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Abstract. If G is a semisimple Lie group and (7, H) an irreducible unitary representation of G
with square integrable matrix coefficients, then there exists a number d(7) such that

1 -
v, vV, w,w e H) e VYW, w) = L(n(g).v, wy(r(g).v'. W) dug(g).

The constant d(n) is called the formal dimension of (n, H) and was computed by Harish-Chandra
in [HCS56, 66].

If now H\G is a semisimple symmetric space and (%, H) an irreducible H-spherical unitary
(m, H) belonging to the holomorphic discrete series of H\G, then one can define a formal
dimension d(r) in an analogous manner. In this paper we compute d(r) for these classes of
representations.
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Introduction

Let H\G be a semisimple irreducible simply connected non-compact symmetric
space admitting relative holomorphic discrete series, i.e., there exists a unitary
highest weight representation (m), H;) of G and a non-zero H-invariant
hyperfunction vector y € H;“ such that

1 1 )
a0~ TP &) val” d HZ
d(2) |<’7»Vi>|2 HZ\G|<]7 (&) vl” ditpz\6(HZg)

is finite. Here v; denotes a highest weight vector, Z the center of G and py ¢ a
G-invariant measure on the homogeneous space HZ\G. Note that v, and v are unique
up to scalar multiple as well as (v, v;) # 0. Therefore the number d(A) is well defined
and we call it the formal dimension of the spherical highest weight representation
(m;, H;). We remark here that our definition of the formal dimension generalizes
Harish-Chandra notion in the ‘group case’, i.e., where G = Gy x Gy and
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H =A(G) ={(g,9):g € Gy} for a simply connected hermitian Lie group Gy (cf.
[HC56] and Remark 3.5 below).

Note that the constants d(4) determine the part of the Plancherel measure on H\G
which corresponds to the relative holomorphic discrete series. Thus the explicit
knowledge of the formal dimensions gives us a better understanding of the
Plancherel Theorem on H\G which was recently obtained by van den Ban and
Schlichtkrull and Delorme (cf. [BS97,99], [De98]).

Let (g, 7) be the symmetric Lie algebra attached to H\G and write g = §) @ q for the
t-eigenspace decomposition. If g = f @ p is a t-invariant Cartan decomposition of g,
then the algebraic characterization of H\G admitting relative holomorphic discrete
series is 3(f) N g # 0. Symmetric Lie algebras (g, t) having this property are called
compactly causal (cf. [HiO196]). In the group case, i.e., (g,7) = (go ® g9, 0) With
(X, Y) = (Y, X) the flip involution, this just means that g, is Hermitian. We remark
here that the formal dimension in the group case was computed by Harish-Chandra
(cf. [HC56])).

In this paper we derive the formula for the formal dimension d(7) for compactly
causal symmetric spaces. For the special class of Cayley type spaces this problem
has been dealt with by Chadli with Jordan algebra methods (cf. [Ch98]). The
approach presented here is general and purely representation theoretic.

Our key result is the Averaging Theorem (cf. Theorem 2.16) which asserts that for
large parameters 4 the H-integral over v; converges. More precisely, for large par-
ameters 4 we prove that

Wi Vi) ok o,
(’77 v;)

[ wih dug(hy =
H

where the left-hand side has to be understood as a vector valued integral with values
in the Fréchet space of hyperfunction vectors and

() = /_ an (@) dyus ()
NNHAN

denotes the c-function of the non-compactly causal c-dual space H\G¢ (cf.
[Hi0196]).

To obtain the formula for the formal degree d(/), we plug in the relation for v
obtained from the Averaging Theorem in the definition of d(4) and obtain for
large parameters: d(2) = d(1)°c().+ p), where d(/)¢ is the formal dimension of
(m;, H,) for the relative discrete series on G (cf. Theorem 3.6). Using some ideas
of Olafsson and @rsted (cf. [0@91]) we prove the analytic continuation of our for-
mula for d(4) (cf. Theorem 4.15).

The c-function ¢(4) can be written as a product ¢(4) = ¢o(4)ca(4), where ¢y(/) is the
c-function of a certain Riemannian symmetric subspace of H\G and cq(/) is the
c-function of the real form Q of the bounded symmetric domain D = G/K. In par-
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ticular we have

d(%) = d(N)°co(h. + p)ea(l + p).

The ingredients in this formula of d(1) are known: Harish-Chandra computed d(1)°
in [HC56], Gindikin and Karpelevic ¢o(1) (cf. [GiKa62]) and finally Olafsson
and the author computed cq(4) in [KrO199] (see also [Fa95], [Gr97] for earlier results
in important special cases).

In the final section we give applications of our results to spherical holomorphic
representation theory. Recall that a unitary highest weight representation
(;, H;) of G extends naturally to a holomorphic representation of the maximal open
complex Ol’shanskiisemigroup S° = GExp(iW?, ) (cf. [Ne99b, Section 11.2]). If

(m;, H;) is an H-spherical unitary highest weight representation of G, then we define
its spherical character by

(vi, v2)

0;:80.— C, s 5 (ma(s)m, ).
1{n, v2)|

Note that ©; is an H-biinvariant holomorphic function on S° . On the other hand

max*

on S N HAN one defines the spherical function with parameter i € af. by

max

max

0,;:8° NHAN — C, s+ / ag(sh)=" dugy(h),
H

whenever the right hand side makes sense(cf. [FHO94] or [KNO98]). For large par-
ameters A we prove the long searched relation of Olafsson (cf. [0198, Open Problem

(MWD

(Vse S, . NHAN) ©;(s) =

1
ax C(/l + p) (PH-/)(S)
(cf. Theorem 5.4). Finally we want to point out that the results of this paper are a
major step towards a proof of the Plancherel Theorem of G-invariant Hilbert spaces

of holomorphic functions on G-invariant subdomains of the Stein variety

E?mx =G xpgiW?,  (cf. [Ch98], [HiKr98, 99b], [HOG91], [Kr98, 99b], [KNO97],
[Ne99al.)

1. Causal Symmetric Lie Algebras

This subsection is a brief introduction to causal symmetric Lie algebras. Purely
algebraic definitions of ‘causality’ are given and the basic notation on the algebraic
level is introduced.

DEFINITION 1.1. Let g denote a finite-dimensional Lie algebra over the real
numbers.
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(a) A symmetric Lie algebra is a pair (g, 7), where 7 is an involutive automorphism of
g. We set

h={XegtX)=X} and q={X e€g1(X)=—-X}

and note that g =b+ q. We call (g, t) irreducible, if {0} and g are the only
t-invariant ideals of g.

(b) We denote by g the complexification of g. If 7 is a involution on g, we also denote
by 7 the complex linear extension of 7 to a endomorphism of g.

(¢) The c-dual g¢ of (g, ) is defined by g° = b + iq.

(d) If g is semisimple, then there exists a Cartan involution 6 of g which commutes
with 7 (cf. [Be57] or [KrNe96, Prop. 1.5(iii)]). We write g = f + p for the corre-
sponding Cartan decomposition. By subscripts we indicate intersections, for
example h; =hNT, etc. Since v and 0 commute, we have g = by + b, + a; + q,.
The prescription §°: = 61|, defines a Cartan involution on g and we denote
by g =t + p¢ the corresponding Cartan decomposition of g°. O

If V' C gis a subspace, then we set 3(V) ={X € V: (VY € V)[X, Y] =0}.

DEFINITION 1.2. Let (g, 7) be an irreducible semisimple symmetric Lie algebra and
0 a Cartan involution of g commuting with 7. Then we call (g, 7)

(CC)  compactly causal if 3(q;) # {0}.
(NCC) non-compactly causal, if (g¢, 7|4) is (CC).
(CT) of Cayley type, if it is both (CC) and (NCC). OJ

LEMMA 1.3. Let (g, t) be a symmetric Lie algebra. Then the following assertions
hold:

(1)  Thesymmetric Lie algebra (g, ©) is compactly causal if and only if it belongs to one of
the following two types:

(1) The Lie algebra g is simple Hermitian and 3(f) C q.
(2) The subalgebra ly is simple Hermitian and (g, 1) = () @ b, o), where o denotes
the flip involution o(X, Y) = (Y, X).

(1) If (g, 1) is compactly causal, then
(@) 3(f) N q is one-dimensional,
(b) every maximal Abelian subspace b C q; is maximal Abelian in q and b, + q;.

Proof. (i) This follows from [HiO196, Lemma 1.3.5, Th. 1.3.8] or [KrNe96, Prop.

5.6].
(ii) This is a consequence of [HiO196, Prop. 3.1.11]. O

Remark 1.4. (a) From the view point of convex geometry and complex analysis the
compactly causal symmetric spaces are the natural generalization of Hermitian
groups in the symmetric space setting (cf. [HiO196], [KrNe96], [KNO97, 98] and
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[Ne99b]). The compactly and non-compactly causal symmetric Lie algebras have
been classified; for a complete list see [HiO196, Th. 3.2.8].

