J. Austral. Math. Soc. 19 (Series A) (1975), 371-375.

NATURAL EXTENSIONS OF PROBABILITY MEASURE IN FUNCTION SPACE

R. Z. YEH

(Received 21 December 1971; revised 25 March 1974)

Communicated by C. C. Heyde

1. Background

Let $\{X_t\}_{t \in T}$ be a family of real (R) random variables defined on a probability space (Ω, \mathcal{A}, P) and having the ranges in a subset S of R, that is, $X_t(\Omega) \subset S$ for all t. Let X be the mapping of Ω into the function space S^T

 $X\colon\Omega\to S^T$

such that for any $\omega \in \Omega$

 $[X(\omega)](t) = X_t(\omega)$

We shall write $X = \{X_t\}_{t \in T}$ and call X the random function arising from $\{X_t\}_{t \in T}$. It is well-known that any finite subfamily of $\{X_t\}_{t \in T}$ induces a "finite joint distribution" in S^T , and according to Kolmogorov (1933) these finite joint distributions can be simultaneously extended to a probability measure P_0 on the Borel class \mathscr{B}_0 of subsets of S^T . This extension is *natural* in the sense that for any $B \in \mathscr{B}_0$ $P_0(B)$ turns out to be exactly $P[X^{-1}(B)]$. The Kolmogorov extension P_0 has however a shortcoming in that its domain \mathscr{B}_0 is not broad enough to include many events of practical interest.

Following Kakutani (1943), Nelson (1959) has formulated a regular Borel measure P_1 , which extends the Kolmogorov extension P_9 to the topological Borel class \mathscr{B}_1 containing \mathscr{B}_0 provided that S is a compact subset of R. The Kakutani extension P_1 has the following regularity property: for any $B \in \mathscr{B}_1$

$$\sup_{F \subset B} P_1(F) = P_1(B) = \inf_{G \supset B} P_1(G)$$

where F and G respectively denote closed and open subsets of S^{T} . The definitions of \mathscr{B}_{1} and \mathscr{B}_{0} are given in section 2.

The purpose of this paper is to show by a simple well-known example of Doob (1953) that the Kakutani extension is not natural in that given $B \in \mathscr{B}_1 P_1(B)$

may not be the same as $P[X^{-1}(B)]$. In contrast the naturalness of Doob's extension (1937) will be revealed by a suitable formulation.

2. Doob's example

Let (Ω, \mathscr{A}, P) be the probability space where $\Omega = [0, 1]$, \mathscr{A} is the Borel subsets of [0, 1], and P is the Lebesgue measure. Let T = [0, 1], and for each $t \in [0, 1]$ let $X_t: \Omega \to R$ be defined by $X_t(\omega) = \delta_{t\omega}$ (Kronecker delta taking the value 1 if $\omega = t$ and 0 if $\omega \neq t$). Clearly, the resulting random function X takes ω to a function on the interval [0, 1] which assumes 0 everywhere except at $t = \omega$, where it assumes 1. Thus, $X: \Omega \to S^T$ with S = [0, 1], a compact subset of R.

It is not difficult to see that all the finite joint distributions induced by X are one-point distributions concentrated at the origins of finite dimensional Euclidean spaces. According to Nelson (1959) these finite joint distributions can now be extended to the regular Borel measure P_1 , whose domain is the topological Borel class \mathscr{B}_1 , which is the sigma-algebra of subsets of S^T generated by the topology (that is, all the open sets) generated by the (open) neighborhoods of the form

$$N = \{ x \in S^T : a_i < x(t_i) < b_i \}$$

where $t_i \in T$, and $-\infty \leq a_i < b_i < \infty$ are pairs of real numbers for $i = 1, 2, \dots, n$ with *n* finite but otherwise arbitrary. The *Borel class* \mathscr{B}_0 is simply the sigmaalgebra of subsets of S^T generated by the subsets *N* described above. Clearly, $\mathscr{B}_1 \supset \mathscr{B}_0$ since \mathscr{B}_1 is generated by a larger collection of subsets of S^T .

3. Unnaturalness of Kakutani extension

The unnaturalness of P_1 is shown in regard to the simple Doob process described above. Specifically, we will show that the elementary event $\{\theta\}$ where θ is the zero function in S^T , that is, $\theta(t) \equiv 0$, receives P_1 measure 1 while $X^{-1}(\{\theta\})$ being the empty subset of Ω receives P measure 0.

