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Introduction

Let I be a homogeneous ideal of a polynomial ring over a field, v(I)
the number of elements of any minimal basis of I, e = e(I) the multiplicity
or degree of R/I, h = h(I) the height or codimension of I, i = indeg (I)
the initial degree of I, i.e. the minimal degree of non zero elements of I

This paper is mainly devoted to find bounds for v(I) when I ranges
over large classes of ideals. For instance we get bounds when I ranges
over the set of perfect ideals with preassigned codimension and multiplicity
and when I ranges over the set of perfect ideals with preassigned codi-
mension, multiplicity and initial degree. Moreover all the bounds are
sharp since they are attained by suitable ideals. Now let us make some
historical remarks.

It is a classical result of Krull that A(I) < v(I), and Macaulay showed
that there is no upper bound for v(I) when I ranges over the set of perfect
codimension 2 prime ideals of k[x, y, z]. But what happens if e(J) is given?
Many authors studied a more general problem, allowing the ambient ring
R to be a Cohen-Macaulay ring. If R is specialized to be a polynomial
ring or a regular local ring, we deduce from their results the following

bounds:
y<e'4+ h—1 Sally (1976)
y < (h!/"WhDe-v* + b — 1 Boratynski-Eisenbud-Rees (1979)
y <1+ [(h — D¥hle + (ht — D)k — (g) Valla (1981)
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Other results of Briangon-Iarrobino (1978) and Berman (1981) deal
with the asymptotic behaviour of v(I). For some historical background
about this kind of problems, a good reference is the book of Sally (1978).

Now we come to a more detailed description of our paper. In the
first section we collect many properties about binomial representations
and some operations on them. All these results are elementary and more
or less well-known; we included them for the sake of completeness, since
they are used throughout the paper as technical tools.

Then we recall some fundamental theorems, which allow us to study
special ideals called lex-segment ideals. To every given homogeneous
ideal I in the polynomial ring one can associate a suitable lex-segment
ideal J with the same Hilbert function, and the first remark is that (1)
< u(J) (see Corollary 2.7); the main observation of the second section is
that v(J) can be computed as the sum of the multiplicities of a suitable
chain of hyperplane sections of J (see Theorem 2.9 and Corollary 2.10).

Then after many preparatory Lemmas, we prove Main Lemma 3.9,
from which we deduce Theorem 3.10 and Corollary 3.11. These results
are the technical core of the paper in the following sense: given a family
Z of ideals, they yield a strategy for selecting a suitable lex-segment ideal
J(F) with the maximum number of generators among the members of %.
When % is the family of homogeneous perfect ideals with given e, h, then
the ideal J(%) turns out to be the same as in Berman’s paper, but here
we face a more subtle situation when we work with the family of homoge-
neous perfect ideals with given e, & and indeg (see for instance Example
1 of Section 4). We can detect all these “extremal”
compute u(J) in all cases (see Proposition 4.2, Proposition 4.4 and Pro-
position 4.6) and Section 4 ends with the two main theorems, namely
Theorem 4.7 and Theorem 4.8; they give the answer to the problem of

ideals J and we can

finding sharp bounds for u(I) inside many important families of zero-
dimensional ideals in the polynomial ring; moreover such bounds are
explicitly given and many relations among them are described.

Section 5 is devoted to the study of several applications of our results.
The first one deals with the extension of the preceding results to perfect
ideals in regular local rings; it turns out that the same bounds hold.
For codimension 2 ideals we give a simple proof of the well-known ine-
quality v(I) < indeg (I) + 1, which avoids the use of Hilbert-Burch theorem.
Then we prove that if a zero-dimensional ideal I in a regular local ring
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(R, m) has the same multiplicity and the same number of generators as
m‘, then I = m* (Proposition 5.3).

Another application is shown to the asymptotic behaviour of u(J)
inside some classes of perfect ideals, when we let e(I) tend to infinity.
Here we generalize Berman’s results in many directions (see Theorem 5.4).

In Proposition 5.5 we prove that all the preceding bounds can be
attained by radical ideals, namely by the defining ideals of the scheme
associated to sets of points in the projective space.

We conclude by sketching some applications of our results to the
size of Grobner Bases of zero-dimensional ideals in the polynomial rings.

Finally we enclose two tables at the end of the paper, where some
of the bounds are displayed. All the computations were performed by
CoCoA, a Computational Commutative Algebra System under develop-
ment at the University of Genova.

Index
Introduction
1. Binomial representations and their arithmetic
2. Theorems of Macaulay, Stanley, Green and Lex-segments
3. Main Tools
4. Main Theorems
5. Applications
6. Tables

§1. Binomial representations and their arithmetic

We make the following conventions:
(’6‘)21 if m>1, and ('Z):Oifm<k

We recall that if n and i are positive integers then n can be uniquely

written as
e () () ()

where n(i) >ni —1) > -.- >n(j) >j> 1
This is called the i-binomial expansion of n.

ProPERTY 1.1. Let m = }i_, (m](ek)) and n = i_; <n§€k)) be positive
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integers; then m > n if and only if {m@i), m(i — 1), - - -, m(p)} > {n@@), n(i — 1),
<+, m(j)} in the lexicographic ordering.

Proof. The assertion is clear from the definition of the i-binomial

expansion of any positive integer O
We let
. (n)+1 n@i—1)+1 n(j) + 1
(*) n<i>._<l+1>+( ; >+'”+(j+1>
) — 1 ) —1) —1 ) — 1
() ngi= (MO ) (P DT (nD 1)

and we remark that (*) is the (i + 1)-binomial expansion of n‘® while
(**) is the i-binomial expansion of n, iff n(j) > j.

ProPERTY 1.2.
(n+ D¥ =n® + 14+ nQ)
where if j > 1 we let n(l) = 0.
Proof. If j > 1 we have
_ (nQ) n(i—1) n(J) j—1
ne1=(P)+ (VI0) o+ () (G20)

hence

= (PR ¢ (D) e (D7) 4 )
=n® 4 1.

If j = 1, let s be the maximum integer such that n(s) = n(1) + s — 1.
Then 1 < s <1 and we get

_ (ngi)> n (ngz:11)> L <ngs : 1)) 5 <n(1) +kk — 1)

()4 (D) (D) 4 (O ) -1

o= ()« (LR n (D) + (0

-+

hence

is the i-binomial expansion of n 4+ 1, since n(l) + s<n(s+1). We get
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o= () s (O LD 4 5P
- (ngz)++11> I (n(s+ 1)+ 1) Ly 2<n(1) +r— 1)
_ (ngz)++1 1) P (n(s : +1)2+ 1) 4 <s 711(-5 n(1)> 1
and
(n + 1)@ = <n§1)++1 1) TR (n(s ;{-+1)2+ 1) i (s +81+—|—1n(1)) ;
the conclusion follows O
PropERTY 1.3.
ol U

Proof. If j > 1 we get

n+1=(n§i))+ ...+<n§j))+<§:i>

(n+ D = (n(i)i— 1) + -+ (n(J)J_ 1) = N .

If j = 1, let s be the maximum integer such that n(s) = n(1) +s — 1. Then
1 < s<i and we get as before

nt 1 (ngi)) R (nis_:—f)) n <n(1)+ ),

hence

s
hence
(n + 1) = (n@i— 1) N (n(s + +1>1— 1) N (n(l) +s- 1)
and
P, = (n(i)i— 1) by (n(s : +1)1— 1) n gl (n(l) + k— 2)
_ <n(i)i— 1) PR (n(s S++1)1~ 1) N <s n(s1) — 1) 1
This proves our assertion. O
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Given positive numbers n and i we let
n(i)_, =n — n@)
and we write n_, if there is no ambiguity.

ProPERTY 1.4.
N, = (ngz)——11> Lo (n(j) — 1)
Proof. We have
n — N = }l: (n%k)) f: (n(k) - 1) ,CZ;—; (n(kk)_——1 1)

i=j =j
which concludes the proof O
We need also to define 0, = 0 = 0, Vi>1.
PropERTY 15. If n>m>0we have n — ngp=n_,>m — my, = m_,.

Proof. By Property 1.3 it is clear that n,, < m, + n — m, hence the
conclusion follows. O

ProOPERTY 1.6. For all non negative integers n we have
(n<i))(i+l> = (n<i>)<i> =n® —n.

Proof. Namely
== (PR - () - £ ()

and also
o= (5 (20, - 5
Now if n(j) > j we get
o= () = S0 ==

If n(j) = j, let s be the maximum integer such that n(s) =s. Then
j<s<iand if we let b =n — s, we have n> = b» + s, ngy, = b, and
b — b = (byp)?. It follows n® — n = b — b = (b,)? = (nu)” O

PropERTY 1.7. Foe every i > 2 and every positive integer n we have
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-1 __ n ifj>1
(n — ne)*" = {n +n@ —n1) ifj=1.

Proof. If j > 1, then
n— o= 5 [() = ("B 1] = 5 (P 5)

is the (i — 1)-th binomial expansion of n — n,, hence

(n — ne) " = kZ (n(k))

=J
If j=1, then n—ng=c+ 1, where c:= > i, (nSek)-——l 1). Using

Property 1.2 we get
(n—np)P=>Cc+DP=c®4+14+n2 —1=n-—nd)+ n2

and the conclusion follows O
ProPERTY 1.8. If n < m¢®, then n — ny, = n_, < m for every i > 2.