(b) Suppose that H\G is a simply connected symmetric space associated to an
irreducible semisimple symmetric Lie algebra (g, 7). If (g, 7) is compactly causal, then
Lemma 1.3(ii)(b) implies that the symmetric space H\ G admits relative holomorphic
discrete series (cf. [FJ80]). The converse is also true. This result seems to us to be well
known. But since we do not know a proof in the literature, we added a proof in
Appendix B (cf. Lemma B.1). O

Let (g,7) be compactly causal. Recall that this implies in particular that g is
hermitian (c¢f. Lemma 1.3(1)).

We choose a maximal abelian subalgebra ia C g; and extend ia in  to a compactly
embedded Cartan subalgebra t of g. Recall from Lemma 1.3(ii)(b) that a is maximal
abelian in iq and p¢. Then t = t; 4 ia and 3(f) N q € ia. By Lemma 1.3 we know that
3(H) N g = RZ; is one-dimensional and by [Hel78, Ch. VIII, §7] we can normalize
Zy in such a way that Spec(ad Zy) = {—1i, 0, i} holds. We denote by A= ’A\(g‘c,, te)
the root system of g with respect to t¢ and by A = A(g°, a) the restricted root system
of g¢ with respect to a. Note that Ka\{O} = A. The corresponding root space
decompositions are denoted by

agc=tceo@at and ¢ =ad 30 Pe)

A
oaeA e

Aroot? e Ais called compact ifa(Zy) = 0 and non-compact otherwise. Analogously

one defines compact and non-compact roots in A. Write Zk and Zn for the set of all

compact, resp. non-compact, roots in A. Analogously one defines Ay and A,.
Once and for all we fix now a positive system A" of A such that

At =A"NA, =@ e Avi(Zo) = i}
holds. A positive system AT of A is defined by A*: = A*\{0}.

2. Spherical Highest Weight Representations

In this section we briefly recall the classification of analytic and hyperfunction
vectors of a a unitary highest-weight representation (x;, H,) of a simply connected
compactly causal group (G, ). Further we collect the basic facts of H-spherical
highest weight representations. Then, after giving the definitions of the various
c-functions associated to the non-compactly causal c-dual space (G¢, 1) of (G, 1),
we prove the key result of the whole paper: The Averaging Theorem, which asserts
that for large parameters A the H-integral over the highest weight vector converges
in the Fréchet space of hyperfunction vectors. One obtains the up to scalar multiple
uniquely determined H-spherical vector with a normalization constant which is
given by a certain c-function.
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2.1. UNITARY HIGHEST-WEIGHT REPRESENTATIONS

Recall that if G is a simply connected Lie group associated to a symmetric Lie algebra
(g, 7), then 7 integrates to an involution on G, also denoted by 7, and that the fixed
point group G* is connected (cf. [Lo69, Th. 3.4].)

To a compactly causal symmetric Lie algebra (g, t) we associate the following
analytic objects:

G simply connected Lie group with Lie algebra g,
G¢ simply connected Lie group with Lie algebra gc,
G¢  simply connected Lie group with Lie algebra gC,
H t-fixed points in G,

H¢  z-fixed points in G,

Hg  t-fixed points in G¢,

K analytic subgroup in G corresponding to f,

K¢ analytic subgroup in G¢ corresponding to ¢,

K¢ analytic subgroup in G¢ corresponding to fc,
H® centralizer of a in H,
H<% centralizer of a in Hc,

Z  center of G.

Note that even though both H and H¢ are connected and have the same Lie algebra,
they are in general not isomorphic. Recall that Z C K.

If X is a topological space and Y C X is a subspace, then we denote by Y° orint ¥
the interior of Y in X.

For each X € g we denote by X the complex conjugate of X with respect to the

real form g.

DEFINITION 2.1 (Complex Ol'shanskii semigroups, cf. [Ne99, Ch. XI]). Let (g, 7)
be a compactly causal symmetric Lie algebra and At = A™(gc, tc) be the positive
system from Section 1.

(a) Associated to At we define the maximal cone in t by
Coax = {X € t: (Yo € A in(X) > 0}.

We set Wmax: = Ad(G)./C\‘max and note that ﬁ/max is a closed convex
Ad(G)-invariant convex cone in g admitting no affine lines and which is maximal
with respect to these properties (cf. [Ne99b, Section 7.2.3]).

(b) Let Gi:= (expg.(g9)). By Lawson’s Theorem Spax1:= G expg, (iI/AVmax) 1S a
closed subsemigroup of G, the maximal complex Ol'shanskii semigroup, and
the polar map

Gl X I7Vmax - Smax,la (gv X) = gexp(iX)

is a homeomorphism (cf. [La94, Th. 3.4]).
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Denote by Smax the universal covering semigroup of Spmax1 and write Exp: g+
szax — Smax for the lifting of expg_ | g tg+ if/f/mdx — Smax,1- Then it is easy
1

max

to see that Sp.x = GExp(i Wmdx) and that there is a polar map

G X Wax = S, (g, X) > g Exp(iX)

which is homeomorphism. We define the interior of Spa, by 8%, := GExp(iW?, ).

Note that S°__is an open semigroup ideal in Spax Which carries a natural complex
structure for which the semigroup multiplication is holomorphic. Further the pre-
scription s = g Exp(iX) > s* = Exp(iX)g~! defines on Sp.. the structure of an
involutive semigroup. Note that the involution is antiholomorphic on S?_ . O

Remark 2.2. Let (n;, H,) be a unitary highest-weight representation of G with
respect to A" and highest weight A € it*. Denote by B(H,) the C*-algebra of bounded
operators on H;. Recall from [Ne99b, Th. 11.4.8] that (x;, H;) has a natural exten-
sion to a holomorphic representation m;: Spmax — B(H;) of Spmax, 1.€. 7, is strongly
continuous, holomorphic when restricted to S°  and satisfies 7;(s*) = m;(s)* for
all s € Spax.

Note that for X € Wiax one has m,(Exp(iX)) = e/d™X). O

de

DEFINITION 2.3. Let G be a Lie group and H a Hilbert space. If (n, H) is a unitary
representation of G, then we call ve H an analytic vector if the orbit map
G — H, g+ n(g).vis analytic. We denote by H” the vector space of all analytic
vectors of (m, H). There is a natural locally convex topology on H®” for which
the representation (7, H”) of G on H® is continuous (cf. [KNO97, Appendix]).
The strong antidual of H® is denoted by H™* and the elements of H™* are called
hyperfunction vectors. Note that there is a natural chain of continuous inclusions
H?—H—H"“. The natural extension of (n, H) to a representation on the space

—@

of hyperfunction vectors is denoted by (z=“, H™) and given explicitly by

(m=(g).n, v) = (n, n”(g~").v). O

PROPOSITION 2.4. Let (n;, H;) be a unitary hlghest weight representation of G with
respect to At and highest weight 1. Let X € int qux be an arbitrary element. Then the
analytic vectors of (n,, H,) are given by

MY = | mi(Exp(tiX)).H;
>0

and the topology on 'H is the finest locally convex topology making for all t > 0 the
maps H; — HY, v+ m(Exp(tiX)).v continuous.
Proof. [KNO9S8, Prop. A.5]. O

If 2 € it* is dominant integral for /A\t, we denote by (X, F(4)) the irreducible
highest-weight representation of K with highest-weight /. Note that (zf, F(1))
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extends naturally to a holomorphic representation of the universal covering group
K¢ of K¢ and which we denote by the same symbol.

Remark 2.5. Recall that (7, H;) can be realized in the Fréchet space Hol(D, F(1))
of F(Z4)-valued holomorphic functions on the Harish-Chandra realization D of the
Hermitian symmetric space G/K. So let us assume H, € Hol(D, F(1)). Then for
all z € D and v € F(/) the point evaluation

Hy— G, [ {f(2), )

is continuous, hence can be written as {f(z), v) = {f, KQ‘,) for some Kiv € H;. One
can show that all vectors K/ are analytic. Then, if 7, denotes the closure of
‘H, in the nuclear Fréchet space Hol(D, F(A)), then the mapping

rH;¢ — Hol(D, F(4)), vi>r@); (r((z),v) = v(Kiv)

is a G-equivariant topological isomorphism onto its closed image im r = ;. In par-
ticular, H;“ is a nuclear Fréechet space (cf. [Kr99a, Section 3] for all that). O

2.2. SPHERICAL REPRESENTATIONS

DEFINITION 2.6. Let G be a Lie group, H C G a closed subgroup and (%, H) a
unitary representation of G. Then we write (H~“)” for the set of all those elements
n € H™? satisfying n=“(h).y = n for all h € H. The unitary representation (z, H)
is called H-spherical if there exists a cyclic vector # € (H~*)? for (n=“, H™®). O

For Z € it* dominant integral with respect to Z,j recall the definition of the gen-
eralized Verma module

N(A):=U(8c) Butcxp) F(4),
which is a highest-weight module of g with respect to At and highest-weight 4 (cf.
[EHWS83]). We denote by L(A) the unique irreducible quotient of N(4).
PROPOSIIION 2.7. Let (n;, H;) be aunitary highest-weight representation of G with
respect to AT

() If (n;, H,) is H-spherical, then (n¥, F(%)) is H N K-spherical. In particular /. € a*
and the highest-weight vector v; € H, is fixed by H°.
(i1) The restriction mapping

Res: (K™ — FQ)"™, 1 nlrp

is injective. In particular, dim(H~*)? < 1 and (n,v;) # 0 for v # O Moreover, if
L(Z) = N(A), then Res is a bijection, i.e., (n;, H;) is H-spherical if and only if
(n&, F(%)) is H N K-spherical.

https://doi.org/10.1023/A:1002462711588 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002462711588

FORMAL DIMENSION FOR SEMISIMPLE SYMMETRIC SPACES 163

Proof. (i) is a special case of [KNO97, Prop. 6.5] and (ii) a special case of [Kr99a,
Th. 3.14]. O

Remark 2.8. In general, it is not true that (n,, H;) is H-spherical if the minimal
K-type (nX,F(2)) is H N K-spherical. For a counter example see [Kr99a,
Ex. 3.16]. O

2.3. THE ¢-FUNCTIONS ON THE ¢-DUAL SPACE H\G".

To the positve system AT = AT (g, a) we associate several subalgebras of g°
=B, =D,
nr;t = @fxeAf(gc)a’ nlf = @fxeAf(gc)a'

Further we set

pti= @ gz and g(0): = b +ig; C o

aeA;)

Remark 2.9. (a) The subalgebras p* and fc of g are invariant under complex
conjugation with respect to ¢° and we have p*Nng‘=n’ as well as
fc N g¢ = g(0). Thus the decomposition g = p+ @ I @ p~ induces a splitting in sub-
algebras of g¢

g =n"dg0) ®n,.

