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Objective. This study aimed to investigate the molecular regulatory mechanisms underpinning Duchenne muscular dystrophy
(DMD). Methods. Using microarray data, differentially expressed long noncoding RNAs (DELs) and DMD-related differentially
expressed mRNAs (DEMs) were screened based on the comparative toxicogenomics database, using a cutoff of |log, fold change|
> 1 and false discovery rate (FDR) < 0.05. Then, protein-protein interaction (PPI), coexpression network of IncRNA-mRNA, and
DMD-related IncRNA-mRNA pathway networks were constructed, and functional analyses of the genes in the network were
performed. Finally, the proportions of immune cells infiltrating the muscle tissues in DMD were analyzed, and the correlation
between the immune cells and expression of the DELs/DEMs was studied. Results. A total of 46 DELs and 313 DMD-related DEMs
were identified. The PPI network revealed STATI, VEGFA, and CCL2 to be the top three hub genes. The DMD-related IncRNA-
mRNA pathway network comprising two pathways, nine DELs, and nine DMD-related DEMs showed that PYCARD, RIPK2, and
CASPI were significantly enriched in the NOD-like receptor signaling pathway, whereas MAP2K2, LUM, RPS6, PDCD4, TWISTI,
and HIFIA were significantly enriched with proteoglycans in cancers. The nine DELs in this network were DBET, MBNL1-AS]I,
MIR29B2CHG, CCDC18-AS1, FAM111A-DT, GAS5, LINC01290, ATP2B1-AS1, and PSMB8-AS1. Conclusion. The nine DMD-
related DEMs and DELs identified in this study may play important roles in the occurrence and progression of DMD through the
two pathways of the NOD-like receptor signaling pathway and proteoglycans in cancers.

1. Introduction

Duchenne muscular dystrophy (DMD), a severe and pro-
gressive X-linked disease that is characterized by muscular
dystrophy, is caused by mutations in the dystrophin gene
and has a global prevalence of approximately 0.005% of male
births [1]. Deficiency of the dystrophin protein in muscles
results in the progressive loss of muscle tissue and impaired
muscle function, rendering the muscles more vulnerable to
mechanical damage [2]. Complications, including skeletal
muscle wasting, cardiomyopathy, and respiratory in-
sufficiency, are often observed, with cardiopulmonary failure
being the most common cause of DMD-related mortality
[3]. Multidisciplinary symptomatic treatment is used in the
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clinical management of DMD [4]. Gene-based therapies and
myogenic cell transplantation are the current therapeutic
approaches for DMD [5].

Long noncoding RNAs (IncRNAs) are noncoding
transcripts longer than 200 nucleotides that are not trans-
lated into proteins [6]. LncRNAs are important modulators
of messenger RNA (mRNA) and modulate mRNA ex-
pression at the posttranscriptional level by functioning as
competing endogenous RNAs (ceRNAs) that competitively
bind to microRNAs (miRNAs) [7]. LncRNAs regulate
dystrophin expression and thus represent a potential ther-
apeutic strategy to alleviate dystrophin protein deficiency
[8]. LncRNA H19 reportedly ameliorates muscular dys-
trophy by suppressing the degradation of the dystrophin
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protein [9]. In a recent study, bioinformatics analyses were
used to comprehensively examine DMD-related differen-
tially expressed IncRNAs (DELs) by constructing a ceRNA
network of IncRNA-miRNA-mRNA using gene expression
omnibus (GEO) datasets [10]. However, DMD-related
IncRNAs and their regulatory molecular mechanisms in-
volving IncRNAs, mRNAs, and pathways have not been fully
investigated.

In the present study, gene expression profiles of DMD
samples were analyzed using a series of bioinformatics tools
to identify differentially expressed mRNAs (DEMs) and
DELs in DMD. Next, protein-protein interaction (PPI)
networks of the DMD-related DEMs and DMD-related
IncRNA-mRNA pathway were constructed. Additionally,
alterations in different types of immune cells and the cor-
relation between immune cells and crucial factors in DMD
were also analyzed. Finally, the expression of the important
factors (IncRNAs and mRNAs) identified in the study was
verified in the training and validation sets. Thus, the study
identified several potential biomarkers and therapeutic
targets for DMD and has significant implications for the
development of novel treatment strategies based on them.

