

dy2

dx
= − r2

r1κ

1 − y2

x

y1

y2
+ 1

r1κ

1

x
.

The terms here involving the fraction y1/y2 are awkward algebraically. We therefore consider
the linear combination of these two differential equations, d(y1 +cy2)/dx, for some constant c:
we obtain

d(y1 + cy2)

dx
= −1 +

(
1

r1
− c

r2

r1κ

)
y1

y2

1

x
+ c

1

r1κ

1

x
+ c

r2

r1κ

y1

x
.

By choosing c = κ/r2, the coefficient of y1/y2 here vanishes, and we obtain

d(y1 + cy2)

dx
= −1 + 1

r1r2

1

x
+ 1

r1

y1

x
= −1 +

(
1

R0
+ 1

r1
y1

)
1

x
,

where R0 is as defined in (5.2). For as long as Y1 is positive, so too is Y2 (this assertion can be
justified much as in Esteva and Vargas (1998)). So, subject to this condition, we have

−1 + 1/R0

x
≤ d(y1 + cy2)

dx
≤ −1 + 1/R0

x
+ 1

r1

y1 + cy2

x
. (6.2)

At x = 1−, all three expressions here coincide and equal −(1 − 1/R0) = −(1 − a), so, for
sufficiently small ε > 0, each expression has a negative integral over (1−ε, 1). Writing Y (·) =
y1(·) + cy2(·), the integral on (u, 1) of the central expression equals Y (1) − Y (u) = −Y (u),

which vanishes at u = θ . Consequently, the smallest nonvanishing intervals (θ ′, 1) and (θ ′′, 1)

over which the integrals of the left- and right-hand sides equal 0, provide the bounding interval
θ ′ < θ < θ ′′ for θ .

The discussion of the standard SIR model (Section 4) shows that, when R0 > 1, there is a
root θ̃ (R0) within the interval (0, 1/R0) of

R0(1 − u) + log u = 0, (6.3)

so θ ′ = θ̃ (R0) and X1(∞) > θ̃X1(0). Using (3.6), we have proved the first part of the
following.

https://doi.org/10.1239/jap/1318940468 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940468


The size of a major epidemic of a vector-borne disease 243

Proposition 6.1. The fraction θ of susceptibles surviving a major outbreak of an epidemic as
in Proposition 5.1 satisfies

θ̃ (R0) < θ < θ̌ <
1

R0
, (6.4)

where θ̃ (R0) is the smaller positive root of (6.3) and θ̌ is the smaller positive zero of the equation

0 =

⎧⎪⎪⎨
⎪⎪⎩

− 1

b − 1

(
1

ub−1 − 1

)
+ 1

bR0

(
1

ub
− 1

)
, b 
= 1,

log u + 1 − u

R0u
, b = 1,

(6.5)

where b = 1/r1, with

θ̌ =

⎧⎪⎪⎨
⎪⎪⎩

θ̃ + bR0θ̃ (1 − θ̃ )[R0(1 + θ̃ )/2 − 1]
1 − R0θ̃

+ O(b2) for b → 0,

1 − 1/b

R0
+ O(eb log θ̌ ) for b → ∞.

(6.6)

Proof. It remains to prove the assertions about θ̌ in (6.5) and (6.6). Using Y (x) := y1(x) +
cy2(x), rewrite (6.2) as

dY

dx
= −1 + a + bY (x)

x
− bcy2(x)

x
, 0 < a = 1

R0
< 1, b = 1

r1
> 0, (6.7)

for as long as θ < x < 1, which is the interval where yj (x), j = 1, 2, are both positive.
Introduce the function V (x) on 0 < x ≤ 1 as the solution of the differential equation

dV

dx
= −1 + a + bV (x)

x
, V (1) = 0; (6.8)

as an aside, since Y (1) = V (1) = 0, V ′(1−) = Y ′(1−) = −(1 − a). By taking differences of
the respective sides of (6.7) and (6.8) we deduce that

d(Y − V )

dx
− b(Y − V )(x)

x
= −bcy2(x)

x
, i.e.

d

dx

(
Y − V

xb

)
= −bcy2(x)

xb+1 (6.9)

on making use of an integrating factor. (For the moment, we ignore the case in which b = 1; it
is treated around (6.10) below.) Integrating over the interval (z, 1) for any z ∈ (θ, 1) and using
Y (1) = V (1) = 0, we have

Y (z) − V (z)

zb
=

∫ 1

z

bcu−1y2(u) du > 0,

implying that Y (z) > V (z) for all such z. But Y (z) ≥ 0 for θ ≤ z ≤ 1, with equality only at
the two endpoints of the interval. Consequently, if V (x) = 0 for any x ∈ (θ, 1), x = θ̌ say, we
must have θ < θ̌ . We use θ̌ in place of θ ′′ defined above (6.3).