(b) Recall that g =hd a®n. The h P ad n- decomposition restricted to g(0)
coincides with an Iwasawa decomposition of g(0) given by g(0) = #(0) ® a & 1}/,
where #(0): = h N g(0) = £ N g(0). O

We let Hc, N K¢ act on He x K¢ from the left by x.(h, k): = (hx~!, xk) and denote
by M:= H¢ xu nk. Kc the corresponding quotient space. The H¢ N K¢-coset of an
element (4, k) € K¢ x Hc is denoted by [4, k]. If ﬁ_@/ and I’(v@ denote the universal
coverings of H¢ and K¢, respectively, then we realize the universal cover M of
M by

Mefix~ ~ &
(HcNKc)o
Further let P*:= expg, (p*). Recall that p* are Abelian and that the exponential
mapping expg,. |p+: p* — P* is an isomorphism. In particular P* is simply con-
nected.
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PROPOSITION 2.10 (The Hc K¢ PT-decomposition). The following assertions hold:
(1)  The multiplication mapping

M x P" — Ge, ([h k], py) = hkpy

is a biholomorphic map onto its open image HcKcPt. Furthermore:

(@) The open submanifold HcKcP" is dense in G¢ with complement of Haar
measure zero.
(b) We have Spax1 € HcKc P

(i) Ifj: Smax1 — M x PT denotes the injection obtamed from the isomorphism in (i),
then j lifts to an inclusion mapping j: Smax — M x P+,

Proof. (i) [KNO97, Prop. 2.6, Lemma 3.7].

(i) Since 7(Smax.1) = 71(G1) S Z(G) C Z(K), it suffices to show that ]|1< is
injective. We may assume that K € K¢, since both K and K. are simply connected
and f is a maximal compact subalgebra of f. Further, K normalizes P*, and so
establishing the injectivity of j|x boils down to proving injectivity of
K — M, k +[1, k], which is obvious. 0O

We denote by G(0), 4, N, N, Nif and N the analytic subgroups of G correspond-
ing to g(0), a, n, W, nf and nt.

Remark 2.11. (a) In view of the Bruhat decomposition of IZZ;,, we may identify
AN} as a subgroup of IZE Note that N = N;f ix N,/ and so every n € N can be
written uniquely as n = ngn, with n; € N,j and n, € N;F. Thus we conclude from
Proposition 2.10(ii) that the map

HxAx N — M x P, (h, a, ngny) — ([h, ang], n,)

is an analytic diffeormphism onto its image which we denote by HAN. Accordingly
every element s € HAN can be written uniquely as s = hy(s)ag(s)ng(s) with
hy(s) € H, ay(s) € A and ng(s) € N all depending analytically on s € HAN.

(b) If D C p* denotes the Harish-Chandra realization of the Hermitian symmetric
space G/K and Dits conjugate in p~, then we set Q: = D N ;. In the sequel we realize
Qas a subset of N, via the exponential mapping. Recall from [KNO98, Lemma 1.18]
that

H'AN = QGO)N} and NN HAN = QxNj.

On the other hand, Q can also naturally be realized in M x P*. In particular we
obtain that the submanifold Q x N;~ of N is naturally included in M x P*. Denote
this realization by N NHAN. Further, the HAN-decomposition and the
H¢AN-decomposition (cf. [KNO97, Prop. 2.4]) coincide on N N HAN. In the sequel,
we will use this fact frequently without mentioning it.
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(c) Let p: X — H°AN the universal covering of H°AN. Since X is simply con-
nected, there exists a natural regular map m: X — M x P* with n(X) = HAN. In
particular, the prescription

KN HAN: = n(p~ (K N HAN))
defines an open submanifold of HAN. O

Note that the exponential mapping exp ~ |,: a — A is an isomorphism, hence has

an inverse which we denote by log: 4 — a. For each 1 € af, and a € A we set
ai — ei(logu)_ :

DEFINITION 2.12 (The c-functions). We write p, p, and p,, for the elements of a*
given by itrad,, ftr ad, and Jtrad,:, respectively. To A€ af. we associate the
following c-functions:

Or= [ du
NO(HAN)

ol = [ an@) O duy @)
Q
and

co(2): = / 7aH(ﬁ)_u+pk) dpy- (1)

Ny

provided the integrals converge absolutely (cf. [F HO94] and [KNO98]). We write £
for the set of all 4 € af, for which the defining integral for ¢ converges absolutely.
Accordingly we define £q and £y. Note that ¢ is the c-function of the non-compact
Riemannian symmetric space K(0)\G(0), where K(0): = G(0)". O

For each o € AT let & € a be the corresponding coroot, i.e., & € [(g°)", (g)™] such
that a(%) = 2. Associated to A" we define two minimal cones in a by

Chin: = cone({%:a € A¥}) and  Cp: = cone({&: o € Af)).

DEFINITION 2.13. Let V be a finite-dimensional vector space and V* its dual.
() If CCV is a convex set, then its [imit cone 1is defined by
limC ={xe€ V:x+ C C C}. Note that lim C is a convex cone and that lim C is
closed if C is open or closed.
(b) If E C V is a subset, then its dual cone is defined by E*: = {oa € V*: 0|y = 0}.
Note that E* is a closed convex cone in V*.
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THEOREM 2.14. The various c-functions are related by
c(4) = co(Aca(2)
and € =Eq NEy. Further:
(1) The domain of convergence Eq of cq is a tube domain Eq = ia* + Eq r with
Eor=1{lea:(Vue Al) A&) <2 —m,},

where my: = dim(g%)*. Further for all 1 € Eq we have

) =[] B(—%&)—%+ L2,
aeAf

where B denotes the Euler beta function. In particular:

(@ —-p—Ct. C&orandliméqpr =—C*

min = min*

(b) The function cq is holomorphic on Eq and cqlgy+y is bounded for all
ne —p— Crtlin'

(1)) The domain of convergence of ¢ is given by
&y = ia" +int é'*,,
co is holomorphic on £y and co |g,4, is bounded for all p € p, + é,:

Proof. The product formula ¢(1) = ¢y(4)cq(4) and the relation £ = Eq N &y are a
special case of [KNO98, Lemma 4.5].

(i) [KrOl199, Th. 3.5].
(i) All this follows from the Gindikin—Karpelevic product formula for ¢ (cf. [Hel84,
Ch. 4, Th. 6.13]). O

2.4. THE AVERAGING THEOREM

LEMMA 2.15. The group H° is compact and up to normalization of Haar measures
for all f € L'(H/H®) the following integration formulas hold:

S (W H)ay () dug(®).

NO(HAN)

O [ 1) duon = [

(i) mewwwzﬁ SO H a6 e

cN(HAN

Proof. In [KNO98, Lemma 3.15(i)] it is proved that H“° is compact and exactly
the same argument also yields that H° is compact. In view of this fact and our
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identifications of the various domains in the big complex manifold M x Pt (cf.
Remark 2.11), (i) follows from [KNO98, Prop. 1.19] and (ii) from [0187, Lemma
1.3]. O

THEOREM 2.16 (The Averaging Theorem). Let (n;, H,) be a unitary highest-weight
representation of G for which (nX, F(2)) is H N K-spherical. If v; is a highest-weight
vector, then the vector-valued integral [, m)(h).v; duy(h) with values in the Fréchet
space H; (cf. Remark 2.5) converges and defines a non-zero H-fixed hyperfunction
vector if and only if 2. + p € Eq. If this condition is satisfied and 0 # n € (H;‘“)H, then

[ wt dugty = T o
H ('7, V).)

Proof. Step 1: The analytic function S%,. N HAN — H;, s > m,(s).v, extends to
an analytic function F:HAN — H; and is given ecplicitly by F(s)=
an(s) 1y (hi(s)).v;.

In fact since dn;(X).v, = 0 for all X' € n, the standard argument of differentiating

yields
1:(8).v; = w(h($)ap(nu(9).v; = m(h(ar(s).v; = an(sY' m.(hu(s)).v1,
establishing Step 1.