2. Materials and Methods

2.1. Data Source and Preprocessing. The gene expression
profiles from the GSE38417 and GSE6011 datasets were
downloaded from the NCBI Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/). The GSE38417 dataset,
which was used as a training set, included muscle tissue
samples from 16 patients with DMD and six normal control
individuals (Affymetrix Human Genome U133 Plus 2.0 Array
platform). However, the GSE6011 dataset, which served as
a validation set, contained 36 muscle tissue samples (22 patients
with DMD and 14 normal control individuals) and was an-
alyzed using the GPL96 detection platform. Then, the mRNA
and IncRNA expression was reannotated according to the
annotation files from the Ensembl genome browser database
(https://asia.ensembl.org/index.html).

2.2. Screening DEMs and DELs in DMD. Using the limma
package of the R software (version 3.6.1, https://
bioconductor.org/packages/release/bioc/html/limma.html),
the raw expression datasets were subjected to log, trans-
formation and then normalized using the “between array
normalization” function. Subsequently, DEMs and DELs
were screened with a strict cutoff of false discovery rate
(FDR) <0.05 and |log, fold change (FC)|>1. Then, bi-
directional hierarchical clustering analysis based on the
centered Pearson correlation was performed on the iden-
tified DEMs and DELs using the pheatmap package (https://
cran.r-project.org/web/packages/pheatmap/index.html) in
R 3.6.1.

Using the keyword “Duchenne muscular dystrophy,”
DMD-related genes were searched in the comparative
toxicogenomics database (CTD) [11] (https://ctdbase.org/),
with the inference score threshold set at >3. Following
comparison with the identified DEMs, the overlapping
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DMD-related DEMs were selected for gene ontology (GO)
terms [12] and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway [13] enrichment analyses using the online
tool Database for Annotation, Visualization, and Integrated
Discovery (DAVID, version 6.8, https://david.ncifcrf.gov/).
An FDR of <0.05 was set as the threshold for a significant
difference.

2.3. Constructing a PPI Network. The overlapping DMD-
related DEMs identified using the screening were subjected to
searches for interactions of the proteins they encoded using the
search tool for the retrieval of interacting genes [14] (STRING,
version 11.0, https://string-db.org/), and the PPI pairs with
a combined score >0.6 were retained to construct a PPI network
[15]. Cytoscape (version 3.9.0) was used to visualize the PPI
network. Subsequently, the topological features of the network,
including the average shortest path length, degree centrality
(DC), closeness centrality (CC), and betweenness centrality (BC)
[15], were calculated to determine the hub genes in the PPI
network using the CentiScaPe plugin (version 2.2) of Cytoscape
software (https://apps.cytoscape.org/apps/centiscape). Degree
refers to the number of interactions (edges) at a node (protein),
and node genes with the highest degrees were defined as
hub genes.

The molecular complex detection (MCODE) version
1.4.2; https://apps.cytoscape.org/apps/mcode) plugin in the
Cytoscape software was used to mine the functionally related
and highly interconnected modules using the following
parameters: degree cutoff = 2, node score cutoff = 0.2, and K-
core =2. Then, the functional analysis of the genes in these
modules was performed using the BINGO plugin (version
2.44; https://apps.cytoscape.org/apps/bingo) in the Cyto-
scape software with FDR <0.05.

2.4. Constructing a Coexpression Network of IncRNA-mRNA.
Correlations between the DELs and overlapping DMD-
related DEMs were analyzed by calculating Pearson’s cor-
relation coefficient (PCC) using the cor.test (https://stat.
ethz.ch/R-manual/R-devel/library/stats/html/cor.test.html)
using the R software. Then, the IncRNA-mRNA pairs with
P <0.05 and PCC > 0.9 were chosen to construct a IncRNA-
mRNA coexpression network, and the network was visu-
alized using Cytoscape software. Next, the genes in the
coexpression network were subjected to GO term and KEGG
pathway enrichment analyses using the DAVID online tool
(version 6.8) with FDR < 0.05.