It suffices to show that every open set containing $\{\theta\}$ has P_1 measure 1, for then by the regularity of P_1 $P_1(\{\theta\})$ must be 1. Let G be any open subset of S^T containing $\{\theta\}$, then there must be an open neighborhood N containing θ contained in G, $\theta \in N \subset G$. Now to contain θ , N must be of the form

$$N = \{x \in S^T : a_i < x(t_i) < b_i\}$$

where $a_i < 0 < b_i$ for $i = 1, 2, \dots, n$. But since each finite joint distribution is concentrated at the origin, this means $P_1(N) = 1$; and consequently $P_1(G) = 1$, completing the proof that

$$P_1(B) \neq P[X^{-1}(B)]$$

for $B = \{\theta\}$.

Probability measure

4. Formulation of Doob extension

Let $\{X_t\}_{t \in T}$ be a family of real random variables on (Ω, \mathcal{A}, P) constituting the random function $X: \Omega \to R^T$ (see section 1), and let $\mathscr{X} = X(\Omega)$ be the range of the random function X, then we have the following

PROPOSITION 1. The Kolmogorov outer measure of \mathscr{X} is 1, that is,

$$\bar{P}_0(\mathscr{X}) = \inf_{B \supset \mathscr{X}} P_0(B) = 1$$

where B are members of \mathscr{B}_0 .

PROOF. In view of naturalness of Kolmogorov extension P_0 we have for any $B \supset \mathscr{X}$ and $B \in \mathscr{B}_0$

$$P_0(B) = P[X^{-1}(B)] = P(\Omega) = 1$$

and hence $\overline{P}_0(\mathscr{X}) = 1$.

DEFINITION 1. By the Doob class $\mathscr{B}_{\mathscr{X}}$ of subsets of R^T relatibve to $\mathscr{X} \subset R^T$ we mean the totality of subsets of R^T of the form

$$D = (B \cap \mathscr{X}) \cup H$$

where B belongs to the Borel class \mathscr{B}_0 and H is a subset of $\mathscr{X}^c = R^T - \mathscr{X}$.

PROPOSITION 2. A Doob class $\mathscr{B}_{\mathscr{X}}$ relative to any \mathscr{X} is a sigma-algebra containing the Borel class \mathscr{B}_0 .

PROOF. To see $\mathscr{B}_{\mathfrak{X}} \supset \mathscr{B}_0$ it suffices to show that any $B \in \mathscr{B}_0$ can be expressed in the form

$$B = (B \cap \mathscr{X}) \cup (B \cap \mathscr{X}^c)$$

That $\mathscr{B}_{\mathfrak{X}}$ is a sigma-algebra is just as obvious.

DEFINITION 2. We define the *Doob extension* $P_{\mathfrak{X}}$ of Kolmogorov extension P_0 of finite joint distributions for R^T as follows: for any $D \in \mathscr{B}_{\mathfrak{X}}$

$$P_{\mathcal{X}}(D) = P_0(B)$$

where $D = (B \cap \mathscr{X}) \cup H$ with $B \in \mathscr{B}_0$ and $H \subset \mathscr{X}^c$.

Obviously $P_{\mathfrak{X}}$ is an extension of P_0 since for any $B \in \mathscr{B}_0$ we have $B = (B \cap \mathscr{X}) \cup (B \cap \mathscr{X}^c)$ and $P_{\mathfrak{X}}(B) = P_0(B)$. To see that $P_{\mathfrak{X}}$ is well-defined we must show the following

PROPOSITION 3. If
$$D = (B' \cap \mathscr{X}) \cup H' = (B'' \cap \mathscr{X}) \cup H''$$
, then

$$P_0(B') = P_0(B'')$$

PROOF. We need only show $P_0(B'-B'') = P_0(B''-B') = 0$. We will merely assume $P_0(B'-B'') > 0$ to derive a contradiction, the other assumption leading to a similar contradiction.

Since by Proposition 1 $\inf_{B \supset \mathfrak{X}} P_0(B) = 1$, and \mathscr{B}_0 is a sigma-algebra, there

actually exists a $B_0 \in \mathscr{B}_0$ such that $B_0 \supset \mathscr{X}$ and $P_0(B_0) = 1$. Now from $H' = D - \mathscr{X} = H''$ follows $B' \cap \mathscr{X} = B'' \cap \mathscr{X}$ so that $B' - B'' \subset \mathscr{X}^c$, therefore

 $B_0 - (B' - B'') \supset \mathscr{X}$

We will derive the contradiction by showing $P_0[B_0 - (B' - B'')] < 1$.