Step 2: The integral exists if and only if 1+ p € Eq.
Let X € int Wy, be an arbitrary element and set @,: = Exp(itX) for all r > 0. For
each 7 > 0 consider the possibly unbounded linear functional

fiH, - C, wr /H(m(h).vi,m(at).w) dug(h).

In view of Proposition 2.4, we have to show that 1+ p € £q is equivalent to f; € H)
for all ¢ > 0.

Since v; is fixed by H? (cf. Proposition 2.7(i)), Step 1 and the integration formula of
Lemma 2.15(ii) yield

/H (o )vs mia)w) dp(h)
- / (s ().vi o) w)ar (K) 2 dpge (k)
KN(HAN) @.1)
_ f (rakan () ).vs. m(a) whan () duge (k)
Ken(HAN)

_ / (3 ad).vs, wyan ()~ dpg. (k).
KN(HAN)
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Recall from [FHO94, Prop. 5.3] that

Eo={leak: / ag (k)R du (k) < oo} (2.2)
K¢N(HAN)

In view of [KNO98, Lemma 3.15(ii)], the set X;: = a,(K° N HAN) is a compact
subset of HAN. In particular, we find compact sets Cj,, C',, C§ contained in H,
A and N, respectively, such that X, € C},C’, Ck. Thus we conclude from Step 1 that

(Yw e Hy)(Vx € X)) [(mi(x).v W) < supuecr, @ Ivill - Iwll < o0. (2.3)

Hence, in view of (2.1), (2.2) and (2.3) the proof of Step 2 will be complete, provided
we can show that for each element x in the compact space X, we can find
an open neighborhood U C X; of x and an element we€ H, such that
infyey [{(m;(y).v2, w)| > 0 holds. But this follows from (m;(y).vi, w) = (F(y), w) and
the continuity of F.

Step 3: If the integral exists, then its value is (v,, v,)/{v, v,)c(4 + p)n.

By Step 1 we know that 1+ p € g in the case where the integral exists. Since /4
is a highest weight for an H N K-spherical representation of K, it has to be
dominant integral with respect to A}, i.e., (4, o) € Ny for all « € Af. In particular
c¢(A+p) exists (cf. Theorem 2.14). Now by Step 2, we know that
Sy ma(h).vy dug(h) € (H;”’)H. Since dim(H;‘“)H <1 (cf. Proposition 2.7(ii)), it
follows that fH 7,(h).v; dugy(h) = cn for some constant ¢ € C. To determine ¢ we
apply the integral to the element v;. With Step 1 and the integration formula of
Lemma 2.15(1) we compute

/ ()., v2) ditgy ()
H
_ f_ (i (). v (1) dyis ()
NO(HAN)
:/_ () (Aag @) )vs, vi)ag @)~ d iz (1)
NO(HAN)

_ / (@) vi)an @) dyis ()
NN(HAN)

= (v, v;) /_ ap(@) V) du(7)
NO(HAN)

= (v, vi)e(A + p).

This proves Step 3 and completes the proof of the theorem. O
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3. Representations of the Relative Discrete Series

In this section we state and prove the Harish-Chandra—Godement Orthogonality
relations for homogeneous spaces carrying an invariant measure. Then we give
the definition of the formal dimension d(/) of a unitary highest-weight representation
(m;, H,) which belongs to the relative discrete series of H\G. Finally we derive the
formula for d(A) for large values of /.

3.1. ORTHOGONALITY RELATIONS

DEFINITION 3.1. Let G be a Lie group, Z its center and Z the group of unitary
characters of Z.Let H C G be a closed subgroup. Suppose that HZ is closed
and that HZ\G carries an invariant positive measure py, . For a fixed y € 4
we consider the Hilbert space of sections

Fﬁ(H\G) ={f* H\G — C:f measurable, (Vz € Z)(Vg € G) f(Hzg) =y(2)f (Hg);

fof) = f ()P ditypo(HZg) < o).
HZ\G

Let (n, H) be an irreducible unitary H-spherical representation of G with central
character y. Then for all v € (H~®)" and v € H® we define a continuous section by

T H\G — C, Hg — (1, n(g).v).

We say that (m, H) belongs to the relative discrete series of H\G, if there exists
non-zero elements 7 € (H~“)” and v e H® such that m,, belongs to Fi(H\G).
We denote (H“”)f the subspace of (H =) which corresponds to the relative discrete
series for H\G. [

In the proof of the following Proposition we adapt a nice idea of J. Faraut to our
setting (cf. [Gr96, Section 3.3]).

PROPOSITION 3.2 (Orthogonality Relations). Let G be a Lie group with center Z.
Then, if H is a closed subgroup of G such that HZ is closed and HZ\G carries a
positive G-invariant measure, then the following assertions hold:

(1) If (n, H) belongs to the relative discrete series of H\G transforming under the central
character y € Z and 0 #ne€ (’H_“’)f, then all matrix coefficients m,,, v € H®,
belong to Fi(H \G) and there exists a constant d(n, v) depending on the equivalence
class of mw and on n such that the mapping

T:H” — Fi(H\G), v d(m, v,

extends to a G-equivariant isometry.
(1) If (n, H)and (o, K) are two inequivalent representations of the relative discrete series
of HZ\G transforming under the same central character for Z, then forn € (7{_‘“)’;
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and n € (ICf‘”)f one has
o Ga) = [ ) 0 o() ity o(HZg) =0
HZ\G

Jorall ve H” and w € K?.

Proof. (i) (cf. [Gr96, Section 3.3]) Let D: = {v € H®: 7\, € Fi(H\G)} and consider
the unbounded operator

S:D — T (H\G), v >y,

Since py7 g 1s G-invariant by assumption, the same holds for D and therefore D is
dense in H by the irreducibility of (w, ). We define a positive Hermitian form
on D by

(vw):= (v, w) + (S.v, S.w), 3.1

for v, w € D. Denote by D the Hilbert completion of D with respect to (-|-) and denote
the extension of (:|-) to its completion by the same symbol. Since D is continuously
embedded into H, there exists a bounded selfadjoint injective operator 4 € B(H)
such that im4 =D and (4.vlw) = (v,w) for all ve H, we D. Since (-,-), is
G-invariant by the G-invariance of pyz\ g, it follows from (3.1) that 4 commutes
with 7(G). Now Schur’s Lemma applies and yields 4 = cid for some constant
¢ > 0. Thus we deduce from (3.1) that

c

(S, Sow), = (l — 1>(v, w)

for all v, w € D. In particular d(n, n):= ((1/¢) — 1) > 0. Moreover S being weakly
continuous, its extension to H® coincides with 1/,/d(n, n)T, concluding the proof
of (i).
(i) Let Tp:H — Fi(H\G) and T, K — Fi(H\G) be the equivariant isometric
embeddings from (i). If im 7;; Nim T, # {0}, then
TioTpyH—K

describes a non-trivial G-equivariant map. By Schur’s Lemma 7T o T is a scalar
multiple of an isometric isomorphism, contradicting the inequivalence of (m, H)
and (o, K). O

Remark 3.3. If H\G is a semisimple symmetric space, then the space

(H=) = (H~°), is finite-dimensional (cf. [Ba87, Th. 3.1]). Then Proposition 3.2(i)
says that one can find an inner product on (Hf”’)f such that

(Hf‘“)f QH® — Fi(H\G), VRV > d(m, v)m,,
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extends to a G-equivariant isometry (with G acting trivially on the first factor (H"")f
of the tensor product). O

3.2. THE FORMAL DIMENSION

If G denotes a unimodular locally compact group and L € G a closed unimodular
subgroup, then we denote by p;, ; a positive right G-invariant measure on the homo-
geneous space L\G.

DEFINITION 3.4. Let (n;, H,;) be an H-spherical unitary highest weight represen-
tation of G and 0 #£ 1 € (H;‘“)H. If v; is a highest-weight vector for (r;, H,), then
the formal dimension d(1) of (n;, H;) is defined by

1 1

D~ 1)l cmi(g)vi)l* d HZg).
d(2) vl HZ\G|<]7 (V)" ditpz\6(HZg)

Recall that (v, v;) # 0 and that the definition of d(1) is independent of the particular
choice of v, and 0 #£ v € (H;‘”)H (cf. Proposition 2.7(i1)).

The relation between the number d(7;, v) from Proposition 3.2 and d(/) is given by
d(2) = |, v;)1*/(vi, vi)d(m;, ). In particular, if v is normalized by |[(n,v;)?/
(v;,v;) =1, then we have d(1) = d(n;, n). O

Remark 3.5. The particular normalization of d(4) as in Definition 3.4 is motivated
from Harish-Chandra’s treatment of the ‘group case’ (cf. [HC56]). The group case is
defined by G = Gy x Gy and H = A(G) = {(g, g): g € Gy} for a simply connected
hermitian Lie group Gy. Then we have a natural isomorphism

Gy — H\G, g+~ H(g, 1)

and the invariant measure pi ;g corresponds to a Haar measure pzgg, On
Z(Go)\Go.