Proof. If j>1, then n=[n — nyl¢» < m¢?> and the conclusion
follows by Property 1.1. If j = 1, then as before we have n — ny, =c + 1,

where c:= > i, (ngek)_—11>. Thus if m <c¢+ 1 we get by Property 1.1
that m®? < ¢ = n — n(l) < n, a contradiction. |

In the followmg we say that n is i-regular if n(k) = n(j) + k& — j for
every k= j, -

ProPErTY 1.9. If n is i-regular and n > i, then ny, is i-regular.
Proof. Since n > 1 and n is i-regular, n(j) > j, hence the i-binomial
expansion of ng, is ng, = > i, (n)(k)k_ 1). The conclusion follows |

PropERrTY 1.10. If n is i-regular, then n — n, is (i — 1)-regular.
Proof. Since n — ng, = 3.k, (n(k) P 1) the result it clear if j > 1.

If j = 1, then we have n — n, = Y i l(n(k)——— 1) > 2(n(1) tk —11 - 1)

F1= 3 (n(l) —l—ss — 1) — (n(l)l-i_—_ Ll-— 1) 0

ProPERTY 1.11. Let j =1 and p be the maximum integer such that
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n(p) =n(2)+p—2. Then p>2 and we have the following (i — 1)-expansion
of n_,.

nL=n—ng = (ngl)_ 2t (n(p +D- 1) + (n(z)p P 2)
Proof. We have

n—ng = Z ("%,k)_ 11> 1

+
‘ (n(k) 11) n i(n(2)+ k— 3) 11
= EH (ngek) 11> : (n(2) +m — 2)
(Y4 (0,

This proves our assertion.

O
We define 6,(n) := n(i) — i and remark that §,(n) > n(k) — k for every
k= j’ :

<oy 0.

We define nq, := n and inductively n.q, := (e -0

ProPERTY 1.12. For all r > 5,(n) we have

,
@y
nv = ;Z(‘; Ny

Proof. We have n®> =3, (ngek)_i_+11> and Ny = k- <n(k) >

Hence we get

- Z:j(n%k)—}:!—l 1) _ k;( ;; ( (k)k ))

as wanted

PropPERTY 1.13. Let i >2, n>0, 6:=d,(n). Then we have

a) Ifi>1, 3 (n — nwi-ey = N, for every r >4
b) Letj=1 and r > 3; then

; (n — na-vo = 1+ n(2) — n(1).

https://doi.org/10.1017/50027763000003640 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003640

GENERATORS OF IDEALS 47
c) Let j=1 and p the maximum integer such that n(p) = n(2) + p
— 2; then

n+ n(2) — n(1) ifp<i

&~ noavo = {n + @ —nd -1 ifp=i.

d) If n is i-regular then

Il
;} (n — ng)anw =N

e) For every r > d we have

r
;; (n — M)y =1

Proof. If j > 1, it is clear that § = 6, ,(n — n,), hence

r
;‘.,(n — M- = (0 — NP =n

where the first equality follows by Property 1.12 and the second by Pro-
perty 1.7. This proves a).

Let j=1 and r>4. It is clear that 6,,, (n — ny) <3+ 1, hence
we get

tZ:.) (n — n(i))(i—l}(l) =(n— Ny =D = n 4+ n(2) — n(l)

again by the same properties. This proves b).
Let j =1 and p < i. Then it is clear that §,., (n — ng,) = 6, hence

3
;}(n — M-y = (B — n) P =n + n(2) — n(1).
This proves the first case of c).

Nowlet j=1and p=1i. Thenn_, = (n(2)i+_l - 2) by Property 1.11.
Hence 6, (n.)=n@ —1and 6 =n@) —i=n2) +i—2—1i=n2) — 2,
hence

Z_;,) (n—l)(i—l)(t) = (n-l)<i_1> - (n—l)(i—l)(n(Z)—l)
= nt @ — o - (MO T2 @)
=n+n?2 —nld —1.

This proves the second case of c).
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Finally d) and e) are easy consequences of the previous assertions.

§2. Theorems of Macaulay, Stanley, Green and lex-segments

Let A be a standard k-algebra i.e. A = R/I = k[x,, - - -, x,]/I where
deg(x,)=1 for i=1,.-.,h and I is a homogeneous ideal. As usual
H ,(n) denotes the dimension of the k-vectorspace A, of elements of degree
n of A and H, is called the Hilbert function of A. Let Ty be the monoid
of terms in x,, ---, x, i.e. Tp:= {(x* - xi*/a, e N} and let deglex (short
from for degree-lexicographic ordering) denote the total ordering on T
defined by the following rule: x* ... x> xi* ... x2» if the first non zero
(from the left) coordinate of (3, (a, — b,), a;, — b,, - - -, @, — b,) is positive.
For every n, the terms of degree n of R are totally ordered by lex. For
instance if A =3 and n =2 we get a2 > x,x, > 2,0, > xI > x,%, > x2. It
makes therefore sense to talk about lex-segments. In the following we
only consider segments of terms in R, starting from the first one i.e. x?;
for instance x%, x.x,, x,x, is a lex-segment.

DeriniTION. Let I = @1, be a graded ideal of k[x,, ---, x,]. We say
that I is a lex-segment ideal if I, is generated as a k-vectorspace by a
lex-segment of terms for every n.

Let us now recall the following theorems of Macaulay, Stanley and
Green.

TuEOREM 2.1. Let V be a k-subvectorspace of R, and let W be the
k-subvectorspace of R, generated by the lex-segment of length dim V. Then

a) R, W is generated by a lex-segment

b) dim (R, W) < dim (R, V).

Proof. See Macaulay (1927) (|

THEOREM 2.2. Let H: N — N be a function and let k be any field.
The following conditions are equivalent
a) There exists a standard k-algebra A with A, = k and with Hilbert
function H.
b) There exists a lex-segment ideal J such that H = Hy,,.
c) HO)=1 and for n >1 H(n + 1) < H(n)™.

Proof. See Stanley (1978) O

THEOREM 2.3. Let V be a k-subvectorspace of R, of codimension c.
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Let H be a general hyperplane, V,:= (V + H)/H i.e. the restriction of V
to H, and cy the codimension of V, in (R/H),. Then cy < cyy.

Proof. See Green (1988) O

THEOREM 2.4. Let W be a k-subvectorspace of R, of codimension c,
which is a lex-segment. Then

a) codim (R,W) = ¢,

Let H be a general hyperplane, Wy the restriction of W to H, and cy
the codimension of W, then

b) ¢y = cuy.

Proof. These facts are generally attributed to Stanley (1978). An
easy proof can be obtained by suitably using the arguments of Green
(1988) O

Remark. A full detailed proof of the previous theorems will appear
in (Robbiano-Valla).

ProposiTION 2.5. Let W be a k-subvectorspace of R, of codimension c,
which is a lex-segment, H = x,, W, the restriction of W to H, and cy the
codimension of W,. Then cy = c;.

Proof. Let L:= a;x, + --- + a,x, be an hyperplane satisfying b) of
Theorem 2.4 and let f be the linear automorphism of R given by f(x;,) = x;
for i=1...,h—1, f(x,) =a,x, + -+ + a,x,. Then f-YL)= x,, hence
it suffices to show that it fixes W. Let T = x{* ... x% be a term in W;
if a, = 0 then f-}(T) = T, otherwise f~'(T") is a sum of monomials, whose
associated terms are bigger than or equal to 7, hence they are in W
since W is a lex-segment. We get f-(W) € W, hence they coincide since
they have the same codimension O

CoROLLARY 2.6. Let I be a homogeneous ideal of R, A = R[I. Then
a) dim(l,,,/I,-R) < H,(n)™ — H,(n + 1) for every n.

b) dim(R,,,) — dim(I,-R) < H,(n)™ for every n.

¢c) Hn™=H,mn+1) for n>O0.

Proof. 1t is clear that a) and b) are equivalent, and b) is nothing
but Theorem 2.2 c¢) applied to the ideal generated by I,. c¢) Let J be
the lex-segment ideal with the same Hilbert function of I and let 6 be
the maximal degree of a minimal set of generators of J. If n >4 then
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of course J,-R, = J,,, hence

H(n)™ = dim(R,,,) — dim(J,,;) by 2.4 a)
and

dim (R, ,,) — dim (J,,,) = Hz/,(n + 1) = Hy(n + D).

CoroLLARY 2.7. Let I be a homogeneous ideal of R, and J the cor-
responding lex-segment ideal. Then

o

a) v) = 2, dim(L,../L,-Ry)

1

b) () < u(J)
O uJ) = 3 (Hm® — Hyn + D).

