NATURAL EXTENSIONS OF PROBABILITY MEASURE IN FUNCTION SPACE

R. Z. YEH
(Received 21 December 1971; revised 25 March 1974)
Communicated by C. C. Heyde

1. Background

Let $\left\{X_{t}\right\}_{t \in T}$ be a family of real (R) random variables defined on a probability space (Ω, \mathscr{A}, P) and having the ranges in a subset S of R, that is, $X_{t}(\Omega) \subset S$ for all t. Let X be the mapping of Ω into the function space S^{T}

$$
X: \Omega \rightarrow S^{T}
$$

such that for any $\omega \in \Omega$

$$
[X(\omega)](t)=X_{t}(\omega)
$$

We shall write $X=\left\{X_{t}\right\}_{t \in T}$ and call X the random function arising from $\left\{X_{t}\right\}_{t \in T}$. It is well-known that any finite subfamily of $\left\{X_{t}\right\}_{t \in T}$ induces a 'finite joint distribution' in S^{T}, and according to Kolmogorov (1933) these finite joint distributions can be simultaneously extended to a probability measure P_{0} on the Borel class \mathscr{B}_{0} of subsets of S^{T}. This extension is natural in the sense that for any $B \in \mathscr{B}_{0}$ $P_{0}(B)$ turns out to be exactly $P\left[X^{-1}(B)\right]$. The Kolmogorov extension P_{0} has however a shortcoming in that its domain \mathscr{B}_{0} is not broad enough to include many events of practical interest.

Following Kakutani (1943), Nelson (1959) has formulated a regular Borel measure P_{1}, which extends the Kolmogorov extension P_{9} to the topological Borel class \mathscr{B}_{1} containing \mathscr{B}_{0} provided that S is a compact subset of R. The Kakutani extension P_{1} has the following regularity property: for any $B \in \mathscr{B}_{1}$

$$
\sup _{F \subset B} P_{1}(F)=P_{1}(B)=\inf _{G \supseteq B} P_{1}(G)
$$

where F and G respectively denote closed and open subsets of S^{T}. The definitions of \mathscr{B}_{1} and \mathscr{B}_{0} are given in section 2.

The purpose of this paper is to show by a simple well-known example of Doob (1953) that the Kakutani extension is not natural in that given $B \in \mathscr{B}_{1} P_{1}(B)$
may not be the same as $P\left[X^{-1}(B)\right]$. In contrast the naturalness of Doob's extension (1937) will be revealed by a suitable formulation.

2. Doob's example

Let (Ω, \mathscr{A}, P) be the probability space where $\Omega=[0,1], \mathscr{A}$ is the Borel subsets of $[0,1]$, and P is the Lebesgue measure. Let $T=[0,1]$, and for each $t \in[0,1]$ let $X_{t}: \Omega \rightarrow R$ be defined by $X_{t}(\omega)=\delta_{t \omega}$ (Kronecker delta taking the value 1 if $\omega=t$ and 0 if $\omega \neq t$). Clearly, the resulting random function X takes ω to a function on the interval $[0,1]$ which assumes 0 everywhere except at $t=\omega$, where it assumes 1 . Thus, $X: \Omega \rightarrow S^{T}$ with $S=[0,1]$, a compact subset of R.

It is not difficult to see that all the finite joint distributions induced by X are one-point distributions concentrated at the origins of finite dimensional Euclidean spaces. According to Nelson (1959) these finite joint distributions can now be extended to the regular Borel measyre P_{1}, whose domain is the topological Borel class \mathscr{B}_{1}, which is the sigma-algebra of subsets of S^{T} generated by the topology (that is, all the open sets) generated by the (open) neighborhoods of the form

$$
N=\left\{x \in S^{T}: a_{i}<x\left(t_{i}\right)<b_{i}\right\}
$$

where $t_{i} \in T$, and $-\infty \leqq a_{i}<b_{i}<\infty$ are pairs of real numbers for $i=1,2, \cdots, n$ with n finite but otherwise arbitrary. The Borel class \mathscr{B}_{0} is simply the sigmaalgebra of subsets of S^{T} generated by the subsets N described above. Clearly, $\mathscr{B}_{1} \supset \mathscr{B}_{0}$ since \mathscr{B}_{1} is generated by a larger collection of subsets of S^{T}.

3. Unnaturalness of Kakutani extension

The unnaturalness of P_{1} is shown in regard to the simple Doob process described above. Specifically, we will show that the elementary event $\{\theta\}$ where θ is the zero function in S^{T}, that is, $\theta(t) \equiv 0$, receives P_{1} measure 1 while $X^{-1}(\{\theta\})$ being the empty subset of Ω receives P measure 0 .