The spherical unitary highest weight representations of G are given by
(1) ® 3, H1®H’{) with (n;, H;) a unitary highest-weight representation of Gy and
(%, 'H7) its dual representation. Recall that H;@Hj is isomorphic to the space
of Hilbert-Schmidt operators By(H;) on H, and that the corresponding analytic
vectors are of trace class, i.e., Bo(H;)” C Bi(H;) (cf. [HiKr99a, App.]). The up
to scalar unique H-fixed hyperfunction vector is given by the conjugate trace:

n:By(H;)” — C, A tr(A).

Further a highest weight vector for (m; ® nj,Hg®ij) is given by v; ® vi. Then
(n,vi ®vi) = (v;,v;) and the expression for d(4) from Definition 3.4 gives that
1 1

A0 " v o2 (m3(8)-vs, vi) P du (Zg).
d(;{) |<V,{, V),) |2 Z(Go)\Go & A VA Z(Go)\Go
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Thus we see that our definition of the formal dimension coincides in the group case
with the standard one introduced by Harish-Chandra (cf. [HC56]). O

THEOREM 3.6. Let (n;, H,) be an unitary highest-weight representations of G for
which (nf, F(2))is H N K-spherical. Assume that A+ p € Eq and that (r;, H;) belongs
to the holomorphic discrete series of G. Then (n;, H,) is H-spherical, belongs to the
relative discrete series of H\G and the formal degree d(1) is given by

d(2) = d(2)°c(2.+ p),

where d(2)¢ is the formal dimension of (n;, H,) relative to G.

Proof. Since 1+ p € Eq the assumptions of Theorem 2.16 are satisfied and the
theorem applies. Thus (n;, H,) is H-spherical and if 0 # n € (H;)" and v, is a
highest weight vector, then we have

7
"= et ), B dra(h). (3.2)

If we insert (3.2) in the formula for v in the definition of the formal dimension we
obtain that

1 1
= |, (). v) % d HZ,
a0 = TP June 0, 0(&)-vi)l” dupzg(HZg)

1
RV Y (M), ().
(v, v2)%c( + p)? /HZ\G /H /;,m (h1).v7, m3(8)-v2)
(m(g).m, m(hg).vi) d:uH(hl) dﬂH(hZ) d/“tHZ\G(HZg)

1
T o2+ o) (ahy)v;, m(2).v;
(v, v2)%c( + p)? /,;Z\G/H_/H(n (hah1).v;, m3(8)-v2)
(mu(hs ' @).vs, vi) dugr () dpg(ha) dpgz G(HZg)

1
T v 2+ o) )y, i (hhg).y;
(v, v2) (2 + p)? /HZ\G /H /H<7I ()7 7(h2g)-v2)
(3(h28)vi, v;) dup() duy(ha) dpgzg(HZE)

1
T e+ o) 2(h).vi, my(hog).v;
(v, v1) (A + p)? /1-1 /I-IZ\G/,.1<n (71).v3, 7 (hag).v2)
(m3(h28)vi, v;) dpp(ho) dupyzg(HZg) dug(h)

1
= m/j{/zw(m(hl)yb m(2)-vi)
(1(8)-vi, vi) dugp(28) duy(hy).

Thus if we apply the Harish-Chandra—Godement Orthogonality Relations for
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L*(Z\G) and once more (3.2) we obtain that

1 1 1
an : s Vi 2().va, vy dpg(h
T T i 7 ™ ] v

1 (7 S T S—
= : - G Vi) =
d()® (v, v2)e(h+ p)? d)%c(h+p)’
as was to be shown. O

4. Analytic Continuation in 4

In this section we prove the analytic continuation of the formula for the formal
dimension d(4) from Theorem 3.6. The proof is quite technical and we need some
preparation on algebraic and analytic level.

4.1. ALGEBRAIC PRELIMINARIES

In this subsection we collect some facts concerning the fine structure theory of com-
pactly causal symmetric Lie algebras. The results are mainly due to Olafsson (cf.
[0191)).

LEMMA 4.1. Let (g, 1) be a compactly causal symmetric Lie algebra, then we can
choose root vectors E, € g7, o € A,, such that the following conditions are satisfied:

() E, =E.,
(2) a(H,) =2 with H, =[E,, E_,].
3) w(E,) = E., where ta =100

Proof. Let k denote the Cartan—Killing form on g¢ and define a Hermitian inner
product on g¢ by (X, Y):= —x(X, 0(Y)).

For each o € AJr let 0 # E, € g% be an arbitrary element of length 1. Then define
E_, by E_azzfa. Thus (1) is satisfied. Now t(E,) C CE,, implies the existence
of complex numbers ¢, such that t(E,) = ¢, E,,. Now 7 being an involutive implies
¢y = 1, further 7 being an isometry implies that |c,| = 1 and finally = being complex
linear implies that ¢, = ¢_, for all o € K,,. Thus ¢, = ¢, = c_,. For each complex
number z = ¢?, ¢ € [0, 2a], of modulus 1 we define z2 = ¢2. Thus redifining E,,
oE A+ by e E,, leaves (1) untouched and in addition satisfies (3).

Since g € p¢ forall o € A,J{, we have o([E,, E_,]) > 0, and so by rescaling E, with
an appropriate positive number we may in addition assume that (2) holds. This
proves the lemma. O

Let T = . - y,} be a maximal system of strongly orthogonal, i.e., y/ +7,; is
never arootand I € AJr has maximal many elements with respect to thls property.
In view of [HiO196, Lemma 4.1.7] or [O191, Section 3], we may choose T invariant
under —r.
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Foreach1 <j <rweset E = Ff~ E,j =E~ and X = z(E E,j) According to
[HC56, Cor. to Lemma 8], the space

er= G’BR:\;] = @Ri(’Ej — /E,j)
J=1 J=1

is maximal abelian in p. Note that e is t-invariant by the special choice of the
non-compact root vectors (cf. Lemma 4.5(3)) and the —z-invariance of I'.
We consider the Cayley transform

C— ei%ad(z;zl E,+E,j)
which is an automorphism of g.. Finally we set flj =H~forall 1 <j<r
Vi

LEMMA 4.2. The Cayley transform C has the following properties.

(1) Foralll1 <j< ronehas C(X) _H and C(H) = —

(i1) We have 14(2:]:1 E + E,]) € ib,. In particular, one has
(a 1ToC=Cor,
(b)y 0oC=C"00,

(iii) The Cayley transform yields an isomorphism C:e¢ — C(e) with C(e) C it a
T-invariant subspace.

Proof. (i) This follows from sl(2, R)-reduction (cf. [HC56, p. 584], [HiO196,
Lemma A.3.2(3)]). R

(i1) It follows from ¢} Cpc, for all oe An and Lemma 4. 1(1) that
4(2/ 1 E + E_,) € ip. Further Lemma 4.1(3) and the —z-invariance of T imply

(ZE+E> ZT(E)+‘E(E])_ Es+E »= ZE+E,

Jj=1 Jj=1

Thus i(n/4) (Z E + E_]) € ib,. This proves (i).
(iii) This follows from (i) and (ii)(a). O

Recall that e is z-invariant and write b = ¢ N q for the set of —z-fixed points.

LEMMA 4.3. Let ¢:= C(b). Then ¢ C a and the Cayley transform yields an
isomorphism C:b — .

Proof. Since C(b) C it by Lemma 4.2(i), the fact that b € g and that C commutes
with 7 (cf. Lemma 4.2(ii)) imply that C(b) C i(t N q). But i(t N q) = a by the definition
of a, proving the lemma. O

Recall that b is maximal Abelian subspace of g N p (this follows, for instance, from

the c-dual version of Lemma 4.1.9 in [HiO196]) and denote by = = 3(g, b) the set of
roots of g with respect to b. Recall that X is an abstract root system (cf. [Sch84,
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Section 7.2]). We write

a=3,0) &P

e

for the corresponding root space decomposition. By Lemma 4.3, the Cayley trans-
form induces a mapping C’: a* — b*, o +>ao C|, and we set

I, =C'(A)ly and Zp = C'(AWI\ {0}

Letl = {%@ — r’y}): 1 <j < r}denote the restricted set of strongly orthogonal roots.
Note that I' € ¢* by Lemma 4.2(1). Thus we can write I' = {y;, ..., 7,} for some
1 <s<r. For each 1 <j<s we define H; € ¢ by y;(H;) =2 and y,(H;) =0 for
k#j. We set X;:=—C(H;) for all 1 <j <s. Then

b= @ RX;.
j=1

As a final algebraic tool we need explicit information on the root system X which is
provided by Olafsson’s Theorem on double restricted root systems (cf. [O191, Section
3], [HO@91, Prop. 3.1]). Forall 1 < < s we set y;:= C'(y;) and note that y/,(X;) = 2
since C(X;) = H; (cf. Lemma 4.2(i), (ii)).

Finally we put =% := C/(A*)\{0}, =V :=%,NZ" and ;=5 NZT.