Proof. a) 1is obvious

b) o) = 3, dim (I,,,/I,-R) = ¥, @im (I,.,) — dim (I,- R,)
= 3. @m(J,,) — dim (I, R)) < 3, (dim (J,,) — dim (J, - Ry)
' ' by 2.1 b)
and S (dim (J,,,) — dim (J,-R)) = »(J) by a)

1

Q) uJ) =3, dim(,,/J,-R) by a)

hence
w(J) = f;i (dim (J,,,) — dim (R,,,) + Hy(n)™) by 24 a)
and the conqlusion follows |
DerFINITION. Given a monomial ideal I in R = k[x,, - - -, x,], we denote

by I, the image of the ideal I in R, := k[x,, - - -, x,_,] under the canon-
ical projection. It is clear that if I is a lex-segment, then I,, is a lex-
segment too.

DeriniTION. Given a homogeneous ideal I in R = k[x,, -- -, x,], we
denote by e(R/I) the multiplicity of R/I, i.e. the degree of the associated
projective scheme. We denote by indeg (I) or indeg (R/I) the minimum s
such that I, + 0.

CoroLLARY 2.8. Let J be a lex-segment ideal.

Then HR<h>,,<h>(n) = H,(n), for every n > 1.

Proof. It follows immediately from Proposition 2.5 |
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THEOREM 2.9. Let J be a zero-dimensional lex-segment ideal with
initial degree bigger than one. Then

u(J) = ”(Jaz)) + e(R<n)/J<h>)-

Proof. We have already remarked that J,,, is a lex-segment, hence
we get
()™ — Hg

USy) = 2 (Hr (n+ 1) by 2.7 c).

! ny

(n+ 1) by 2.8

! ¢y

= i;n (HA(n)(n>)<n> — Hp

! ny

iﬁ (H,(n)” — H,(n) — H, (n + 1)) by Property 1.6.

<n>/ J(h>
Cleary
e(Ralo) = n Hrpp (1) + 1.
Theorefore
W Tay) + eRarslTry)
= 30 (HAm)® — Hin) — Ha s (n+ 1 + Haypo () + 1
= S (H® = H0) + Hao (D + 1
= 3 (Hm® — Hi(n + 1) = HAD) + Hyppo, (D + 1
= 3 (H(m)® — Hin + 1)

since the initial degree of J is bigger than one.
=(J) by 2.7.c. [

CoROLLARY 2.10. Let J be a zero-dimensional lex-segment ideal with
initial degree bigger than one. Then

W) = 21 e(Reol):

Proof. We remark that J,, is a lex-segment ideal with the same
initial degree as J for i > 1, and J,, = 0 hence we can apply repeatedly
Theorem 2.9 and the conclusion follows O
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§3. Main tools

We recall the following well-known notion, which is motivated by
Theorem 2.2 c).

DErFINITION. Let H: N — N be a function. We call it an O-sequence
if HO)=1 and for all n>1 H(n + 1) < H(n)”. We call it a zero-
sequence if it is an O-sequence and H(n) = 0 for large n.

Theorem 2.2 c) says that O-sequences are those sequences which
occur as Hilbert functions of standard k-algebras and of course zero-
sequences are those which occur as Hilbert functions of zero-dimensional
standard k-algebras.

We observe that if H is an O-sequences and H(n) = 0, then H(m) = 0
for every m > n, hence zero-sequences can be represented by sequences
of type (H(1), H(2), - - -, H(n — 1), 0).

DEeFintTION. Given an O-sequence H = (1, 0), we denote by indeg (H):=
min (n/ H(n) + (H(l) -*;zn - 1)) and we call it the initial degree of H.
We remark that indeg (H) is either oo or a natural number bigger than

1; moreover if H is a zero-sequence, then either H = (1,0) or indeg (H)
< oo.

DEerFINITION. Given a zero-sequence H, we denote by socdeg (H):=
max (n/ H(n) + 0).

LEmMA 3.1. For every zero-sequence H =+ (1.0), indeg (H) < socdeg (H)

+ 1.
Proof. Let s =:socdeg(H). Then H(1)>1 and H(s+1)=0+#
H() + s
(%% 4°) =
DEerFINITION. Given an O-sequence H, we denote by H,, the sequence
defined by

inductively we define H, ) = (H¢s¢-1))¢;» We denote by H_, the sequence
defined by

H_ , :=(1,0) if H=(,0),
H_(n):=H(n+ 1) — H(n + Doy = Hin + 1)
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for every n > 0 if H -~ (1,0). We remark that we use the symbol H(n + 1)_,
instead of H(n + 1)(n + 1)_, for the sake of simplicity.

ProposiTiON 3.2. a) If H is an O-sequence, then H, , is an O-sequence.
b) If H is an O-sequence, then H_, is an O-sequence.

Proof. a) We need to show that

Hn + 1) < (H@) )™ for n > 1.
But

H(n + Dy < (H()™)niny by Property 1.3
and

H@) ™)1y = (H(m) )™ by Property 1.6

b) If H = (1,0), there is nothing to be proved. Let H + (1,0); we
need to show that

Hn+ 2), < H(n + 1)_)™ for n > 1.
But
Hn+2)_,<Hn4+1 by Property 1.8
and
Hn+ 1)< HMm+1) — Hn + D)™ by Property 1.7 O

DEeFINITION. Let H be a zero-sequence. We say that H is a TVS-
sequence (Three Values Suffice) if either
H=(@1,0) or
indeg (H) > socdeg (H) — 1 or
H(n + 1) = H(n)* for every n = indedg (H), - - -, socdeg (H) — 2.

The reason for the name is that by its very definition a TVS-sequence is
determined by H(1), H(i), H(s), where i = indeg (H), s = socdeg (H).

DeriniTION. Let H be a TVS-sequence. We say that H is a special
sequence if either

H=(1,0) or
indeg (H) > socdeg (H) or

HG) = (H(l)t i 2) ot (H(l) ' 2) where i = indeg (H).

We observe that this is a strong condition of i-regularity for H(i).
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ExamprLes. 1) H=(1,3,6,0) is special since 3= indeg(H) =
socdeg (H) + 1
2) H=(1,3,4,0) is special since 2 = indeg (H) = socdeg (H)
3y H=(1,3,6,9,12,7,0) is special since 3 = indeg (H), socdeg (H)
=5,
HE) = (3+§—2)+ (3—{—%—2)_!_ <3+ 1—2)’ H(4) = H@)®

4) H=(,3,4-10) is a TVS-sequence, but it is not special since
4 = H(2) is not of the prescribed type

5) H(,3,5,6,2,0) is not a TVS-sequence, since 6 = H(3) + H(2)®
= 7

6) H=(1,8,1,1, 0) is a TVS-sequence, but it is not special since

1=H(2)<<H(1)‘§i”2)=3.

LemMA 3.3. Let H be a zero-sequence. Then
a) H,,=(1,0) or indeg (H, ,) = indeg (H)

b) socdeg (H,,) < socdeg (H)

¢c) H.,=(1,0) or indeg(H_,) > indeg (H) — 1
d) H = (1,0) or socdeg (H_,) = socdeg (H) — 1.

Proof. a) and b) are clear.
c¢) If H_, + (1, 0) then indeg (H_,) > 2 hence the result holds trivially
if indeg (H) < 8. Now let indeg (H) > 4; then

7 = (FO 42 1) hence 7.0 = HE)., = (TP L1~ 1) = Ha).

It suffices to show that H_,(n) = (H(l) —tzn - 1) for every n < indeg (H)

— 2. And indeed H_(n) = H(n + 1), = (H(l) —%;Ln - 1) since n+ 1<
indeg (H) — 1.

d) If H=+(1,0), then the conclusion follows from the obvious fact
that ¢_, =0 if ¢ = 0. O

ProrosiTioN 3.4. a) If H is a TVS-sequence, then H , is a TVS-
sequence.

b) If H is a special sequence, then H,, is a special sequence.

Proof. a) If H = (1,0), there is nothing to be proved.

Now either H,,=(1,0) or indeg(H,,) = indeg (H); we explicitly
remark that for example H,, = (1, 0) holds for H = (1,1,1,1,0). Moreover
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socdeg (H, ,) < socdeg (H) hence indeg (H) > socdeg (H) — 1 is preserved.
Finally let H(n + 1) = H(n) for every n = indeg (H), - . -, socdeg (H) — 2.
Then

H (n+ 1) = Hn + Doy = HO ™)y = (H(N)y)™ = H (n)™

and the conclusion follows.

b) We have

Ho®) = HO = (T 75T =) g (HO =1 == 3)
where i = indeg (H). The conclusion follows since H, (1) = H(1) — 1 and
indeg (H, ,) = indeg (H) O

It is not true that if H is a TVS-sequence, then H_, is a TVS-
sequence as the following example shows.

Exampre. H=(1,3,6,3,3,1,0); H., =(1,3,3,1,0) which is not a
TVS-sequence since indeg (H_,) = 2, socdeg (H_,) = 4, 1 = H_,(3) + H_,(2)*.
However we have the following

ProposiTiON 3.5. If H is a special sequence, then H_, is a special
sequence.

Proof. If H = (1, 0) there is nothing to prove.

Let now i:= indeg (H), and s:= socdeg (H). Leti>s;if H., = (1,0)
there is nothing to prove. Otherwise by Lemma 3.3 ¢) we have indeg (H_,)
>1—1>s5—1=socdeg (H_,) by Lemma 3.3 d) and the conclusion follows.