It is readily checked from (6.8) that x−bV (x) is concave on (0, 1], so V (·) can have at most
two zeros on that interval: there is one at 1 by construction, and the other lies in (0, a). We
must therefore have θ < θ̌ < a, as asserted in (6.4).
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Rewrite (6.8) so as to incorporate an integrating factor, much as in (6.9). Integration yields

V (x)

xb

∣∣∣∣
x=1

x=u

=

⎧⎪⎪⎨
⎪⎪⎩

− 1

b − 1

(
1

ub−1 − 1

)
+ a

b

(
1

ub
− 1

)
, b > 0, b 
= 1,

log u + a(1 − u)

u
, b = 1;

(6.10)

hence (6.5). Write the general case (i.e. b 
= 1) of (6.5) for θ̌ in the form

R0u =
(

1 − 1

b

)
+

(
R0 −

(
1 − 1

b

))b

=
(

1 − 1

b

)
+

(
R0 −

(
1 − 1

b

))
eb log u. (6.11)

Expanding the latter form of (6.11) as a power series in b for small b > 0 yields

0 = R0(1 − u) + log u + b(log u)
(
R0 − 1 + 1

2 log u
) + O(b2) =: gb(u) say,

for which g0(u) = R0(1 − u) + log u, g0(θ̃) = 0. Otherwise, using a Newton–Raphson
technique, the root θ̌ (R0, b) for b near 0 is given by θ̌ ≈ θ̃ − gb(θ̃)/g′

b(θ̃), where

g′
b(u) = −R0 + 1

u
+ b

u
(R0 − 1 + log u) + O(b2)

(here and elsewhere, O(·) need not be the same function). Now set log θ̃ = −R0(1 − θ̃ ) and
simplify; this gives the first case of (6.6).

No matter what the value of b < ∞, θ̌ < 1/R0 < 1 so, for large b and u = θ̌ , ub = eb log u =
o(1/b). Hence, the first part of (6.11) implies the relation for θ̌ for large b as asserted in (6.6).
This completes the proof.

Table 2 illustrates how θ̌ (R0, r1) varies with R0 on (1, ∞) and r1 on (0, ∞), together with
θ̃ (R0) = θ̌ (R0, ∞). We have also computed θ for the same values of r1 and r2 = R0/r1 for the
biologically ball-park cases of κ = β1/µ2 = 1, 2. DD and RS did this, independently, using
MATLAB® and MATHEMATICA® differential equation solvers.

The tabulated results show that, for the model as we have discussed it, the proportion of
initial infectives affected in a major outbreak ranges from ‘small’ (say, less than 10%) to ‘most’
(say, more than 80%) with R0 changing from 1 to about 3. In other words, when the level of
susceptibles has come up to the critical value, a three-fold increase in these numbers is enough
to result in any dengue epidemic affecting the vast majority of such individuals.

The product construction leading to R0 = r1r2 in (5.2) reflects the two infection (quasi
branching) processes in the model. The extreme values of b = 1/r1, for given R0 > 1,
reflect situations where one or other of these processes is pre-eminent in making the process
supercritical as a whole.

The lower bound in (6.2) has an explicit integral, and this shows that

1 − u + log u

R0
> y1(u) + cy2(u), θ < u < 1.

Setting a = 1/R0, the supremum of the left-hand side for the range of u as shown occurs for
u = a and equals 1−a+a log a. Appealing to nonnegativity, this supremum is an upper bound
on both y1(ϑ1) and cy2(ϑ2) in Proposition 5.1. The bound equals

(1 − a)2(1 − 1
2a

) − a(1 − a)3( 1
3 + 1

4 (1 − a) + 1
5 (1 − a)2 + · · · ).
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Table 2: Bounds θ̌ (R0, r1) and proportions θ(R0, r1, κ) of initial susceptibles surviving major outbreak.

θ(R0, r1, κ)
r1 R0 θ̌ (R0, r1)

κ = 1 κ = 2

0.0 1.10 0.909 09 — —
1.25 0.800 00 — —
1.50 0.666 67 — —
2.00 0.500 00 — —
3.00 0.333 33 — —
5.00 0.200 00 — —

0.1 1.10 0.857 07 0.8438 0.8379
1.25 0.732 44 0.7018 0.6848
1.50 0.602 52 0.5622 0.5351
2.00 0.450 19 0.4134 0.3837
3.00 0.300 00 0.2745 0.2522
5.00 0.180 00 0.1647 0.1511

0.2 1.10 0.844 23 0.8356 0.8309
1.25 0.700 89 0.6741 0.6616
1.50 0.558 75 0.5156 0.4919
2.00 0.406 67 0.3583 0.3263
3.00 0.267 67 0.2293 0.1998
5.00 0.160 09 0.1361 0.1164

0.5 1.10 0.833 33 0.8277 0.8257
1.25 0.666 67 0.6498 0.6431
1.50 0.500 00 0.4672 0.4527
2.00 0.333 33 0.2882 0.2652
3.00 0.200 00 0.1574 0.1320
5.00 0.111 11 0.0818 0.0619