THEOREM 4.4 (Olafsson). If (g, 1) is compactly causal, then the following assertions
concerning the double restricted root system X = X(g, b) hold:

() The restricted root system has the following form
=20 W —v) i< JUELY; i1 <)< s)
and
TE=0Wi )1 <ij<stUBY; 1 <j<s)

The second sets in X and " are empty if and only if C* = id. If further \j is chosen
to be a simple root, then

TECGW - i< UG 1< < s)

(1) Al 1 <j<s have the same length.
(iii) The conjugacy classes of the restricted root system under the Weyl group associated
to X are given by

() (LW, 201 <) <50 #))
(2) {#y;:1</j<s)
() {£3y;:1<j<s)
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Proof. (i) Let T = Z(g, e) be the restricted root system v with respect to the maximal
abelian subspace ¢ and Zk, Z defined as above. Write lp = C’(j?) foralll <j <
Suppose ﬁrst that g is simple. Then for the analogous statement for S in stead
of X and lpj in stead of y;, Harish-Chandra has proved in [HC56, Lemma 13-16]
that Ek, Z* are contained in the asserted subsets, Moore proved equality (cf. [Mo64,
Th. 2]) and finally Koranyi and Wolf have shown in [KoWo65, Prop. 4.4 with
Remark] that the second set in ’2\:{ is empty if and only if C* =id. Now taking
restrictions to ¢ yields (i) for g simple.

In the group case similar considerations lead to the same result.

(i1) This can be deduced from [Mo64, Th. 2(2)], but we propose here a much
simpler proof. We use (i) and the fact that X is an abstract root system. As usual
we write sy, ¥ € X, for the reflection associated to 1. Then we obtain for all
1 <i#j<sthat

200, 1 7
) =y =g o LD gy

GO+ 3+

Wi th) + () Wi+ ).

Thus it follows from (i) and Sy, W/)(xpj) € X that

=¥, -

l//]’ lpf {l l}
<‘/Ji’ lpi l//J’ lﬁj 274
Interchanging i and j then yields
Wi

Wi i) + W ¥)) 2
or equivalently that (f;, ;) = (;, ;). This proves (ii).

(iii) In view of (i), we have for all 1 <1, /, k < r that

s%(k//,-:tx//j)(wj) =¥y,

S%(Ipi:tl///)(% ;£ l//k)) = %(:Flﬁi ¥y, (4.1)
Sw,-(% (== lﬁ,)) = %(—% + ‘P_/)-
This proves (iii). O

From now on we assume that i/ is a simple root. Then Theorem 4.4(i) says that

Tr= 00 ) 1< j<sPUGY 1 <j<s) (4.2)

and

=0 -y 1<i<j<stufly; 1 <j<s) (4.3)
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Further it follows from Theorem 4.4(i) and the first formula in (4.1) that the Weyl
group W(Z) of X acts on b as the full permutation group of the X;’s.

We write b = {X € b: (Vo € ZT) o(X) = 0} for the Weyl chamber corresponding
to T. By (4.2) and (4.3) we then have

N
ijXj:OSXSS KX
J=1

Further, let am:={Xeca:(VaeAT) u(X) >0} and ¢":=atNc. Note that
C(b*) = ¢* by the construction of 7.

LEMMA 4.5. The following equality holds
Crin N (=CD) = ()" N(=CP),

where the stars x are all taken in a*.

Proof. First recall some basic rules in dealing with convex cones (cf. [Ne99b, Ch.
V). If W is a closed convex cone in an euclidean space V, then (W*)* = W. Further
for two closed convex cones Wy, W> C V we have (W) N W))" = W} + W3,

Let now the convex cone on the left hand side be denoted by 1/, the other one by
W,. Let p:a — ¢ be the orthogonal projection with respect to the Cartan—Killing
form. We claim that p(W7) = p(W3). Assume first that no half roots in X occur.
Then from the Cayley-transform analogs of (4.2) and (4.3) it follows that

p( W*) = p(Cmm Ck) @ R+H + @ R+(H/+1 H/),
and

pOW2) = p(ct — Ci) ( @Rﬂq {ZXJH X< ... < 1})+

+ @ R*(Hy1 — H)).
j=1
From these two equalities the claim follows in the case of no half roots in £. The
general case is easily deduced from this.
Letr:a* — ¢*, r(4): = 4| be the restriction map and note that r is the dual map of

the inclusion mapping ¢ — a. Since both W, and W, are closed, we have
(Wi,)" = Wi, and so

Wizle=r(Wi2) = (p(Wi,)).

Hence our claim implies that W; | .= W;|.. Thus W, C W, by the definition of W
and W,.
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For the converse inclusion we first note that an element 4 € —é',: belongs to W if
and only if ),(B) > 0, where f is the highest root (this becomes clear from our con-
struction of the positive systems). Recall that T can be constructed inductively
starting with the highest root (cf. [HC56, p. 108]). Thus =1y, € I'. Hence
Wi=(@)'N —Ct, and so W, € W, since (¢t)* € G O

4.2. ANALYTIC PRELIMINARIES
Recall the definition of b* and set B*: = exp(b™).
LEMMA 4.6 (Flensted-Jensen). Let L = Zyng(b). Then for the homegeneous space
HZ\G the following assertions hold.:
(1)  The subgroups HZ and LZ of G are closed and Z\LZ is compact.
(1)) The mapping
®: B x LZ\K — HZ\G, (b, LZk) > LZbk

is a diffeomorphism onto its open image. The image is dense with complement of
Haar measure zero.

(iii) Up to normalization of measures we have for all f € L'(HZ\G) the following inte-
gration formula

/' F(HZg) dytyypo(HZg)
HZ\G

_ / FHZ exp(X)k) J(X) dX dpp (ZK)
2K Jut

with

J(X) = [ cosh(p(X))" sinh(p(X))",

pext

where my: = dim({X € g?: 01(X) = £X}).

Proof. (1) The closedness of HZ and LZ follows from the closedness of Ad(H) and
Zaqy(b) in the adjoint group Ad(G). Finally Z\LZ is a closed subgroup of the
compact group Z\Z(H N K) and hence compact.

(ii) [Sch84, Prop. 7.1.3].

(i) It follows from [FJ80, Th. 2.6] or [Sch84, Lemma 8.1.2] that

J(X): = det (dD(X, LZk)) = [ ] cosh(p(X))" sinh(¢(X))"

pext
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for all X € b* and k € K. Thus it follows from (ii) that

f(HZg) d#HZ\G(HZg) = f

| 0z ex0008) I0) X iy 200
LZ\K Ju+

HZ\G

holds for all f € L'(HZ\G). In view of (i), we may replace the integration over LZ\K
by an Z\K-integral, proving (iii). OJ

LEMMA 4.7. Realize G as a submanifold 0f]\~4 x PT as in Proposition 2.10(ii). Then
for b =expg(3_;_; x;X;) € B and

5 q ~
wb): = exp;{ (Zilog cosh(2x,~)H,> € AC K¢
j=1

the following assertions hold:

() We have b € {[h, u(b)]: h € He} x P*.
(i) If X e bt, then log u(expg(X)) € ¢t

Proof. (1) This follows directly from [HiO196, pp- 210-211].
(i) Recall that X =37, x;X; € b* if and only if 0 <x; < --- <x;. Now the
assertion follows from (i) and the monotonicity of the mapping R™ — R,
x > logcosh(x). O

4.3. PROOF OF THE ANALYTIC CONTINUATION

Let (n;, H,;) be an H-spherical unitary highest-weight representation of G. Further,
let ve (’H;”’)H an H-fixed hyperfunction vector and vy =v|p) € FO)IK  we
normalize v by setting ||vo|| = 1 and then v; by [(v, v;)| = 1. Then we have

d(3)=1(2)"" with 1(2)12/ |(v, 1) V) I* dppp G(HZg).
HZ\G

DEFINITION 4.8. On the non-compactly Riemannian symmetric space K(0)\G(0)
we define the spherical function with parameter i € af, by

o2g) = / (kY dpg (),
K(0)

for all g € G(0). [

Remark 4.9. Note that if 1 € a* is the highest weight of an H N K-spherical rep-
resentation (nX, F(1)) of K¢, then qog o extends to a holomorphic function on
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I’(v@ and we have
95 (k) = (0 ().vo, v0) (4.4)
for all k € IF(E; (cf. [Hel84, Ch. V, Th. 4.3]). O

PROPOSITION 4.10. With the notation of Lemma 4.7 we have
1
1) = —F— 0 X 2 Y) dx
B = GmFQ) /b P+, (HEXPG(X))) J(X) dX,

where J(X) is given as in Proposition 4.6(iii).

Proof (cf. [HCS56, p. 599], [Gr96, Prop. 10]). In the sequel we identify b with B via
the exponential mapping and for b = exps(X) € BT we set J(b): = J(X). Then by
Lemma 4.6(iii) we have

10) = f (v 729 2) P iy (HZg)

HZ\G (4.5)

_ / (v s (BR)v ) T(B) dp(b) (k).
Z\K J B+

In view of Lemma 2.10(ii), we can write each element in b € BT as ([hc(b),
u), p+(b)) € M x Pt with u(b) € K. Now the same consideration as in the proof
of Step 1 of Theorem 2.16 yields for all » € B" and k € K that

(v, mi(bk).v;) = (v, 1 (([hc(b), (b)), p1(b))k).v;)
= (v, (L, w(DIK], k™' p1(BYK).v;) = (v, mu(u(b)k).v;)
= (vo, 73 (u(b)k).v;).