So now we may asume that 2 <i<s hence H() = (H @ _I; i 2)

HD) +j—2

sequence.

) where i = indeg (H), by definition of special zero-

CramM. Under this assumption H(n) = H_(n) for n=20, -..,71 — 2
and for n=1,---,s — 2.

Namely H_,(n) = H(n 4+ 1)_, = (H(n)*)_, since H is TVS and (H(n)™)_,
= H(n). This concludes the proof of the Claim.

We now consider three different cases;

Case 1). j=1.
Then

H. G —1) = H()_, = ; (H(l) T 2) - (H(l).+ L= 2) = HG—1)

1 —
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hence H(n) = H_,(n) for n=20, ---,s —2. But s — 2 = socdeg (H_,) — 1
by Lemma 3.3 d) and the conclusion follows.

Case 2). 2<i and j> 1.
We show that in this case indeg (H_,) =i — 1. Namely H_,(n) = H(n)
for n < i — 2; in particular H_,(1) = H(1). Furthermore

HiG—1=H@, = (H(1>.+ i— 3) 4oy (H(l)_+j - 3)

1—1 Jj—1
H1) 41— 2
<("ML7)

whence indeg (H_.)) =i — 1. To show that H_, is a TVS-sequence we
only need to prove that H_,(0) = H_,(i — 1)¢-?. Indeed H_,(i) = H(@) by
the Claim, and

H_ (i — )¢ = (H@.)¢ P = H@) by Property 1.7.

Finally, since H_,(1) = H(1) and

Ho—1) = HG)., — (H(l)i—til— 3) - <H(13_J:j1— 3>,

we get the required formula for the speciality of H_,

Case 3). i =2 and j > 1 hence j = 2.

We may assume H(1) > 1 otherwise H_, = (1,0). We get H(2) =
(Hél)) hence H_,(1) = H(2)., = H(1) — 1> 0. By the Claim we get H_,(n)
= H(n) for n=2,...,s — 2. Since H is a TVS-sequence and H(2) =
(Hél)), it follows that

H_(n) = (H(l) tn- 2) _ <H(1) — 1n+ n— 1) .

This proves that indeg (H_,) > s — 1 = socdeg (H_,) and the conclusion
follows O

DErFINITION. Given a zero-sequence H, we denote by e(H) := i}z H()
0

and we call it the multiplicity of H. We remark that e(H) > 1 for every
H and equality holds iff H = (1, 0).

LEMMA 3.6. Let H be a =zero-sequence, H #+ (1,0). Then e(H) =
e(H;,) + e(H.,).
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Proof. e(H,,) = 2:]1 H(i);

e(Ho) = 3 HA() = S HG + Do = 2 HG)-.

Hence
elH) + e(H-) = 1+ Y (H) + HO).) = 1+ S HO = eH) O

Lemma 3.7. Let H be a zero-sequence. Then 5,(H(n)) > §,..(H(n + 1))
for every n > 0.

Proof. It is an easy consequence of Theorem 2.2 c¢) and Property 1.1
0O
DeriniTiON. Let H, K be zero-sequences. We write H.-> K if H(n)
> K(n) for every n =0, - - -, socdeg (H) — 1.

LEMmA 3.8. Let H, K be zero-sequences. If H-> K, then H_,-> K _,
and H ,-> K.

Proof. The proof easily follows from Property 1.5 and Property 1.3
O

MaiN LEmMaA 3.9. Let H, K be zero-sequences and assume that H be
special. Let i:= indeg (H), s:= socdeg (H) and if s > 0 let

H(s): = <ngs)) + (n(s — 1)) 4ot (n(jj))

s—1

be the s-expansion of H(s). If H-> K and e(H) > e(K) then
a) e(H< >) > e(K< ))
b) If moreover n(j) > j and e(H) > e(K) then e(H ) > e(K ).

Proof. It is enough to prove a). For, we may assume s > 0, otherwise
b) is empty. So let n(j) > j and e(H) > e(K). We have

H(s) — 1= (ngs)) n (ngs:11)> N (ngj)) _1
_ (ngs)) 4 (ngs:ll)) TR <n§jl+l 1)
I (n(j)j-— 1) oy (n(j)l— j)

hence (H(s) — 1) = (H(8)) — 1.
Let H:=(1,HQ), ---,H(s — 1), H(s) — 1,0); then e(H)=e(H') + 1
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hence e(H’) > e(K). It is easy to check that H’ is special and H’-> K.
By a) we get e(H{,) > e(K,,) and from (H(s) — 1), = (H(8)),, — 1 we get
e(H') y = e(H;,) — 1.

We now prove the theorem by induction ons. If s = 0i.e. H=(1,0),
the conclusion is trivial. Let s > 0. If K = (1,0) there is nothing to
prove. If K = (1,0) we have e(H) = e(H,,) + e(H_,) and e(K) = e(K,,) +
e(K_)) by Lemma 36. Let c¢:= e(H) — e(K); then ¢ >0 and a) is equi-
valent to

a’) e(H,) <e+ e(K.).
Let us assume by contradiction that
@ e(H ;) > e+ e(K_y).

By Proposition 3.5 we have that H_, is special. By Lemma 3.8 we get
H,->K, and (H.)yn > K. )3 for every r>0. By Lemma 3.3
socdeg (H_,) = s — 1; by Proposition 3.4 the O-sequences (H_),., are
special, hence we can apply induction and we get

(2) e((H—l)( >(r)) = e((K—1)< )(r)) for every r > 1.

If d is any natural number, we sum (1) and (2) for r = 1 to d and we get

d d

6] ZO:r e((H—1)< )(r)) > e+ Zolr e((K—1)< >(r)) .

By definition
(H—l)( Mry = (19 (H(2)—1)(1)(r)} R (H(s)—l)(x —1)(7)> O)

hence
e(H ) 500 = 1+ o (Hm + D )nen)

and the like for (K_,),,,. If ¢ denotes socdeg (K) then (3) can be rewrit-
ten as

@ L+ d+ 5 (3 HE + Do)
Seql4d+ ;1 (}dj (K(n + 1)-1)@(7)) .

We treat separately two different cases;

Case 1. i>s
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By Lemma 3.1 we get i=s+ 1 and this means that H() =
(H(1)+il—1> for i =0, .-.,5 and H()) = 0 for i > s.

Let d:=4,(H(Q1)) = H(1) — 1; If s = 1 then H(1) > K(1) since e(H) >
e(K); If s> 1, then H(1) > K(1) since H-> K. In any case it is clear
that d = 6,(H(n)) for n=1, ...,5s and d > §,(K(n)) for n=1,..-,¢ by
Property 1.1 and Lemma 3.7.

Now use (4) and Property 1.13 a) and e); we get

®) 1+d+§nH<n+1>>e+1+d+2nK<n+1>

Se+14+KD—145,Kn+1)
hence
(6) e(H) — 1> e(H) — e(K) + e(K) — 1 a contradiction.
Case 2. 1<s
Let d:= 6,(H(i))). We observe that §,(H()) = H(1) — 2 since H is
special. Being H-> K we have H(i) > K(i) hence d > §,(H(n)) for n =

i, ---,s and d > 6,(K(n)) for n=1, ---,t by Property 1.1 and Lemma 3.7.
We treat separately two subcases;

Subcase 2.1. j>1
We put

A= T (5 HO 4+ D Do) and B= 3 (3 Ko+ D) -

+1 +1

We know that H-> K, hence Hn+ 1) > K(n + 1) for n=0, ---,i — 2,
hence A > B by Property 1.5 and Property 1.3. Adding this inequality
to (4) and subtracting d from both sides, we get

(T2 1+ T (5 HO A+ D) + S (30 HO+ DD
> et 14 T (33 K+ Dodnen) + 2o (31 B+ D)D)

Now H is special, hence §,,,(Hn +1)=d=HQ)—2forn+1=14, ...,
s —1. We get

d
ZOIT Hn+ 1) )y =Hn+1) forn+1=4i,---,8s—1
by Property 1.13 d)
and also
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d
> (H(8)-1)¢s-15n = H(s), being j > 1, by Property 1.13 a).
0

Moreover Property 1.13 d) also implies that f_‘,, Hm+ 1) Dy = Hn + 1)
0

forn4+1=1,...,i—1 being H(n + 1) a binomial coefficient.

Therefore the left hand side of (7a) is e(H) — H(1), while the right
hand side is greater than or equal to ¢ + e(K) — K(1), again by Property
1.13 e). We deduce e(H) — H(1) > e(H) — e(K) + e(K) — K(1). Being
H@1) > K1), we get a contradiction.

Subcase 2.2. j=1
Let p be the maximum integer such that n(p) = n(2) + p — 2. Then
of course p > 2 and

H@. = ("0 7Y + o (P DY) o (n@ 4P -2

by Property 1.11.
By the inductive assumption, we may assume that the theorem holds
for zero-sequences H’, K’ with socdeg (H’) < s. By (1) and the equality

(H(S) -1)es -1y = (n(s)s——11~ r> I (n(P + 11)— 1— r)

+ (n(2) —|ID p—~—12 - r)

we may apply by until n2 +p -2 —r—(p—1)=n@ —r—-1>0.
We get strict inequalities in formulae (2) i.e.