2.5. Constructing a DMD-Related IncRNA-mRNA Pathway
Network. The DMD-related KEGG pathways in the CTD
database were searched using the keyword “duchenne
muscular dystrophy.” The DMD-related KEGG pathways
thus identified were compared with the KEGG pathways that
were significantly enriched by the genes in the coexpression
network, and the overlapping KEGG pathways and over-
lapping KEGG pathway-related DEMs and DELs were
retained to construct a DMD-related IncRNA mRNA
pathway network.
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2.6. Correlation between the Crucial Factors and DMD-
Related Immune Cell Types. The infiltration of immune
cells in muscle tissues is an important feature of DMD [16].
The proportion of different types of immune cells infiltrating
the muscle tissue of patients with DMD and normal control
individuals was calculated using CIBERSORT [17] (https://
cibersort.stanford.edu/index.php), and the differences be-
tween the two sets of samples were compared using ¢-tests.
Finally, the correlation between the significantly different
immune cell types and the expression of the factors (mRNAs
and IncRNAs) in the DMD-related IncRNA mRNA pathway
network was analyzed by calculating the PCC.

3. Results

3.1. Identification and Functional Analysis of DELs and DEMs
in DMD. Following analysis, 1708 IncRNAs and 17326
mRNAs were annotated in the GSE38417 dataset. Based on
the cutoffs of FDR < 0.05 and |log, FC| > 1, 46 DELs and 2125
DEMs were screened between DMD and normal control
samples (Figure 1(a)). The 46 DELs and 2125 DEMs were
bidirectionally hierarchically clustered, and the results
showed that these DELs and DEMs effectively differentiate
DMD samples from normal control samples (Figure 1(b)).
Based on the CTD database, we obtained 2992 DMD-related
genes with an inference score >3. These genes were com-
pared with the 2125 DEMs, and 313 overlapping DMD-
related DEMs were identified (Figure 1(c)).

These overlapping DMD-related DEMs were then sub-
jected to functional analysis and found to be significantly
enriched in 24 GO terms of biological processes and 14
KEGG signaling pathways (FDR < 0.05), including “positive
regulation of ERK1 and ERK2,” “inflammatory response,”
“response to hypoxia,” “I'NF signaling pathway,” “NOD-like
receptor signaling pathway,” “PI3K-Akt signaling pathway,”
“p53 signaling pathway,” “FoxO signaling pathway,” “Ras
signaling pathway,” and “MAPK signaling pathway”
(Figures 2(a) and 2(b)).

3.2. Analysis of the PPI Network Based on the DMD-Related
DEMs. The 313 DMD-related DEMs were subjected to
a search for interactions between the proteins encoded by
these DMD-related DEMs using the STRING database, and
695 interaction pairs with a combined score >0.6 were
identified and used to build a PPI network, which contained
216 nodes and 695 edges (Figure 3(a)). After calculating the
centrality parameters of each node in the network, the top 20
genes were identified (listed in Table 1), and the top three
hub genes were STATI (degree =41), VEGFA (degree = 32),
and CCL2 (degree =28).

Furthermore, we extracted four network clusters using
MCODE (Figure 3(b)), including clusters 1 (18 nodes and
133 edges), 2 (10 nodes and 33 edges), 3 (9 nodes and 29
edges), and 4 (5 nodes and 10 edges). Following enrichment
and annotation of the biological processes, the significantly
related biological functions of each cluster were obtained
(Supplementary Table 1). Clusters 1, 2, 3, and 4 were sig-
nificantly related to immune response, skeletal system
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development, defense response, and response to organic
substances, respectively.

3.3. Analysis of the Coexpression Network of IncRNA mRNA.
To investigate the relationship between the identified DELs
and overlapping DMD-related DEMs in the pathogenesis of
DMD, we calculated the PPCs of the DELs and overlapping
DMD-related DEMs. Based on the thresholds of P <0.05
and PPC > 0.9, 308 IncRNA-mRNA pairs were obtained, and
a coexpression network of IncRNA-mRNA was constructed
(Figure 4(a)). Next, the genes in this coexpression network
were subjected to functional analysis. With the FDR set at
<0.05, 21 GO terms of biological process and nine KEGG
signaling pathways were found to be significantly enriched
and included “positive regulation of ERK1 and ERK2,”
“T cell receptor signaling pathway,” “inflammatory re-
sponse,” “response to hypoxia,” “NOD-like receptor sig-
naling pathway,” “PI3K-Akt signaling pathway,” “HIF-1
signaling pathway,” and “NF-kappa B signaling pathway”
(Figure 4(b)).