It suffices to show that every open set containing $\{\theta\}$ has P_{1} measure 1 , for then by the regularity of $P_{1} P_{1}(\{\theta\})$ must be 1 . Let G be any open subset of S^{T} containing $\{\theta\}$, then there must be an open neighborhood N containing θ contained in $G, \theta \in N \subset G$. Now to contain θ, N must be of the form

$$
N=\left\{x \in S^{T}: a_{i}<x\left(t_{i}\right)<b_{i}\right\}
$$

where $a_{\imath}<0<b_{i}$ for $i=1,2, \cdots, n$. But since each finite joint distribution is concentrated at the origin, this means $P_{1}(N)=1$; and consequently $P_{1}(G)=1$, completing the proof that

$$
P_{1}(B) \neq P\left[X^{-1}(B)\right]
$$

for $B=\{\theta\}$.

4. Formulation of Doob extension

Let $\left\{X_{t}\right\}_{t \in T}$ be a family of real random variables on (Ω, \mathscr{A}, P) constituting the random function $X: \Omega \rightarrow R^{T}$ (see section 1), and let $\mathscr{X}=X(\Omega)$ be the range of the random function X, then we have the following

Proposition 1. The Kolmogorov outer measure of \mathscr{X} is 1 , that is,

$$
\bar{P}_{0}(\mathscr{X})=\inf _{B \supset \mathscr{X}} P_{0}(B)=1
$$

where B are members of \mathscr{B}_{0}.
Proof. In view of naturalness of Kolmogorov extension P_{0} we have for any $B \supset \mathscr{X}$ and $B \in \mathscr{B}_{0}$

$$
P_{0}(B)=P\left[X^{-1}(B)\right]=P(\Omega)=1
$$

and hence $\bar{P}_{0}(\mathscr{X})=1$.
Definition 1. By the Doob class \mathscr{B}_{x} of subsets of R^{T} relatibve to $\mathscr{X} \subset R^{T}$ we mean the totality of subsets of R^{T} of the form

$$
D=(B \cap \mathscr{X}) \cup H
$$

where B belongs to the Borel class \mathscr{B}_{0} and H is a subset of $\mathscr{X}^{c}=R^{T}-\mathscr{X}$.
Proposition 2. A Doob class \mathscr{B}_{x} relative to any \mathscr{X} is a sigma-algebra containing the Borel class \mathscr{B}_{0}.

Proof. To see $\mathscr{B}_{\mathscr{X}} \supset \mathscr{B}_{0}$ it suffices to show that any $B \in \mathscr{B}_{0}$ can be expressed in the form

$$
B=(B \cap \mathscr{X}) \cup\left(B \cap \mathscr{X}^{c}\right)
$$

That $\mathscr{B}_{\boldsymbol{X}}$ is a sigma-algebra is just as obvious.
Definition 2. We define the Doob extension $P_{\mathscr{x}}$ of Kolmogorov extension P_{0} of finite joint distributions for R^{T} as follows: for any $D \in \mathscr{B}_{\mathscr{X}}$

$$
P_{x}(D)=P_{0}(B)
$$

where $D=(B \cap \mathscr{X}) \cup H$ with $B \in \mathscr{B}_{0}$ and $H \subset \mathscr{X}^{c}$.
Obviously $P_{\mathscr{X}}$ is an extension of P_{0} since for any $B \in \mathscr{B}_{0}$ we have $B=(B \cap \mathscr{X}) \cup\left(B \cap \mathscr{X}^{c}\right)$ and $P_{\mathscr{X}}(B)=P_{0}(B)$. To see that $P_{\mathscr{X}}$ is well-defined we must show the following

Proposition 3. If $D=\left(B^{\prime} \cap \mathscr{X}\right) \cup H^{\prime}=\left(B^{\prime \prime} \cap \mathscr{X}\right) \cup H^{\prime \prime}$, then

$$
P_{0}\left(B^{\prime}\right)=P_{0}\left(B^{\prime \prime}\right)
$$

Proof. We need only show $P_{0}\left(B^{\prime}-B^{\prime \prime}\right)=P_{0}\left(B^{\prime \prime}-B^{\prime}\right)=0$. We will merely assume $P_{0}\left(B^{\prime}-B^{\prime \prime}\right)>0$ to derive a contradiction, the other assumption leading to a similar contradiction.

Since by Proposition $1 \inf _{B \rightarrow x} P_{0}(B)=1$, and \mathscr{B}_{0} is a sigma-algebra, there actually exists a $B_{0} \in \mathscr{B}_{0}$ such that $B_{0} \supset \mathscr{X}$ and $P_{0}\left(B_{0}\right)=1$. Now from $H^{\prime}=D-\mathscr{X}=H^{\prime \prime}$ follows $B^{\prime} \cap \mathscr{X}=B^{\prime \prime} \cap \mathscr{X}$ so that $B^{\prime}-B^{\prime \prime} \subset \mathscr{X}^{c}$, therefore

$$
B_{0}-\left(B^{\prime}-B^{\prime \prime}\right) \supset \mathscr{X}
$$

We will derive the contradiction by showing $P_{0}\left[B_{0}-\left(B^{\prime}-B^{\prime \prime}\right)\right]<1$.
Now