(2,) e((H—1)< )(r)) -1 = e((K—1)< )(n) for every r = 1) ) n(2) — L
Subcase 2.2.1. d > n(2) — 1
We sum (1), (2) for r=1 to n(2) — 1, (2) for r = n(2), - .-, d and we

get
3) i::'r e(H.) ymy) — M2 +1> ¢+ i:j, e((K_1)¢ yry)

hence as before
s=1 d
@) L4 d+ 5 (2 e+ Dodnen) — 1) + 1

t-1 d
>e4+14+d+ ;n (2037 (K(n + 1)—1)<n>(r)>
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Now we proceed as in subcase 2.1; hence we put

A= ZZ::Zn (‘;r (H(n + 1)—1)<n>m> and B = gn (:;17’ (K(n + 1)—1)(n>(r))'

We know that H-> K, hence Hn+ 1) >K(n+1) for n+1=1,--.-,
i — 1, hence A > B by Property 1.5 and Property 1.3.

Adding this inequality to (4’) and subtracting d from both sides, we
get

) 14 5 (50 H o+ D aoen) + S (30 HO+ D Jenen) = @) +1
> et 14 3 (3 K0+ D D) + 2o (20 K+ Dodnen)-

Now H is special, hence §,,,(H(n + 1)) =d=HQ1) —2forn+1=14, ---,
s — 1. We use Property 1.13 d) and we get

d

Zr(H(n+1)—1)(n)(1):H(n+1) forn+1=i9"'7s——1‘

0
Now j =1 and d > n(2) — 1, hence d > n(2) — 2; if d = §,(H(s)) we cannot
have p = i. Therefore

]
ZOI, (H(S) -1)¢s 130y = H(S) + n(2) — n(1) by Property 1.13 c).
Moreover Property 1.13 d) also implies that
SeHA A D Do) = Ho+1D) fornt+1=1---i-1

being H(n + 1) a binomial coefficient. Therefore the left hand side of
(7b) is

e(H) + n(2) — n(l) — n(2) + 1 — HQ) = e(H) + 1 — n(1) — H(Q),

while the right hand side is greater than or equal to ¢+ e(K) — K(1),
again by Property 1.13 e¢). We deduce

e(H)+1—n1) — HQ) > e(H) — e(K) + e(K) — K(1).
Being H(1) > K1) and n(1) > 1, we get a contradiction
Subcase 2.2.2. d < n(2) —1
We sum (1), (2) for r =1 to d and we get

@) S el(H o)) — d> ¢+ 20 el(K Do)
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hence as before
s-1 d
(4") 1 + d + Zln <ZOIT (H(n + 1)‘1)(7l>(7')> —d
t-1 d
>ed+14+d+ len (Zﬁ:r (K(n + 1)—1)<n><r)) .

We have n(2) — 2 < §,(H(s)) < d < n(2) — 1 hence d = 5,(H(s)) = n(2) — 2.
This implies p = i, hence

[
ZO], (H(S)-1)¢o -1y = H(s) + n(2) — n(1) — 1 by Property 1.13.

Now we proceed as in case 2.2.1 and we get
eH) —d+n@) —nl)— H1) — 1> e(H) — e(K) + e(K) — K(1) hence
e(H) — n(2) + 2+ n@ — nl) — H1) — 1 > e(H) — e(K) + e(K) — KQ).
As before, being H(1) > K(1) and n(1) > 1, we get a contradiction O

THEOREM 3.10. Let J be a zero-dimensional lex-segment ideal in R =
Rklx, - -, %), J S (x, -+, x,)%; let I be a homogeneous zero-dimensional
ideal in R' = k[x,, ---, %], I S (%, - - -, x3)". Let Hpg,; be special, Hyp,; >
Hy,y, e(RIT) > e(R'[I). Then v(J) > v(I).

Proof. The assumptions imply that Hp,,(1) = h and Hy, /(1) = KA. If
socdeg (Hy,;) > 1 then Hgj;- > Hy,; implies that A > #'. If socdeg (Hy,,)
=1 then J = (x,, - - -, x,)%, hence e(R/J) = h + 1> e(R'/]) > I 4+ 1. Also
in this case we get A > h’. By Corollary 2.7 we may assume [ to be a
lex-segment.

Now (Hp,,) i is special for every r by Proposition 3.4 b). Moreover
(Hg11)¢ iy - = (Hgy1)¢ 5y for every r, by Lemma 3.8. By repeated application
of Main Lemma 3.9 we get e(Hgz,s) stn) = e(Hpy1)¢ ) for r=1, ... A,
Hence by Lemma 2.8,

e(klx, - -, xh](h—r+1)/J(h—r+1>) > e(k[x,, - - -, xh’](h'—r+1)/1(h’—r+l)
forr=1,..-, k.
Therefore

L »
w(J) = le'r e(klx, - - -, xh](h-r+1)/J(h—-r+l)) > er e(klx, ---, xh.](h.—-'r+l)/J(h.—r+l))

w
T

> D elklx, -y Xpdn—r o/ Lnrrary) = (I) by Corollary 2.10 [
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CoroLLARY 3.11. With the same assumptions as in 3.10, if h > h’ or
indeg (R/J) > indeg (R/I), then v(J) > v(I).

Proof. If h > I, then

n W
u(J) = E;r e(klx,, - - -, xh](n—r+1>/J<n—r+1>) > Zl:r e(klx;, - - -, xh](n—'r+1)/J(h—r+l))
W
2 gr e(k[xla ) xh’](h’—r+1)/I<h'—r+1) = l)(I)

Now let A = A’ and indeg (R/J) > indeg (R/I). We know that
indeg (k[x,, - - -, %3]/ ) = indeg (R/J) and
indeg (k[x,, - - -, %)/ L) = indeg (R/I) by Lemma 3.3 a);
moreover it is clear that
e(R[x,, - - -, %)/ ;) = indeg (R[x,, - - -, X4](n/Jn,) and

e(k[x,, - -+, xh](z)/I@)) = indeg (k[x,, - - -, xn](z)/I@)), hence
e(klx,, - - -, xh](Z)/J<2)) > e(k[x, - - -, xh](2)/I(2))‘

We use again

n n
V(J) = Zl.—_:r e(k[xl’ tt xh](h-r+1)/J<h—r+1>) 2 Zl;r e(k[xl’ Tty xh](h-r+l>/J<h-r+1>)
n
> z;.r e(klx, -+ -, x, ](n’—r+l)/I(h'—r+1)) =(I)
and we see that one of the inequalities is strict O

§4. Main Theorems

DeriniTION. Given two positive integers e, h, with e > h + 1, we
define ¢ = #(e, h) as the unique integer such that

(FET ) <e<(*T?) wma r=rto=e- ("I

We remark that ¢ > 2.

LeMMA 4.1. Given two positive integers e, h, with e > h + 1, there
exists a unique zero-sequence H = H(e, h), such that

a) eH)=e

b) Hl) =nh

¢) socdeg(H) =1t if r>0, socdeg(H)y=t—1ifr=20

d) indeg(H) =1t
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Moreover such H is special.

Proof. It is clear that

_ h+1 h+t—2
H-(Lh’( 2 ))"'7( t—1 ),T,O)

is the unique zero-sequence satisfying all the conditions O

DerFiNITION. Given e, h as before, we define J = J(e, h) as the unique
lex-segment ideal in R = R[x,, - - -, x,] such that Hy,, = H(e, h).

ProrosiTiOoN 4.2. Given e, h as before, we have
e )= (" T[T —r e,

Proof. We know from Lemma 4.1 that

h4+1 h+t—2
HR/J=<1’h’< :9_"- ):"';( ?__1 ),r,O).

We use Corollary 2.7 and the conclusion follows immediately O

DeriniTION. Given three positive integers e, h, i with e > h + 1, i <
t(e, h), we define s = s(e, h, i) as the unique integer such that
h+s—1 h4+s—i—1 h+ s h+s—1i
() -Creiir)=e< (P ) - ("2

We observe that such s is well defined since the function

f(n):= <h—:n)__(h+n_—i)

n—1

is increasing. We define

b= (VAT (10T

LEMMA 4.3. Given three positive integers e, h, i with e > h +1, 2 <
i < tle, h), there exists a unique zero-sequence H = H(e, h, i) such that

a) eH)=e¢e

b) H1l)=h

c) indeg(H) =1

d) H(i):(h+§—1)—1

e) His TVS.
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Moreover such H is special.

Proof. We have

<h+?—g_1=<h+§—3+«h+i;ﬂ+“”+«h;3.

l_—

Let H be the zero-sequence defined by
H(n):=<h+z_1) forn=20,...,i —1;

Ho=("T1 ) 1= (P )+ (P07

l i
H(n 4 1) = H(n)*® forn=14,-.-,8—2
H(s) =r;
H(n) =0 for n > s.

