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ABSTRACT The integral constraint on convective overshooting (Roxburgh 
1976,1978,1989) is re-derived for for statistically stationary two-dimensional 
convection between stress-free horizontal boundaries maintained at constant 
temperatures, the vertical boundaries being periodic. We report on numerical 
simulations of such two-dimensional compressible convection in a fluid where the 
central regions are convectively unstable and the surrounding layers are stable. The 
results support the conclusion by Roxburgh (1989) that the contribution from the 
radiative flux is well approximated by the flux carried by the mean temperature 
gradient, but demonstrate that viscous dissipation is important, reducing the extent of 
overshooting. 

THE INTEGRAL CONSTRAINT 

We consider a compressible fluid confined between two horizontal stress free 
boundaries, uz = 0 at z = 0, z = h; the acceleration due to gravity is a constant -g in the 
vertical z direction, the top boundary is maintained at temperature Ti and the bottom 
boundary at T2 and the flow is two dimensional and is taken as periodic in the horizontal 
x direction, U(x,z,t) = U(x+ a.z.t) for all variables U. Since gj = - dV/dx1 is independent 
of time the contribution to the entropy and total energy equations governing the fluid can 
be written in the form: 

^(pS) + A ( p U i S ) = -±*L + * (1) 
9t dxl ldxl l 

- k p T + lpuZ + py] + _ [pui(cpT + i-iP + '!')-iijTiij + Fi] = 0 (2) 

. 3UJ 1 du, du; j t 3uk\ 
* = TliJ — =4*1 — + r ^ - f Sij—— (3) 

3xJ z \3xJ 9x> * dxkj 

with iiij, F; = - K(p,T) dT/dx\ P = RpT/u, E = 3fcT/2n, S = (%l\i) in (T3/2/p), the 
viscous stress tensor, radiative flux, pressure, internal energy and entropy per unit mass. 
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Let <U> denote the time average of LKxi.t), then for statistically stationary 
convection <9U/3t > = 0. Integrating the entropy and total energy equations over the 
volume of the fluid, using Gauss's theorem to convert integrals over the volume V to 
integrals over the surface Z, and using the boundary conditions that uz = 0, rixz = 0 on 
z = 0, h, and the periodic condition U(x,z,t) = U(x+a,z,t), gives the two identities 

J (Fi)dZi = 0. ( l ) ^ - d » | ) d V = 0 (4) 

The contribution to the surface integral from the vertical boundaries (x = 0, a) cancel 
by the periodic conditions, so the time averaged flux entering the bottom boundary equals 
that leaving the top boundary and is constant (= aTo). Wim T constant on z = 0, h, and 
periodic conditions on x = 0, a, it follows that /<F/T>dS = ar"o(l/Ti - 1/T2). Integrating 
the second of equation (4) by parts and using Gauss's theorem yields 

r0l)-L^\dv = | ( ^ ) d v (5) 3T> 

T23x i / " 

Defining the horizontal average U(z,t) = (l/a)/Udx and Uo(z) = (U(z,t)) then 
integrating over the horizontal direction gives the integral constraint in the form 

f(Fi - roi) - L — \ dz = f 5 5 dz > 0 (6) 
T2 3xi/ Jo ™ 

Let V(z) = (<tyrj and Ii(z) = ((F;- Tj) (l/T)2 fr/dx*). In Roxburgh (1978), Ii(z) 
was replaced by In(z) = (Fo - To) (1/To)2 dTa/dz, calculated using the mean values of T 
and the flux given by the mean field. This was criticised by Baker and KuhfuB (1987) on 
the grounds that it neglected terms quadratic in the fluctuating quantities, but Roxburgh 
(1989) argued that these contributions are expected to be small if the mean stratification is 
almost adiabatic. In the numerical simulations reported here the difference between Io and 
Ii is indeed small, but the viscous dissipation V(z) is not small and cannot be neglected. 

NUMERICAL RESULTS 

Numerical simulations were made for a layer in which the variation of the conduction 
coefficient with temperature was K(T) = Ko (ccT5 + p/T3), with (a,P) chosen so mat the 
central regions of the layer are convectively unstable and the surrounding regions stable; 
the temperature at the bottom of the layer was twice that at the top and the viscosity was 
constant. The equations were integrated for 50 times the turn over time of the convection 
using a 64x64 array machine (DAP). A running time average was calculated at each 
mesh point and a horizontal average calculated at the end of a computing run. The 
integrands IQ(Z), Ii(z) and V(z) that enter the integral constraint were then determined. 

https://doi.org/10.1017/S0252921100017954 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100017954


292 I.W. Roxburgh et al. 

Figure 1 shows the flow pattern for a case 
where the Rayleigh number at the centre of 
the layer Rm = 120 Rc, where Rc is the 
value at the onset of convection, and the 
Prandtl number o = r|Cp/K = 1. Figure 2 
shows the values of the integrands Io(z) and 
Il(z) and the viscous dissipation term V(z), 
Figure 3 gives results for a = 0.1 

As can be seen from these figures 
I'l - Io, and the contribution from terms 
quadratic in the fluctuating quantities is 
therefore small. The Integral Constraint is 
well approximated by 

For the cases o = 0.1, 1, studied here 
viscous dissipation cannot be neglected, 
although perhaps there is some indication 
that it may be less important for small a 
(a = lf>6 in stars), but further calculations 
are needed on this point. Since V > 0, 
neglecting viscous dissipation can provide 
an upper limit on the extent of convective 
overshooting. 
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Figure 1. Flow pattern for case where a = 1 and 

^ = 1 2 0 1 ^ 

Figure 2. Variation of the Integrands Irj , I] and 

V with z for O" = 1. IQ and I] are almost equal. 

Figure 3. Variation of the IntegTands Io , l\ and 

V with z for O" = 0.1. IQ and Ii are almost equal 
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