$$
P_{0}\left[B_{0}-\left(B^{\prime}-B^{\prime \prime}\right)\right]=P_{0}\left(B_{0}\right)-P_{0}\left[B_{0} \cap\left(B^{\prime}-B^{\prime \prime}\right)\right],
$$

but

$$
P_{0}\left[B_{0} \cap\left(B^{\prime}-B^{\prime \prime}\right)\right]=P_{0}\left(B^{\prime}-B^{\prime \prime}\right)-P_{0}\left[B_{0}^{c} \cap\left(B^{\prime}-B^{\prime \prime}\right)\right],
$$

and

$$
P_{0}\left[B_{0}^{c} \cap\left(B^{\prime}-B^{\prime \prime}\right)\right] \leqq P_{0}\left(B_{0}^{c}\right)=1-P_{0}\left(B_{0}\right)=0 ;
$$

therefore $P_{0}\left[B_{0} \cap\left(B^{\prime}-B^{\prime \prime}\right)\right]=P_{0}\left(B^{\prime}-B^{\prime \prime}\right)>0$. Hence

$$
P_{0}\left[B_{0}-\left(B^{\prime}-B^{\prime \prime}\right)\right]<P_{0}\left(B_{0}\right)=1
$$

and the proof is complete.
The following theorem shows the naturalness of Doob extension. Essentially, it is inherited from the naturalness of Kolmogorov extension.

Theorem. Let $X=\left\{X_{t}\right\}_{t \in T}$ be a real (R) random function defined on a probability space (Ω, \mathscr{A}, P). Let $\mathscr{X}=X(\Omega) \subset R^{T}$ and \mathscr{B}_{X} be the Doob class of subsets of R^{T}, and let P_{x} be the Doob extension of the Kolmogorov extension P_{0} of finite joint distributions in R^{T}. Then for any $D \in \mathscr{P}_{x}, P_{x}(D)=P\left[X^{-1}(D)\right]$.

Proof. Let $D=(B \cap \mathscr{X}) \cup H$, where B is a member of the Borel class \mathscr{B}_{0} and $H \subset \mathscr{X}^{c}$. By Definition 2 and the naturalness of Kolmogorov extension

$$
P_{x}(D)=P_{0}(B)=P\left[X^{-1}(B)\right]
$$

Now

$$
X^{-1}(D)=X^{-1}(B \cap \mathscr{X}) \cup X^{-1}(H)=X^{-1}(B) \cap \Omega \cup \varnothing
$$

hence

$$
P\left[X^{-1}(D)\right]=P\left[X^{-1}(B)\right]
$$

and

$$
P_{x}(D)=P\left[X^{-1}(D)\right]
$$

Finally we add that Doob extension can be strengthened by replacing \mathscr{X} in $\mathscr{B}_{\boldsymbol{x}}$ by $\mathscr{X}_{0}=\mathscr{X}\left(\Omega_{0}\right)$ where $\Omega_{0} \subset \Omega$ with $P\left(\Omega_{0}\right)=1$. This is due to the following

Proposition 4. Let $\mathscr{X}_{0} \subset \mathscr{X} \subset R^{T}$, then the Doob class $\mathscr{P}_{\boldsymbol{x}_{0}}$ contains the Doob class $\mathscr{B}_{\boldsymbol{x}}$.

Proof. To see $\mathscr{B}_{x_{x}} \subset \mathscr{B}_{\boldsymbol{x}_{0}}$ let $E \in \mathscr{B}_{x}$, then by Definition 1, $E=(B \cap \mathscr{X}) \cup H$ with $B \in \mathscr{B}_{0}$ and $H \subset \mathscr{X}^{c}$. Now

$$
E=\left(B \cap \mathscr{X}_{0}\right) \cup\left[B \cap\left(\mathscr{X}-\mathscr{X}_{0}\right)\right] \cup H
$$

but since $\left[B \cap\left(\mathscr{X}-\mathscr{X}_{0}\right)\right] \cup H$ is clearly contained in $\mathscr{X}_{0}^{c}, \mathrm{t}$ follows that $E \in \mathscr{B}_{\mathscr{X}_{0}}$.

References

J. L. Doob (1953), Stochastic Processes, (John Wiley, New York).
J. L. Doob (1947), 'Probability in function space', Bull. Amer. Math. Soc. 53, 15-30.
J. L. Doob (1937), Stochastic processes depending on continuous parameter, Trans. Amer. Math. Soc. 42, 107-140.
Shizuo Kakutani (1943), Notes on infinite product spaces II, Proc. Imp. Acad. Tokto 19, 184-188.
A. Kolmogorov (1933), (Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer Berlin).

Edward Nelson (1959), Regular probability mesaures on function space, Ann. of Math. (2) 69, 630-643.

University of Hawaii
Honolulu
Hawaii 96822