3.4. Analysis of the DMD-Related IncRNA-mRNA Pathway
Network Composed of Nine mRNAs, Nine IncRNAs, and Two
Pathways. We searched the CTD database using the key-
word “Duchenne muscular dystrophy” and identified 45
KEGG signaling pathways to be closely associated with
DMD. Following comparison with KEGG pathways sig-
nificantly enriched by the genes in the coexpression network,
two overlapping KEGG pathways were obtained, including
the NOD-like receptor signaling pathway and proteoglycans
in cancers. Subsequently, the interaction between DEMs in
the overlapping KEGG signaling pathways and the coex-
pression relationship with IncRNAs were integrated, and
a DMD-related IncRNA-mRNA pathway network was
proposed with two KEGG pathways, nine DMD-related
DEMs (LUM, HIFIA, PYCARD, RIPK2, CASPI, PDCD4,
RPS6, MAP2K2, and TWISTI), and nine DELs (ATP2B1-
AS1, GAS5, MBNLI-AS1, MIR29B2CHG, PSMB8-ASI,
FAM111A-DT, CCDC18-AS1, DBET, and LINC01290)
(Figure 5). From the IncRNA-mRNA pathway network,
PYCARD, RIPK2, and CASPI were found to be significantly
enriched in the NOD-like receptor signaling pathway,
whereas MAP2K2, LUM, RPS6, PDCD4, TWISTI, and
HIFIA were significantly enriched in proteoglycans in
cancers.

3.5. Analysis of the Proportion of DMD-Related Immune

Cell Types and Correlation between Immune Cell Types and
Factors in the IncRNA-mRNA Pathway Network. Based on
the expression of all the genes detected in the samples, the
CIBERSORT algorithm was used to calculate the proportion
of various immune cell types in each sample, and 19 immune
cell types were identified. The proportions of regulatory
T cells (Tregs, P = 0.0139), activated natural killer (NK) cells
(P =0.0461), and neutrophils (P =0.0251) were signifi-
cantly decreased, whereas the proportions of M2 mac-
rophages (P =0.02) and resting myeloid dendritic cells
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FIGURE 1: Identification of differentially expressed IncRNA (DELs) and differentially expressed mRNAs (DEMs) in Duchenne muscular
dystrophy (DMD). (a) Volcano plots of DELs and DEMs in DMD based on the thresholds of false discovery rate (FDR) < 0.05 and |log; fold
change| > 1. Blue and red spots represent downregulated and upregulated DELs/DEMs, respectively. (b) Bidirectional hierarchical clustering
heatmap of DELs (upper) and DEMs (lower). (c) A Venn diagram of DEMs and DMD-related genes identified in the comparative
toxicogenomics database (CTD) with the inference score >3 set as the threshold.
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FIGURE 2: Functional analyses of the overlapping DMD-related DEMs. (a) Significantly enriched gene ontology (GO) terms of biological
processes. (b) Significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways of the DMD-related DEMs.
The horizontal axis indicates the number of the DMD-related DEMs, and the vertical axis indicates the name of items. The larger the dots,
the greater the number of DEMs. The darker the dot, the more significant the enrichment of process.
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FiGure 3: Construction of a protein-protein interaction (PPI) network based on the overlapping DMD-related DEMs. (a) A PPI network
based on the DMD-related DEMs. A change in the color of the spots from blue to red indicates a change in the degree of significant
difference from downregulation to upregulation. (b) Four network clusters extracted from the PPI network. Blue and red spots represent
downregulated and upregulated proteins, respectively.

TaBLE 1: The centrality parameters of the top20 genes in the protein-protein interaction network.