If we insert this expression for the matrix coefficient in (4.5), use Schur’s
Orthogonality Relations for (zX, F(1)) and the relation n&(u(b))* = n&(u(b)) (cf.
Lemma 4.7), we arrive at

10) = /B + /Z 0 TS IB) i)
1
- 5 /B ) 0. 7 @B o) IB) i)

_ 1 K 2
- T /B W0, v0) JB) dglh).

Now the assertion of the proposition follows from (4.4). O
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LEMMA 4.11. Let V be a finite-dimensional real vector space, W C V be an open
convex cone, o, ...,0%, Bi,..., 0, € W\{O} and p1,....pun.q1...,qm € No. For

every /. € V* we define the integral
H():= / O T J(sinhoy(x))” [ ] (cosh B,(x))* dpy(x).
W=l 1 '

i=

Then H(7) converges if and only if 2.+ 30 pjo + 37, q;iB; € —int W™,

Proof If ¢y = ... = q,, = 0, then this is Lemma 4.6 in [Kr98]. The general case is
easily obtained from this. O

The following characterization of the relative discrete series by the parameter A is
due to Hilgert, Olafsson and @rsted and was obtained in two steps (cf. [0D91,
Th. 5.2], [HO@91, Th. 3.3]). We present an essentially modified proof here, but
we point out that it is not our objective to give new proofs of well-known facts.
In the course of our arguments, we obtain an important new estimate which is crucial
for the analytic continuation of I(4).

THEOREM 4.12 (Hilgert-Olafsson-@rsted). Let (n;, H;) be an unitary highest
weight representation of G with (n¥, F(2)) being H N K-spherical. Then (n;, H,)
belongs to the relative discrete series of H\G if and only if the condition

(Ve e AD) (A+p,a) <0 (RDS)

is satisfied.

Proof. Recall the definition of ¢+, a™ and the relation C(b") = ¢*. Set
A" :=expg(at) and let || - || denote an arbitrary norm on a. If we write (¢7)*, then
the star * is to be taken in a*.

Step 1: I(2) < oo, if 1+ p € —int(ct)*, the interior of (¢*)*.

Here we do not assume that / € a* is dominant integral with respect to A}, but
only 4 € é,: By Harish-Chandra’s estimates for spherical functions on non-compact
Riemannian symmetric spaces, there exists constants ¢ > 0 and d € IN such that

(Vie G)(Vae 4) ¢Ya) < ca” (1 + | logall)’ (4.6)

(cf. [Wal88, 4.5.3]). Note that J(X) < (@) for all X € b* by the formula for the
Jacobian in Lemma 4.6(iii)). Thus it follows for all AeC; and
X =371 xX; € b from (4.6) together with Lemma 4.7 that

0%+, (1(expG(X)))) J(X) < ep(exp(X)) (1 + I log u(expg(X))* ) e XD
< CeZl(C(X))(l + 2” C(X)||)(l'e2p(C(X))
662(2+p)(C(X))(1 +2] C(X)||)d.

N

4.7)
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Now Proposition 4.11 shows that I(1) < oo if 1+ p € —int(ct)*, proving our first
step.

Step 2: A+ p € —int(ch), if I() < oo.

Recall that /4 is supposed to be dominant integral with respect to A;. Thus it
follows from (4.4) and the fact that the A N K-spherical vector vy has a non-zero
v,-component (cf. [Hel84, p. 537, (7)]) that there is a constant ¢; > 0 such that
c;a" < ¢, , () holds for all a € A*. Hence Lemma 4.7 implies that

C )
(VX €vh) ST < ol (exp(XD)IX).

In view of Proposition 4.10 and Lemma 4.11, we obtain A+ p € —int(ct)* if
1(2) < oo. This proves our second step.

Step 3: If 1 € C;, then / satisfies (RDS) if and only if 1+ p € —int(c*)*.

Note that /4 satisfies (RDS) means that 2+ p € —int C};; . Now if 4 € é’,:, then
A+ peint V,:. Thus Step 3 follows from Lemma 4.5.

In view of Steps 1-3, it follows that /(7) is finite if and only if 1 satisfies the con-
dition (RDS). The proof of the theorem will therefore be complete with

Step 4: If 1 satisfies (RDS), then (n,, H;) is H-spherical.
Let x:G— Kcg/(KcNHg), the canonical projection defined via the
decomposition in Proposition 2.10. Now the function

H\G — C, Hg > (n}(1(g)).v:, vo)

generates an H-spherical module in the relative discrete series on H\G (cf. [0991,
Th. 5.2]). This proves Step 4 and concludes the proof of the theorem. O

The prescription
W:=—int C%,, N Cf € —int(ct)*

defines a convex cone in a*. We write Ty = ia* + W for the associated tube domain
in af.. Note that p, € i3(f)* by the construction of Af and so —p, € W.

LEMMA 4.13. The function I(1) extends naturally to a continuous function on the
affine subtube Ty — p, also denoted by I, and which is holomorphic when restricted
to Tyo —p. If m € N is sufficiently large, then W —mp, € W —p and I|71,,_p,,
is bounded.

Proof. First we show that W —mp, € W — p for large values of m € IN. Since
p, €intCh. ., we have p —mp, € —int Cy,, provided m € NN is sufficiently large.
Further p,, € i3(f)* shows that R.p, € é’,’; Thus we have p —mp, € W if m is chosen
sufficiently large, proving our claim.
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Recall the formula for /(1) from Proposition 4.10. Then (4.7) yields constants
¢ >0, d € N such that

4

S T rm ).

SN 2 X1 dx (4.8)
holds for some norm || - || on a. Let p, denote the half sum of the roots in K,f and
recall Weyl’s Dimension Formula

[~ (A +Pp @)

+
a€A;

H" @k’ @

-~
T
a€A]

dim F(1) =

In particular, we see that A — 1/ dim F(4) extends to a holomorphic map on 7T and
Tw — p which is bounded when restricted to Ty — mp,, for all m € Ny. Further for
each fixed b € BT the mapping

i, > C, Lol (b))

is holomorphic. Now (4.8) together with Proposition 4.10 imply that /(1) extends to a
continuous function on 7Ty — p which is holomorphic on 7Ty — p and bounded when
restricted to Ty — mp,, provided m is chosen sufficiently large. O

LEMMA 4.14. If m € N is sufficiently large, then the function
Tyo —mp, - C, A>c(A+p)

is holomorphic and bounded.
Proof. In view of p, € i3(1)*, this is immediate from Theorem 2.14. ]

THEOREM 4.15 (The formal dimension for the relative holomorphic discrete series
on a compactly causal symmetric space). Let H\G be a simply connected symmetric
space associated to a compactly causal symmetric Lie algebra (g,7) and (n;, H;)
be an unitary highest-weight representations of G _for which F(1) is H N K-spherical.
Then the following assertions hold.:

(1)  Therepresentation (r;, H,) belongs to the relative discrete series for H\G if and only
if the condition

Vee AN (A+p,a) <0 (RDS)

is satisfied.

(1) If (=, H,) belongs to the relative discrete series of H\G, then the formal dimension
d(2) is given by d(2) = d(\)°c().+ p), where d(3)° is the formal dimension of
(m;, H,) relative to G and c is the c-function of the non-compactly c-dual space
HN\G* of H\G (cf. Theorem 2.14) Here the right-hand side has to be understood
as an analytic continuation of a product of two meromorphic functions.
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Proof. (i) Theorem 4.12. _
(ii) Let p denote the half sum of the elements in AT and recall Harish-Chandra’s
condition for the relative discrete series on G

(Vaedf) (+7p.5) <0

(cf. [HC56, Lemma 29]) as well as Harish-Chandra’s formula for the formal
dimension d(4)¢ of the relative discrete series on G
[~ (+7.9)

le: aeAt _
* [~ (.

ocE/A\+
(cf. [HC56, Th. 4]). In particular for m € N sufficiently large, the prescription
)+ 1/d(%)° defines a bounded holomorphic function on the affine tube 70 — mp,,.
Now it follows from Lemmas 4.13 and 4.14 that the function

i Tywo —mp, - C, 2> I(Dc(A+ p) — ﬁ

is holomorphic and bounded for m sufficiently large. For such m Theorem 3.6 implies
that f(1) = 0 for all 2 € W — mp, which are dominant integral with respect to Af".
Thus the identity criterion of Proposition A.2 in Appendix A applies and yields
f=0. We conclude in particular that I(1)~' defines a continuation of
2+ d(2)°c(4 + p) to a continuous function on Ty — p which is holomorphic when
restricted to the interior Tjo — p. Since by definition d(4) = I(1)~!, the assertion
in (i1) follows because /4 satisfies (RDS) if and only if A € Ty — p OJ

The following result has already been obtained earlier by Faraut, Hilgert and
Olafsson in [FHO94, Lemma 9.2], but with a completely different type of arguments
(see also Theorem 2.14).

COROLLARY 4.16. Suppose that (g,7) = (hd Y, o) is of group type (c¢f. Lemma
1.3(1)(2)). Then the domain of convergence & for c is given by
£ =ia* 4+ (—int Ct, ) Nint C}

min
and there exists a constant y > 0 only depending on the choice of the various Haar
measures such that

c(A) = !
" Moea (i)
for 2eé.