We remark that °

H(n)=<h+z_l>—(h+;::§_l) forn=4i,---,8 =1,

hence we have

St =("3I0Y) - ("TET)

Therefore e(H) = e and the other properties are clearly satisfied O

DeFinNITION. Given e, h, i as before, we define J = J (e, h,1) as the
unique lex-segment ideal in R = k[x,, - - -, x,] such that Hy,, = H(e, h, i).

ProprosiTION 4.4. Given e, h, i as before, we have

E R S G B b dnt ) B

Proof. From Lemma 4.3 we know H(e, h, i) hence Hy,,. The conclusion
follows again from Corollary 2.7 and a simple computation. O
DerFINITION. Given four integers e, A, i, p with e > h + 1, i < (e, h),
0<p< (h + i - 1), we define p as the least i-regular integer which is

14

h+g—5_1
L :

bigger than or equal to max (p, (h +i- 2)) Since (h + ; - 1) —1>p

and it is i-regular, we have p < (
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Let (h + i - 2) 4+ o+ (h +§ - 2) be the i-binomial expansion of

p and let s = s(e, h, i, p) be the unique integer such that

<h+s—1 (ht+s—i+j—2 +(h+j—2)
s —1 s—id+j-2 )

h+s h+s—i4+j—1 h+j—2)

<e<(*] ) - ("l )+< ji-2 )

We observe that such s is well defined since the function

f(n):= (h;f”) —(h:f{l;rlfl)+(hfiz—2)

is increasing. We define

rentee= (T (10 )~

LemmA 4.5. Given four integers e, h, i, p with e > h + 1, 2 < i < (e, h),
0<p< (h + ; B 1), there exists a unique zero-sequence H = H(e, h, i, p)

such that
a) eH)=-e¢e
b) Hl)=nh
c) indeg(H) =1
d H@=Dp
e) His TVS

Moreover such H is special.

Proof. We have‘p‘=<h+§_2>+ +(h+§“2>. Let H be the

zero-sequence defined by

H(n):=<h+n~1) for n=20,.--,7i —1;

n

S (hti—2 htj—2\_ (h+i—1\_ (h+]—2\.
HO=("T; 7+ (T =) - (T
H(n + 1) = H(n)™™ forn=14 .--,8 =2,
H(s) =r;

H(n) =0 for n > s.
We remark that

o= (5 (R e
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hence we have
st h+n—1 h+n—i+4j—2
Sl =5 ( )-SR
=S (h+n-—1 h+n—z+j—2 h+n——L+]—2)
_Z"( n ) 4?"( n—i+j—1 )+Z”< n—i+j—1

SR CEE )+ ()

s—1 s—i1+j—2 Jj—2
Therefore e(H) = e and the other properties are clearly satisfied O
DerFiNITION. Given e, A, i, p as before, we define J = J(e, h,i,p) as
the unique lex-segment ideal in R = k[x,, - - -, x,] such that Hy,, = H(e, A,
, D).

ProposiTION 4.6. Given e, h, i, p as before, we have

u(J(e, h, i, p))
(h+]—2>+<h+s—1> <h+s—l+]-2>_r+r<s>_

Jj—1 s s—i+j—1
Proof. From Lemma 4.5 we know H(e, h, i, p) hence Hy,,. The con-
clusion follows again from Corollary 2.7 and a simple computation O

In the following when we say that a homogeneous polynomial ideal
I has multiplicity e, we mean that I is an ideal of a polynomial ring R
such that R/I has multiplicity e.

DEerFINITION. Given a positive integer e we define F(e) to be the
family of zero-dimensional homogeneous polynomial ideals with multiplicity
e. Given two positive integers e, h with e > h + 1 we define F(e, h) to be
the family of zero-dimensional homogeneous ideals I in R:= E[x,, - - -, x,]
with I C (x, - - -, x,)* and multiplicity e. Given three positive integers e,
h,i, withe>h +1, 2<i<te h) (see definition before Lemma 4.1), we
define F (e, h, i) to be the family of zero-dimensional homogeneous ideals I
in R:= k[x,, ---, x,] with I C (x,, - --, x,)%, multiplicity e and indeg (R/I)
= 1. Given four positive integers e, h, i, p, withe > h + 1, 2 < i < i(e, h)
and 0 < p < (h + ; + 1), we define F(e, h, i, p) to be the family of zero-
dimensional homogeneous ideals I in R:= k[x,, ---, x,] with I & (x;, - - -,
x,)%, multiplicity e, indeg (R/I) =i and Hy,,(i) = p

THEOREM 4.7. 1) The ideal (x,, - - -, x,_,)" of k[x,, - - -, x,_,] is in F(e)
and v(I) < v((x), -+ -, x,_1)) = (;) for every ideal I in Z(e).
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2) The ideal J(e, h) is in F(e, h) and
u(I) < v(J(e, h)) = ; —r 4+ for every ideal I in F(e, h).

3) The ideal J(e, h,i) is in F(e, h,1) and

s s—1
for every ideal I in (e, h, ).

4) The ideal J(e, h,i,p) is in Fe, h,i,p) and
D < e hipy=(PTI TR (Are =) (hraoivi T
—r+re for every ideal I in Z (e, h, i, p).

Proof. The ideals (x,, - - -, x,.,)% J(e, h), J(e, h,i) and J(e, h, i, p) have
special Hilbert functions by Lemma 4.1, Lemma 4.3, Lemma 4.5. Moreover
H.,;-> Hy,; by the very definition of J (here J means (x,, ---, x,_,)* or
J(e, h) or J(e, h,i) or J(e, h,i,p)). Hence the conclusion follows from
Theorem 3.10 O

(D <ude b i) =1+ (P TS o (BHETITY) o

THEOREM 4.8. 1) u(J(e, h, i, p)) < u(J(e, h,i,q) if p< q

2) w(J(e, h,i,p)) < u(J(e, h, i)) < (e, h)

3) uJ(e h, D) < u(Je h,i+ 1))

4) v(J(e, h)) < v(J(e, b + 1))

5 uJ(e h,i,p) <u(J(e+1,h,i,p); v(J(e h, i) < v+ 1,k D);
w(J(e, b)) < v(J(e + 1, b))

Proof. Along the lines of the proof of Theorem 4.7, the conclusions
follow from Theorem 3.10 and Corollary 3.11 O

ExampLEs 1) Let J = (&% xy, x2% y*, y°2%, ¥*2°, y2*, 2°); then H:= Hy,
=(1,3,4,5,4,0). Let I=(x%xy,x2 5’ y'2, ¥z y*2* yz*, 2°); then K:=
Hg;=(1,8,4,4,5,0). Then e(R/J)=e(R/I)=17 and H-> K; H,, = (1,
2,1,1,0), K., =(1,2,1,1,1,0), hence e(H,,) < e(K,,). This shows that in
the Main Lemma 3.9 we cannot delete the assumption of speciality on H.

Moreover y(J) = 8, v(I) = 9; this shows that also in Theorem 3.10
we cannot delete the assumption of speciality on H.

2) Let R:= k[x,, x,, x,], J = J(64, 3, 2); by Proposition 4.4, v(J) = 18.
Let J’' = J(64, 3, 3,4); by Proposition 4.6, v(J’) = 17. This shows that
(e, h, 1)) < w(J(e, h,i + 1, p)) does not hold for every p.
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§ 5. Applications
Perfect ideals in regular local rings

In the following we are going to use some well-known properties of
local algebra, in particular the theory of reductions. All the necessary
details can be found for instance in Herrmann-lkeda-Orbanz (1988). Let
(R, m, k) be a regular local ring and a an ideal in R. Let i = indeg (a)
be the maximum integer n such that o < m".

DerFiNITION. Given a positive integer e we define

CM(e) to be the family of perfect ideals a in regular local rings
(R, m, k) with e(R/a) = e. Given two positive integers e, h with e > h + 1,
we define

CM(e, h) to be the family of perfect codimension h ideals a in regular
local rings (R, m, k) with a & m? and e(R/a) = e. Given three positive
integers e, h, i, with e > h 4+ 1, 2 < i < t(e, h) (see definition before Lemma
4.1), we define

CM(e, h,i) to be the family of perfect codimension % ideals a in
regular local rings (R, m, k) with a & m? indeg(a) =i and e(R/a) = e.
Given four positive integers e, h, i, p, with e > h 4+ 1, 2 < i < t(e, h) and

ngg(h_i-i:_l), we define

CM(e, h,i,p) to be the family of perfect codimension % ideals a in
regular local rings (R, m, k) with o € m? indeg(a) =i, Hg,(i) =p and
e(Rla) = e.

In the following theorem we use the notations of Section 4.
THEOREM 5.1. 1) Let (R, m, k) be a regular local ring of dimension
e — 1. The ideal m? is in CM(e) and v(a) < v(m?) = <§) for every ideal «
in CM(e).
. . h+t—1 o
2) For every ideal a in CM(e, h), v(a) < ; —r4re,
3) For every ideal a in CM(e, h, i),

A®g1+(h+§_5—(h+s“’_5—r+ﬂ?

s —1

4) For every ideal a in CM(e, h, i, p),

Rtj—2\, (h+s—1\ (h+s—i+j—2\ .
< ("7 (T (L) e
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Proof. Tt is well-known that there exists a minimal reduction x:=
Xy, +++y Xy, Of mmoda, such that indeg (a) = indeg (a + (x)/(x)) (Elias-
Iarrobino (1987)).