1.0 1.10 0.828 87 0.8248 0.8231
1.25 0.649 96 0.6395 0.6356
1.50 0.466 41 0.4446 0.4359
2.00 0.284 67 0.2514 0.2369
3.00 0.149 00 0.1150 0.0984
5.00 0.069 92 0.0462 0.0331

R0 1.10 0.828 44 0.8245 0.8228
1.25 0.646 13 0.6373 0.6340
1.50 0.452 26 0.4360 0.4298
2.00 0.250 00 0.2289 0.2207
3.00 0.095 71 0.0792 0.0728
5.00 0.019 57 0.0133 0.0111

5.0 1.10 0.824 92 0.8194 0.8152
1.25 0.633 37 0.6293 0.6271
1.50 0.428 86 0.4225 0.4200
2.00 0.223 81 0.2138 0.2101
3.00 0.082 16 0.0714 0.0675
5.00 0.019 57 0.0133 0.0111

∞ (θ̃ (R0)) 1.10 0.823 87 — —
1.25 0.628 63 — —
1.50 0.417 19 — —
2.00 0.203 19 — —
3.00 0.059 52 — —
5.00 0.006 98 — —
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7. A stratified population model approach

Seroprevalence surveys for DF antibodies in Singapore suggest that the contact-and-
transmission rates there between mosquitoes and humans are rather lower post-1970 for children
than for adults. We therefore investigate what modelling might yield in terms of total sizes of
annual cases within two age groups with different contact rates. Let X1j and Y1j denote
the numbers of susceptibles and infectives in those under and over age 15 (say) (j = 1, 2,
respectively). Let γ1j and γ2j denote the respective rates for the contact and transmission of
infection from mosquito to human and human to mosquito for group j .

We can construct differential equations for this model much as for (2.1) and (2.2):

Ẋ1j = −γ1j

X1j

N
Y2, Ẏ1j = γ1j

X1j

N
Y2 − β1Y1j , Ż1j = β1Y1j , (7.1)

for j = 1, 2, and

Ẏ2 = γ21Y11 + γ22Y12

N
X2 − µ2Y2. (7.2)

To compute R0, we find that the mean number of group j infectives produced by a single
infectious mosquito in a population consisting of all susceptibles equals γ1jX1j (0)/(µ2N), and
the mean number of infected mosquitoes produced by a single group j infective in a similar
population equals γ2jX2(0)/(β1N), so

R0 = γ11γ21X11(0) + γ12γ22X12(0)

β1µ2N2 N2. (7.3)

The differential equations for Ẋ1j in (7.1) show that these two variables are functionally
dependent in an explicit manner, since

log

(
X1j (0)

X1j (t)

)
= γ1j

N

∫ t

0
Y2(u) du. (7.4)

Also, since Z1j (t) = β1
∫ t

0 Y1j (u) du, integration of (7.2) yields

Y2(t) = N2

β1N
(γ21Z11(t) + γ22Z12(t)) − µ2N

γ12
log

(
X12(0)

X12(t)

)

− 1

N

∫ t

0
(γ21Y11(u) + γ22Y12(u))Y2(u) du. (7.5)

Equation (7.4) shows that the ultimate proportions θ1j := X1j (∞)/X1j (0) are related by
θ11 = θ

γ11/γ12
12 , and then (7.5) shows that θ12 satisfies a relation analogous to (3.4), from which

we can deduce our final result by a similar argument to the one following (3.4).

Proposition 7.1. The fractions θ1j of susceptibles surviving a major epidemic of a disease,
similar to Proposition 5.1 but for a stratified population of two groups as above, satisfy θ11 =
θ

γ11/γ12
12 , and θ12 lies in (θ ′, θ ′′), where θ ′ is the smaller positive root of f (u) = 0 and

f (u) := γ12γ21X11(0)(1 − uγ11/γ12) + γ12γ22X12(0)(1 − u) + β1µ2N
2

N2
log u, (7.6)

and θ ′′ is the root in (0, 1) of f ′(u) = 0; we can write this equation as

γ11γ21X11(0)uγ11/γ12 + γ12γ22X12(0)u = β1µ2N
2

N2
. (7.7)
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We assert that refinements along the lines of Section 6 are also possible by rewriting the
differential equations in (7.1) and (7.2) much as in (6.1). This leads to three differential equations
of which the linear function c1Y

′
11 + c2Y

′
12 + Y ′

2, where the prime signifies a derivative with
respect to ξ := X12, yields an inequality similar to (6.2) and, hence, bounds on the ultimate
proportions θ1j .

The analysis of this section extends immediately to groups j = 1, . . . , J for a finite positive
integer J and positive rates γ1j and γ2j , with, e.g. f in (7.6) replaced by

f (u) = γ1J

J∑
j=1

γ2jX1j (0)(1 − uγ1j /γ1J ) + β1µ2N
2

N2
log u,

while (7.7) becomes
J∑

j=1

γ1j γ2jX1j (0)uγ1j /γ1J = β1µ2N
2

N2
. (7.8)

The analogue of R0 in (7.3) equals the left-hand side of (7.8) evaluated at u = 1 and divided
by the right-hand side.
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