1D Average shortest pathlength Betweenness centrality Closeness centrality Degree
STATI1 1.17 0.80 0.86 41
VEGFA 1.00 0.22 1.00 32
CCL2 2.06 0.62 0.49 28
CXCL10 2.29 0.44 0.44 27
CXCR4 2.05 1.29 0.49 27
ITGAM 1.67 0.56 0.60 26
CASP3 2.30 0.22 0.44 25
IGF1 1.67 1.02 0.60 24
MX1 1.58 0.05 0.63 20
ISG15 1.50 0.03 0.67 19
RSAD2 1.86 0.02 0.54 19
MX2 1.64 0.02 0.61 18
TLR2 0.00 0.00 0.00 18
IFIT3 1.53 0.03 0.65 18
IFIT1 1.50 0.02 0.67 18
GBP1 1.50 0.29 0.67 17
IF144L 1.56 0.02 0.64 17
1F144 1.53 0.02 0.66 17
CXCL9 2.48 0.46 0.40 17
PDGFRB 1.54 0.47 0.65 17
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FIGURE 4: Establishment of a coexpression network of IncRNA-mRNA and functional analyses of the factors in this coexpression network.
(a) A coexpression network of IncRNA-mRNA was constructed with the IncRNA-mRNA pairs (P < 0.05 and PCC > 0.9). Diamonds and
circles represent IncRNAs and mRNAs, respectively. A change in spot color from blue to red indicates a change in the degree of significant
difference from downregulation to upregulation. (b) Significantly enriched GO terms of biological process (left) and KEGG signaling
pathways (right) of the genes in this coexpression network.

(P = 0.0007) were significantly increased (Figure 6(a)) in
the DMD samples compared to those in the normal
control samples. Furthermore, analysis of the correlation
between the five significantly different immune cell types,
nine DMD-related DEMs, and nine DELs in the DMD-
related IncRNA-mRNA pathway network revealed that
activated NK cells, neutrophils, and Tregs were positively
correlated with the expression of four DELs (CCDC18-
AS1, DBET, MBNLI1-ASI1, and MIR29B2CHG) and one
DMD-related DEM (MAP2K2), whereas the cells were
negatively correlated with the expression of the other five
DELs and eight DMD-related DEMs. However, resting
myeloid dendritic cells and M2 macrophages showed an

opposite trend (Figure 6(b)).
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3.6. Validation of the Identified Crucial Factors in the
GSE38417 and GSE6011 Datasets. The expression of the
crucial factors in the IncRNA-mRNA pathway network was
analyzed in the training (GSE38417) and validation
(GSE6011) sets. In GSE38417, the expression of IncRNA
ATP2B1-AS1, FAMI11A-DT, GAS5, LINC01290, and
PSMB8-AS1 significantly increased (P < 0.05), whereas that
of CCDC18-AS1, DBET, MBNL1-AS1, and MIR29B2CHG
was significantly decreased (P <0.05, Figure 7(a)) in the
DMD samples compared to that in the normal control
samples. Additionally, in GSE38417, the levels of mRNA
CASPI, HIFIA, LUM, PDCD4, PYCARD, RIPK2, RPS6, and
TWISTI were significantly upregulated in DMD samples
compared to those in normal controls (P < 0.05), whereas
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FIGURe 6: Correlation between immune cell types and the factors in the IncRNA-mRNA pathway network. (a) Proportion of the various
immune cell types in the DMD samples and normal control subjects. (b) Correlation analysis between the five significantly different immune
cell types (in patients with DMD and control individuals) and the factors (DELs and DMD-related DEMs) in the IncRNA-mRNA pathway

network.

mRNA MAP2K2 was markedly downregulated in DMD
samples (P < 0.05, Figure 7(b)). Because GSE6011 is based on
the GPL96 annotation platform, few IncRNAs could be
annotated on this platform. Therefore, we only verified the
expression of nine DMD-related DEMs in the validation set
(GSE6011). We found that the trend of expression of these
DMD-related DEMs (except for CASPI, RIPK2, and RPS6)
in GSE6011 was consistent with that in GSE38417
(Figure 7(c)).