Now

$$P_0[B_0 - (B' - B'')] = P_0(B_0) - P_0[B_0 \cap (B' - B'')],$$

but

$$P_0[B_0 \cap (B'-B'')] = P_0(B'-B'') - P_0[B_0^c \cap (B'-B'')],$$

and

$$P_0[B_0^c \cap (B' - B'')] \leq P_0(B_0^c) = 1 - P_0(B_0) = 0;$$

therefore $P_0[B_0 \cap (B' - B'')] = P_0(B' - B'') > 0$. Hence

$$P_0[B_0 - (B' - B'')] < P_0(B_0) = 1$$

and the proof is complete.

The following theorem shows the naturalness of Doob extension. Essentially, it is inherited from the naturalness of Kolmogorov extension.

THEOREM. Let $X = \{X_t\}_{t \in T}$ be a real (R) random function defined on a probability space (Ω, \mathcal{A}, P) . Let $\mathscr{X} = X(\Omega) \subset \mathbb{R}^T$ and $\mathscr{B}_{\mathscr{X}}$ be the Doob class of subsets of \mathbb{R}^T , and let $P_{\mathscr{X}}$ be the Doob extension of the Kolmogorov extension P_0 of finite joint distributions in \mathbb{R}^T . Then for any $D \in \mathscr{B}_{\mathscr{X}}$, $P_{\mathscr{X}}(D) = P[X^{-1}(D)]$.

PROOF. Let $D = (B \cap \mathscr{X}) \cup H$, where B is a member of the Borel class \mathscr{B}_0 and $H \subset \mathscr{X}^c$. By Definition 2 and the naturalness of Kolmogorov extension

$$P_{\mathbf{x}}(D) = P_0(B) = P[X^{-1}(B)]$$

Now

$$X^{-1}(D) = X^{-1}(B \cap \mathscr{X}) \cup X^{-1}(H) = X^{-1}(B) \cap \Omega \cup \emptyset$$

hence

$$P[X^{-1}(D)] = P[X^{-1}(B)]$$

and

$$P_{\mathbf{x}}(D) = P[X^{-1}(D)]$$

Finally we add that Doob extension can be strengthened by replacing \mathscr{X} in $\mathscr{B}_{\mathscr{X}}$ by $\mathscr{X}_0 = \mathscr{X}(\Omega_0)$ where $\Omega_0 \subset \Omega$ with $P(\Omega_0) = 1$. This is due to the following

PROPOSITION 4. Let $\mathscr{X}_0 \subset \mathscr{X} \subset \mathbb{R}^T$, then the Doob class $\mathscr{B}_{\mathscr{X}_0}$ contains the Doob class $\mathscr{B}_{\mathscr{X}}$.

PROOF. To see $\mathscr{B}_{\mathscr{X}} \subset \mathscr{B}_{\mathscr{X}_0}$ let $E \in \mathscr{B}_{\mathscr{X}}$, then by Definition 1, $E = (B \cap \mathscr{X}) \cup H$ with $B \in \mathscr{B}_0$ and $H \subset \mathscr{X}^c$. Now

$$E = (B \cap \mathscr{X}_0) \cup [B \cap (\mathscr{X} - \mathscr{X}_0)] \cup H$$

but since $[B \cap (\mathscr{X} - \mathscr{X}_0)] \cup H$ is clearly contained in \mathscr{X}_0^c , t follows that $E \in \mathscr{B}_{\mathscr{X}_0}$.

References

- J. L. Doob (1953), Stochastic Processes, (John Wiley, New York).
- J. L. Doob (1947), 'Probability in function space', Bull. Amer. Math. Soc. 53, 15-30.
- J. L. Doob (1937), Stochastic processes depending on continuous parameter, Trans. Amer. Math. Soc. 42, 107-140.

Shizuo Kakutani (1943), Notes on infinite product spaces II, Proc. Imp. Acad. Tokto 19, 184-188.

A. Kolmogorov (1933), (Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer Berlin).

Edward Nelson (1959), Regular probability mesaures on function space, Ann. of Math. (2) 69, 630-643.

University of Hawaii Honolulu Hawaii 96822