Let R:= R/(x); a:= a + (x)/(x); M:= m/(x). Then (R, i, k) is a regu-
lar local ring of dimension A and G:= gr.(R/d) = k[x,, - - -, x,]/I, where
I = in,@) is a homogeneous ideal contained in (%, - - -, x,)%.. We get v(a)
= (@) since x is a regular sequence mod a and y(@) < v(I), since every
standard basis is a basis. Clearly indeg (a) = indeg (@) = indeg (I), h =
codim (I) and e(R/a) = e(R/a) = e(k[x,, - - -, x,]/I).

Hence the conclusions follows from Theorem 4.7 O

Remark 1. It is clear that the conclusions of Theorem 5.1 apply as
well to perfect homogeneous ideals of polynomial rings.

Remark 2. Let R = k[x,y] and I = (x)N(x,y)". Then e(R/I)=1
while v(I) = n. This shows that Theorem 5.1 does not extend to non
perfect ideals.

Codimension 2 perfect ideals.

ProposiTioN 5.2. Let (R, m, k) be a regular local ring and a a perfect
codimension 2 ideal in R. Then v(a) < indeg (a) + 1.

Proof. As in the proof of Theorem 5.1 we have v(a) < v(I), where I
is a homogeneous zero-dimensional ideal of R = k[x,, x,]. By Corollary 2.7
we get v(I) < u(J) where J is a lex-segment ideal of R = k[x,, x,]. We
apply Corollary 2.10 and we get u(J) = e(Ryy/dqu) + e(Re/dey). But
e(Ryy/J ) = 1 and clearly e(Ry/d,,) = indeg (J).

Since indeg (J) = indeg (a), the conclusion follows O

Powers of maximal ideals.

ProposiTiON 5.3. a) Let I be a perfect codimension h ideal of a
regular local ring (R, m). Assume that v(I) = (h + i - 1) and e(R[I) =

(h TrT 1). Then indeg (I) > t.
b) If moreover dim (R/I) = 0, then I = m".
Proof. a) If indeg (I) =i < t, then Ie CM(e, A, i), hence v(I) < (J{(e,
h, 1)) by Theorem 5.1 and v(J(e, A, i)) < v(J(e, h, t)) < v(J(e, B)) by Theorem

48 2) and 3). Now u(J(e, h)) = (h - 1) by Proposition 4.2.
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b) By a) we get I m!. It I < m’ then e(R/I) = I(R/I) > (R/m’) =
<h ;'__t ; 1), where [/ denotes length, a contradiction. O

Asymptotic formulae.

In the following if {@,} and {b,} are sequences of positive real num-
bers, we write {a,} ~ {b,} if lim,_. a,/b, = 1. We are interested in the
asymptotic behaviour of the sequences u(J(e, h)) and u(J(e, h, 1)), where
we let e tend to infinity, while A and i are kept fixed.

THEOREM 5.4. a) {u(J(e, h))} ~ {(h/% hl)e-""}.
b) Let ki= h — 1; then {J(e, h, i)} ~ {§/7 (k/¥/EDe-"¥).

Proof. a) We first compute the asymptotic behaviour of the subse-

quences {v,,} of {v,} := {v(J(e, h))}, where e, := <h j'_t_ —1_ 1). We know from

Proposition 4.2 that v, = (h + ﬁ - 1) = (t —Z }iz 1>, hence tv,, = he,.
Since v,, is a polynomial in ¢ with leading term ¢*~!/(h — 1)!, it is clear
that {v,,} ~ {t*!/(h — 1)}, hence {v,,} ~ {(he,)*"'/(h — 1)!(v,,)"""} which im-
plies {(v,)"} ~ {(he)* '[(h — 1)!} = {h"e}'/h!}, whence {v,} ~ {(h/VRh)e}"V/"}.

In general, given e we let ¢:= i(e, h) (see Section 4). Proposition 4.2
implies v, <v, <v,,,,. Let ¢,:= (h/¥hle!""*; then ¢, < ¢, < ¢.,,, hence
el e @il Pers) = VelPorrs S Velpe < Voral@e, = WeralPers) @erialpe). Now it
suffices to prove that {o,} ~ {¢.,.,}. For, it is enough to show that {e,}

~ {e,,;} and this is true since they are polynomials in ¢ with the same
leading term.

b) We first compute the asymptotic behaviour of the subsequence
Po} of fudi= p(e by D)), where ei= (P TS )~ (P EESETY),
We know from Proposition 4.4 that

N I TS !

It is easy to see that e, and v,, are polynomials in s with leading term
@is*~Y/(h — 1)! and (is*-%)/(h — 2)! respectively. We get {(h — 1)e,} ~ {sv..},
therefore {v,.} ~ {il[(h — De,]*"%/(h — 2)!(v,)*"?}, which implies

{1} ~ {l(h = DeJ**/(h — D)1} = {i(h — D*'e™*/(h — DI},

whence {v,} ={¥1 (k/¥E!)e}-V".
The general case can be handled as in a) ]
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Ideals of points in P,

Let I be the defining ideal of a set X:= {P,, .-+, P,} of e distinct
points in P*. In the following proposition we use the notations of sec-
tion 4

ProposITION 5.5. a) o) < (h + i - 1) —r 4o,

b) If i is the minimal degree of hypersurfaces containing X, then

p(1)£1+(h+z—1>_(h—l-s-i—l)_r_*_rm.

s —1

¢) If i is the minimal degree of hypersurfaces containing X and p is
the number of independent conditions imposed by X on the linear system
of hypersurfaces of degree i, then
h+j—2 h+s—1 h+s—i+4j—2 5
< (V7L (P S (T IT ) e
d) All the preceding bounds are sharp.
Proof. a), b), ¢) are immediate consequences of Theorem 5.1 since I
is a perfect codimension A ideal in R := k[x,, - - -, x,] such that e(R/I) = e.
d) The bounds are attained by the monomial ideals J(e, h), J(e, h, 1),
J(e, h, i, p) respectively. By a result of Hartshorne (see Geramita-Gregory-
Roberts (1986)) monomial ideals in k[x, - - -, x,] can be lifted to ideals of
distinct points in P*, with the same number of generators, same indeg
and multiplicity O

ExampLEs. Let A = 3, e = 10. Then J(10, 3) = (x,, x;, x,)° (see Section
4) and v»(J(10, 3)) = 10. We construct a set X:= {P,, - - -, P,} of 10 distinct
points in IP?, whose defining ideal has 10 generators.

J(10, 3) = (x;, X5, X,)° = (&3, X3y, X220, X5, X, 2,05, X, X3, X3, XaXs, XoX2, X3).
This ideal can be lifted for instance to the following radical ideal I in
klxg, 2, %5y %]

I = (,(x — x)(2%, — 2x0), (%, — X)Xy, %,(%, — Xo)Xs, XyXo(X, — Xo),
XXX, XXXy — Xo), XXy — X) (X — 2%0), XXy — Xo)Xs, XoXa(y — o),
x5 — %) (%3 — 2%)).
This is the defining ideal of the following 10 points
P,=(,000); P,=(,00,1); P,=(1,0,0,2); P,=(1,0,1,0);
P,=(1,011); P,=(,0,2,0); P,=(1,1,0,0); P,=(1,1,0, 1);
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P9= (1, 1) ls 0); Pl() = (1, 2; Os 0)'

Let h=3, e=10, i =2. Then J(10, 3, 2) = (&2, x,x2, x,%,%;, X, X%, %3, x3%,,
x,x3, x3) see section 4) and v(J(10, 3, 2)) = 8. As before we construct a set
X:={P, -, Py} of 10 distinct points on a quadric of P*, whose defining
ideal has 8 generators. The points are

Pl=(1,0a0’0); P2=(150,0’1); P3=(1’090,2); P4=(1’0’0’3);
P5=(19O,1’0); P6=(130,171)’ P7=(150)2;O); P8=(1,1’O’0>;
P9=(1, 1’0; 1); P10= (1, 1, 1,0)

They lie on the quadric x,(x, — x,) = 0.
Grébner Bases of homogeneous Ideals

For an introduction to the subject see for instance Robbiano (1988).
If Iis an ideal in k[x,, - - -, x,] and ¢ is a term-ordering, then I has a unique
reduced Groébner Basis G,(I) with respect to ¢. The cardinality of G,(I)
is the same as that of the monomial ideal Lt (I). Therefore, if I is a
zero-dimensional ideal of E[x,, - - -, x,], the cardinality of G,(I) is subjected
to the bounds obtained in Corollary 2.7 and Theorem 4.7.

For example if (f, g, h) is a regular sequence of homogeneous elements
in R[x,y, 2] such that deg(f) = 2, deg(g) = 3, deg(h) =5, and I is the
ideal generated by {f, g, 4}, then e(R/I) = 30, the Hilbert function is (1, 3,
5,6,6,5,3,1,0) and the corresponding lex-segment ideal is

J = (&%, xy*, xy2*, x2*, y°, y'2°, y*20, °2°, y2t, 2°).