4. Discussion

DMD is a fatal X-linked genetic disorder characterized by
progressive muscular wasting resulting from dystrophin
protein deficiency [18]. The involvement of IncRNAs in the
pathophysiology of DMD is being increasingly investigated
because of their pivotal roles in the regulation of dystrophin
protein expression. In the present study, we identified 46
DELs and 313 DMD-related DEMs in DMD. A PPI network
was constructed based on these DMD-related DEMs, and
STATI, VEGFA, and CCL2 were identified as the top three
hub genes. Based on the DMD-related DEMs and DELs,
a coexpression network of IncRNAs and mRNAs was
generated, and the factors in this coexpression network were
found to be significantly enriched in 21 GO terms of bi-
ological processes and nine KEGG signaling pathways.
According to the CTD database, NOD-like receptor sig-
naling and proteoglycans in cancer pathways were found to
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be closely related to DMD. The DMD-related IncRNA-
mRNA pathway network was found to consist of two
pathways, nine DMD-related DEMs and nine DELs. Fur-
thermore, five immune cell types were found to be signif-
icantly different between the DMD and normal control
samples. Thus, this study provides important insights into
the underlying mechanisms of IncRNAs in the pathogenesis
of DMD and provides potential targets that could aid in the
rational design of IncRNA-based therapies for DMD.
Lack of dystrophin results in chronic inflammation,
which is closely associated with muscle degeneration in the
pathogenesis of DMD [19, 20]. In our proposed DMD-
related IncRNA-mRNA pathway networks, PYCARD,
RIPK2, and CASPI were significantly enriched in the NOD-
like receptor signaling pathway, whereas MAP2K2, LUM,
RPS6, PDCD4, TWISTI1, and HIFIA were significantly
enriched in proteoglycans in cancers. The NOD-like re-
ceptor (NLR) assembles a protein complex called the NLR
family pyrin domain-containing 3 (NLRP3) inflammasome
in response to certain infectious and sterile stimuli [21].
NLPR3 inflammasomes are upregulated as a result of dys-
trophin deficiency and play a key pathogenic role in DMD
[22]. The NLR signaling pathway has a critical role in in-
flammation [23]. PYCARD encodes the inflammasome
adaptor apoptosis-associated speck-like protein containing
a C-terminal caspase recruitment domain (ASC), a com-
ponent of the NLRP3 inflammasomes, which is involved in
downstream signaling of the inflammasome pathway [24].
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Receptor-interacting serine/threonine protein kinase 2
(RIPK2) regulates NLRP3 and inflammation [25], and the
NOD/RIPK2 inflammatory signaling pathway has been
found to confer susceptibility to osteoarthritis [26]. CASP1,
encoding caspase 1, is a key component of NLRP3
inflammasomes [27] and is positively related to active ul-
cerative colitis [28]. Our results suggest that PYCARD,
RIPK2, and CASPI may be involved in regulating DMD-
related inflammation via the NLR signaling pathway.
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The dystrophin protein is a component of the
dystrophin-associated glycoprotein complex that connects
actin filaments, intermediate filaments, and microtubules to
transmembrane protein complexes to stabilize muscle cells
[29]. Proteoglycans, a class of highly glycosylated proteins
that are expressed in almost all tissues, are involved in tissue
homeostasis and remodeling of the stromal microenviron-
ment during physiological and pathological processes, such
as tissue regeneration, angiogenesis, and cancer [30].
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MAP2K2 encodes mitogen-activated protein kinase 2, an
important component of the MAPK pathway. The MAPK
pathway is an important regulator of myofiber death [31].
MAPK/ERK signaling plays a critical role in various bi-
ological activities by phosphorylating various substrates in
the cytoplasm and nucleus and has been reported to play
a central role in organ regeneration [32]. Ribosomal protein
S6 (RPS6) controls mRNA translation, and phospho-RPS6
has been identified as a surrogate marker of the activated
PI3K/AKT/mTORCI pathway found in many cancer types
[33]. Programmed cell death 4 (PDCD4) mediates in-
flammation and regulates the MAPK pathway [34]. Wang
et al. [35] demonstrated that the PDCD4/HO-1 pathway is
involved in oxidative stress and inflammation in athero-
sclerosis. Lumican (LUM), a member of the small leucine-
rich proteoglycan family, is present in muscle tissues and
plays dual roles as an oncogene and tumor suppressor [36].
TWISTI has been reported to regulate inflammatory genes
in skeletal muscle [37] and mediate epithelial-to-
mesenchymal transition and cell migration [38]. The acti-
vation of HIF1la (encoded by HIF1A) is an important cause
of vascular dysfunction and impaired angiogenesis in DMD
[39]. Additionally, interaction between HIFIA and TWIST
was observed in the DMD-related IncRNA-mRNA pathway
network. HIFla silencing reportedly leads to down-
regulation of TWISTI [40]. Taken together, these results
suggest that MAP2K2, LUM, RPS6, PDCD4, TWISTI, and
HIF1A may play important roles in DMD pathophysiology
by regulating the MAPK pathway and proteoglycans in
cancer.

In addition, nine DELs, including DBET, MBNLI-AS1,
MIR29B2CHG, CCDCI18-AS1, FAMI111A-DT, GASS,
LINC01290, ATP2B1-AS1, and PSMB8-AS1, were identified
in the DMD-related IncRNA-mRNA pathway network. The
IncRNA DBET is associated with the epigenetic etiology of
facioscapulohumeral muscular dystrophy [41]. Li et al.
showed that the downregulation of IncRNA MBNL1-AS1
suppressed skeletal muscle cell apoptosis [42]. GAS5 re-
portedly promotes wound healing by activating the HIF1A/
VEGEF pathway [43]. Dysregulation of the IncRNAs MBNL1-
AS1, CCDC18-AS1, LINC01290, MIR29B2CHG, and
PSMB8-AS1 has been observed in many cancers [44-48].
NF-«B signaling is activated during DMD pathogenesis and
leads to inflammation and muscle degeneration [49]. A
substantial body of evidence suggests that IncRNA ATP2B1-
ASI protects against inflammation by targeting the NF-xB
signaling pathway [50, 51], which implies that IncRNA
ATP2B1-AS1 may ameliorate inflammation and muscle
degeneration in the pathogenesis of DMD via NF-«B sig-
naling. However, the role of FAM111A-DT has not been
identified. Therefore, these nine DELs may play important
roles in the occurrence and development of DMD through
the NLR signaling pathway and proteoglycans in cancers.
However, the specific mechanisms of these nine IncRNAs in
DMD pathogenesis need to be investigated further.

In DMD, the immune system is activated and several
types of immune cells, such as CD4+ and CD8+ T cells,
Tregs, and NK cells, invade the skeletal muscles [16]. A
recent study showed that IncRNA CCDC18-AS1 is positively
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correlated with activated myeloid dendritic cells and neu-
trophils [52], in concordance with our results that showed
that the expression of IncRNA CCDC18-AS1 was positively
correlated with the proportion of activated NK cells, neu-
trophils, and Tregs but negatively correlated with resting
myeloid dendritic cells and M2 macrophages. Our study also
showed that the proportions of Tregs, activated NK cells,
neutrophils, M2 macrophages, and resting myeloid dendritic
cells were significantly different between patients with DMD
and normal control individuals.

However, this study has some limitations. First, the
number of samples in the GSE38417 dataset was small, and
additional validation cohorts need to be analyzed in future
studies. Second, as this study involved secondary analysis of
microarray data, further experimental studies are needed to
verify the results of our study. Additionally, the specific
mechanisms of the identified DMD-related DEMs and DELs
need to be further explored in vitro and in vivo.

5. Conclusions

By performing a series of bioinformatics analyses on
microarray data, a DMD-related IncRNA-mRNA pathway
network was constructed. Nine DELs (DBET, MBNL1-AS1,
MIR29B2CHG, CCDC18-AS1, FAMI111A-DT, GASS5,
LINCO01290, ATP2B1-AS1, and PSMB8-AS1), nine DMD-
related DEMs (PYCARD, RIPK2, CASP1, MAP2K2, LUM,
RPS6, PDCD4, TWISTI, and HIF1A), and two KEGG
pathways (NLR signaling pathway and proteoglycans in
cancer) were identified to play a crucial role in the patho-
genesis of DMD. Our findings provide novel insights into
the regulatory relationships between IncRNAs, mRNAs, and
pathways in the pathogenesis of DMD. The DMD-related
DEMs and DELs identified in this study need to be further
investigated for their clinical use as potential biomarkers and
therapeutic targets for DMD.
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