Since u(J) = 10, we deduce from Corollary 2.7 that every reduced Grobner
basis of I has cardinality smaller than or equal to 10.

A remark on tangent cones

Let I be a perfect ideal of a regular local ring (R, n). Very often, if
the ring (A = R/I, m = n/I) has numerical characters, which are extremal
with respect to some general inequality, the tangent cone gr,(A) is again
Cohen-Macaulay (see Sally (1977), Elias (1986), Elias-Iarrobino (1987),
Rossi-Valla (1988)). We show that this is not the case in our situation.

Let A:= K[[x,y, 2, t]]/I where I is the defining ideal of the union of
the monomial curves with parametric equations {#, ¢, t*, 0} and {0, s, 0, s%.
Then I = (»* — x*z2 — yw, x* — yz, xy* — 2%, zw, xw, y'w — w*) hence v(I) =
6 = u(J(6, 3,2)). The tangent cone is given by the equations (yw, yz, 2%
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2w, xw, W, x°z, xy°*) and the Hilbert function is H, = (1,4,4,5,5,6,6, - - -).
Therefore gr,(A) is not Cohen-Macaulay since H, is not strictly increas-

ing up to the multiplicity.

Multiplicity, Codimension, Maximum number of generators

(4, 3;6) (5,3:6) (6,3;6) (7,357 (8,357

9, 3;8) (10, 3;10) 11, 3;10) 12, 3;10) (13, 3;10)
(14, 3;11) 15, 3;11) (16, 3;11) (17, 3;12) (18, 3;12)
19, 3;13) (20, 3;15) (21, 3;15) (22, 3;15) (23, 3;15)
(24, 3;15) (25, 3;16) (26, 3;16) (27, 3,;16) (28, 3;16)
(29, 3;17) (30, 3;17) (31, 3;17 (32, 3;18) (33, 3;18)
(34, 3;19) (35, 3;21) (36, 3;21) (37, 3;21) (38, 3;21)
(39, 3;21) (40, 3;21) (41, 3;22) (42, 3;22) (43, 3;22)
(44, 3;22) (45, 3;22) (46, 3 ;23) (47, 3;23) (48, 3;23)
(49, 3;23) (50, 3;24) (51, 3;24) (52, 3;24) (63, 3;25)
(54, 3,25) (55, 3;26) (56, 3 ;28) (57, 3;28) (68, 3;28)
(59, 3;28) (60, 3;28) (61, 3;28) (62, 3;28) (63, 3;29)
(64, 3;29) (65, 3;29) (66, 3;29) (67, 3;29) (68, 3;29)
(69, 3;30) (70, 3;30) (71, 3;30) (72, 3;30) (73, 3;30)
(74, 3;31) (75, 3;31) (76, 3;31) (77, 3;31) (78, 3;32)
(79, 3;32) (80, 3;32) (81, 3;33) (82, 3,33) (83, 3;34)
(84, 3;36) (85, 3;36) (86, 3;36) (87, 3;36) (88, 3;36)
(89, 3;36) (90, 3;36) (91, 3;36) (92, 3;37) (93, 3;37)
(94, 3;37) (95, 3;37) (96, 3;37) 97, 3;37) (98, 3;37)
(99, 3;38) (100, 3;38) (101, 3;38) (102, 3;38) (108, 3;38)
(104, 3;38) (105, 3 ;39) (106, 3 ;39) (107, 3;39) (108, 3;39)
(109, 3;39) (110, 3;40) (111, 3;40) (112, 3 ;40) (113, 3;40)
(114, 3;41) (115, 3 ;41) (116, 3 ;41) (117, 3 ;42) (118, 3 ;42)
(119, 3 ;4b) (120, 3 ;45) (121, 3 ;45) (122, 3 ;45) (123, 3 ;45)
(124, 3 ;45) (125,3;45) (126, 3 ;45) (127, 3 ;45) (128, 3 ;45)
(129, 3 ;46) (130, 3 ;46) (131, 3 ;46) (132, 3 ;46) (133, 3 ;46)
(134, 3 ;46) (135, 3 ;46) (136, 3 ;46) (137, 3 ;47) (138, 3;47)
(139, 3;47) (140, 3 ;47) (141, 3;47) (142, 3 ;47) (143, 3;47)
(144, 3 ;48) (145, 3 ;48) (146, 3 ;48) (147, 3, 48) (148, 3 ;48)
(149, 3 ;48) (150, 3 ;49) (151, 3 ;49) 152, 3 ;49) (153, 3 ;49)
(154, 3 ;49) (155, 3 ;50) (156, 3 ;50) (157, 3 ;50) (158, 3;50)
(159, 3;51) (160, 3;51) (161, 3;51) (162, 3 ;62) (163, 3;52)
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Multiplicity, Codimension, Initial degree, Maximum number of generators

4,3,2;6)
9,3,2;8)

(14, 3,2;9)

19, 8,2;10)
(23, 3,2;11)
(29, 3,2;12)
(34, 3,2;13)
(39, 8,2;14)
(44, 3,2;15)
(49, 3,2,;16)
(54, 3,2,16)
(59, 3,2;17)
(64, 3,2;18)
(69, 3,2;18)
(74, 3,2;19)
(79, 3,2;19)
(84, 3, 2;20)
(89, 3,2;20)
(94, 3,2;21)
(99, 3,2;21)
(104, 3,2;22)
(109, 3,2;22)
(114, 3,2;23)
(119, 3,2;23)
(124, 3, 2,;24)
(129, 3,2;24)
(134, 3, 2;25)
(139, 3,2;25)
(144, 3, 2;26)
(149, 3, 2,;26)
(154, 3, 2;26)
(159, 3,2;27)

(5, 8,2;6)
10, 3,2;8)
15,3,2;9)
(20, 3,2;10)
(25, 3,2;12)
(30, 3,2;12)
(35, 3,2;13)
(40, 3,2;14)
(45, 3,2;15)
(50, 3,2;16)
(55, 3,2;16)
(60, 3,2;17)
(65, 3,2;18)
(70, 3,2;18)
(75, 3,2;19)
(80, 3,2;19)
(85, 3, 2;20)
(90, 3,2;20)
(95, 3,2;21)

100, 3,2;22)
(105, 3,2;22)
(110, 3, 2;22)
(115, 3,2;23)
(120, 3,2;23)
(125, 3,2 ;24)
(130, 3,2;24)
(135, 8, 2;25)
(140, 3, 2;25)
(145, 8, 2 ;26)
(150, 3, 2;26)
(155, 3, 2;26)
(160, 3,2 ;27)

6, 3,2;6)
(11, 3,2;8)
(16, 3,2;10)
(21, 3,2;11)
(26, 3,2;12)
(31, 3,2;13)
(36, 3,2;14)
(41, 3,2;14)
(46, 3,2;15)
(51, 3,2;16)
(56, 3,2;16)
61, 3,2;17)
(66, 3,2;18)
(71, 3,2;18)
(76, 3,2;19)
(81, 3,2;20)
(86, 3, 2;20)
91, 3,2;21)
(96, 3,2;21)

(101, 3,2;22)
(106, 3,2;22)
(111, 3,2;23)
(116, 3, 2;23)
(121, 3,2;24)
(126, 3, 2 ;24)
(131, 3,2;24)
(136, 3, 2;25)
(141, 3,2;25)
(146, 3, 2;26)
(151, 3, 2;26)
(156, 3, 2;26)
161, 3,2;27)
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(7,38,2;7)
12,8 2;8)
17, 3,2;10)
(22, 3,2;11)
27,3,2;12)
(32,3,2;13)
(87,3,2;14)
42, 3,2;14)
(47, 3,2;15)
(52, 3,2;16)
67, 38,2;17)
62,3,2;17)
(67, 3,2;18)
(72, 8,2;18)
(77, 3,2;19)
(82, 3,2;20)
(87, 3,2;20)
(92, 3,2;21)
(97, 3,2;21)

(102, 3, 2;22)
(107, 3, 2;22)
(112, 3,2;23)
(117, 3,2;23)
(122, 3,2;24)
(127, 3, 2 ;24)
(132, 3,2;24)
(137, 3,2 ;25)
(142, 3, 2;25)
(147, 3, 2 ;26)
(152, 3,2;26)
(157, 8,2;27)
(162, 3,2;27)

8,3,2;7
13,3,2;9)
(18, 3,2;10)
(23,3,2;11)
(28, 3,2;12)
(33,3,2;13)
(38, 3,2;14)
(43, 3,2;15)
(48, 3,2;15)
(53, 3,2;16)
(58,3,2;17)
63,3,2;17)
(68, 3,2;18)
(73,3,2;19)
(78, 3,2;19)
(83, 3,2;20)
(88, 3,2;20)
(93,3,2;21)
(98, 3,2;21)
(103, 3,2;22)
(108, 3, 2;22)
(113, 3,2;23)
(118, 3,2;23)
(123, 3,2;24)
(128, 3,2;24)
(133, 3,2;25)
(139, 3,2;25)
(143, 3, 2;25)
(148, 3, 2,;26)
(153, 3, 2;26)
(158, 3,2;27)
(163, 3,2;27)
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