Proof. In the following we use the notation of Remark 3.5. Since (g, 7) is of group
type we have d(1)° = d(2)©*%) = (d(2)%)?, and so it follows from Theorem 4.15(ii)
that ¢(A + p) = 1/d(7)® holds for the analytic continuations. In view of Harish—
Chandra’s formula for d(1)% (cf. [HC56, Th. 4]), this proves the corollary. O
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PROBLEMS. The discrete series on H\G are constructed by analytic methods, i.e.,
with generating functions (cf. [FJ80], [MaOs84], [0©91]). But from the algebraic
point of view there are still some interesting open problems.

(a) Using the classification sheme of unitary highest-weight modules (cf.
[EHWS3]) together with the fine structure theory of compactly causal symmetric
Lie algebras provided by Theorem 4.4 and [O191] one can check case by case that
(RDS) implies that N(1) = L(/). In view of Proposition 2.7(ii), this gives a more
algebraic proof of the fact that (RDS) implies that (n;, H,) is H-spherical whenever
(nf, F(7)) is H N K-spherical. The following questions are therefore natural: What
is the algebraic impact of the condition (RDS)? Does there exists an analog of
the Parthasarathy condition (cf. [EHWS83. Prop. 3.9]) for the symmetric space
setting?

(b) Give a complete classification of H-spherical unitary highest weight
representations. A first step in this direction might be Proposition 2.7(ii) and Remark
2.8. ]

5. Applications to Holomorphic Representation Theory

In this final section we give a second application of the Averaging Theorem: We
relate the spherical character of a spherical unitary highest-weight representation
of G to the corresponding spherical functions on the c-dual space.

5.1. SPHERICAL FUNCTIONS AND CHARACTER THEORY

DEFINITION 5.1. Let (n;, H,) be an H-spherical unitary highest-weight represen-
tation of G. If 0 £y € (H;w)H and v, is an highest-weight vector, then we define
the spherical character ®, of (n,, H;) by

0;:80.— C, s LWTZW(S)-V/, ")

(1, v2)

Note that ®; is an H-biinvariant holomorphic function on S  (cf. [KNO97,
Lemma 5.6]). O

Remark 5.2. The particular normalization of ®; has two reasons. First that it
coincides in the group case (cf. Remark 5) with the standard definition, and second
because it has the best analytic properties for the assignments A+ @;(s),
s € SY.  (as less poles as possible). O
DEFINITION 5.3 (Spherical Functions). Recall the definition of the domain
Ea C af. (cf. Definition 2.12). If 4 € £q, then the spherical function with parameter
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A is defined by

0;:8%. NHAN — C, s> f ap(shy =" dug(h)
H

(cf. [FHO94] or [KNO98]). Recall that the defining integrals converge absolutely if

and only if A € £q (cf. [FHOY94, Th. 6.3)). ]

THEOREM 5.4. Let (n;, H;) be an H-spherical unitary highest-weight represen-
tation of G such that A+ p € Eq holds. Then the spherical character ©, of
(m;, H,) and the spherical function @, , are related by

(Vs € S0 NHAN) 0(s) =

ax

1
m %+p(5)~

In particular, ¢, , extends naturally to a H-bi-invariant holomorphic function on
SO

max-*
Proof. Since 1+ p € Eq, the assumption of Theorem 2.16 is satisfied and we can
rewrite 0 # v € (H;)" as

o
= e+ p)/l.{m(h)"’l dug (h).

Thus if we replace the first v in the definition of ®, by this expression, we get for all
se S’ NHAN that

max

(Viv v/l)
RE (mi(s).m, 1)

1 1

T GAp)
1

T GAp) )
1 1

T GAp) )
1 :
— fH an(shy dyy (h)

_ 1
(A +p)

0;(s) =

/H (m(sh).vs, ) diigy(h)

/H (s haa(shaz(shynsa(sh).vs. ) diugy(h)

/H (maa(sh).vzo ) diugg(h)

c(A
¢X+p(s)’
as was to be shown. O

Remark 5.5. (a) We remark here that the relation in Theorem 5.4 was long time
searched by G. Olafsson (cf. [O198, Open Problem 7(1)]). For further interesting
problems related to this subject we refer to [Fa98] and [O198].

(b) The analytic continuation of the relation in Theorem 5.4 has been obtained in
[HiKr98]. It has far reaching consequences for the theory of G-invariant Hilbert
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spaces of holomorphic functions on G-invariant subdomains of the Stein manifold
B . = G xp iW?, . In particular, it implies the Plancherel Theorem for these class
of Hilbert spaces (cf. [HiKr98]). For further information related to this subject,
we refer to [HiKr99b], [KNO97], [Kr98,99b] and [Ne99al. O

Appendix
A. AN IDENTITY CRITERION FOR BOUNDED ANALYTIC FUNCTIONS ON TUBES

LEMMA A.l. Let ITT: = {z € C:Im(z) > 0} be the upper half plane and H>®: =
{f € Hol(ITM): ||f |l < 00} the Banach space of bounded holomorphic functions on
it. Let o > 0 and N = {noi:n € N}. Then the following identity assertion for elements
[ of H®(I1) holds: If f |y= 0, then f = 0.

Proof. Let D:={ze C:|z] <1} and H*(D)={f € Hol(D): |fll.oc < o0}. Let
f € H®(D) and {f,:n € N} be subset of zeros of f. Then it follows from [Ru70,
Th. 15.23] that

=000 Y (1= 1B,]) = co. (A1)
n=1

We consider the Cayley transform

z—1
z4+i’

which is a biholomorphic isomorphism, defining an isomorphism of Banach spaces

et > D, z

¢ H(D) — H>*(II), f r—>f =foc.
Let o,: = noi. Then we have

noi—i  no—1
noi+i  no+1°
Let Ny € N be such that no — 1 > 0 for all n > Ny. Then

> a no— 1 > 2
D=1 = Z<1_na+1)zzna+1:°°' (A.2)

Bu:= c(om) =

n=1 n=N, n=N,
Thus if]7 € H°(IT") vanishes on all oy, n € N, then f(f,) = 0 for all n € IN and so
f =0Dby (A.1) and (A.2). Therefore f = ¢.(f) = 0, proving the lemma. O

PROPOSITION A.2. Let @ # W C R" be an open convex cone, Ty:= R" +iW the
associated tube domain in C" and H*®(Ty) = {f € Hol(Tw): | |l < 00} the space
of bounded holomorphic functions on Ty. Let ' C R" be a lattice. Then the following
identity assertion holds:

(Yf € H*(Tw)) flicomy=0 = f=0.

https://doi.org/10.1023/A:1002462711588 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002462711588

188 BERNHARD KROTZ

Proof. We prove the assertion by induction on the dimension n € N.

Ifn=1,thenT = Zoaforsomea > 0and W = R, Rt or R™. If W = R, then the
assertion follows from Liouville’s Theorem. In the two remaining cases the assertion
follows from Lemma A.1.

Suppose now the assertion is true for all all dimensions less or equal to n — 1,
n>=2.Letf € H®(R" 4+ iW) be an element vanishing on i(I' N W). We have to show
that /' = 0. Since W is open, we find a basis ey, ..., e, of R” which is contained in
I'n W. By the Identity Theorem for analytic functions, it suffices to prove the
assertion for ' =7Ze; ®...® Ze, and W = Z;’zl R*ej. let T,o1=Ze1®...®
Ze,_; and W,_| = Z]'le R¥e;. Write the variables z € C" as tuples z = (7, z,) with
z =(z1,...,2zy—1). By induction we obtain that f(z) = f(Z/, z,) does not depend
on the z/-variable. Thus f(z) = F(z,) for some F € H*(IT") with F|x;= 0. Thus
by the induction hypothesis F =0 and, hence, f = 0 establishing the induction

step. [

B. A LEMMA ON SPHERICAL HIGHEST WEIGHT MODULES

Throughout this subsection (g, 7) denotes a simple Hermitian symmetric Lie algebra.
Further we use the notation from Section 1-2.

LEMMA B.1. Suppose that (g, 7) is a simple Hermitian symmetric Lie algebra and
(G, 1) an associated simply connected Lie group. Set H = G* and assume that there
exist a non-trivial H-spherical unitary highest-weight representation (m;, H;) of
G. Then the symmetric Lie algebra (g, ) has to be compactly causal.

Proof. Write g =1t@® p for a r-invariant Cartan decomposition of g and let K
denote the analytic subgroup of G corresponding to f.

By assumption we have (H;“’)H # {0}. In particular we can conclude that the mod-
ule L(A) of K-finite vectors of (n;, H,) admits nontrivial H N K-fixed vectors. Recall
that L(A) is the unique irreducible quotient of the generalized Verma module

N(A) =U(3c) Quaeav) F(A).

In particular, there exists an element 0 # vy € N(1)
Recall that N(4) is fc-isomorphic to S(p~)® F(4), where the fc-action on
S(p7) ® F(A) is defined by

X.pov):=[X,pl®v+pR Xy (B.1)

for X e ¢, p € S(p7) and v € F(2) (cf. [EHWSE3]).

In order to show that (g, 7) is compactly causal, we have to prove 3(f) C q. Assume
the contrary, i.e. 3(f) € §. Recall the definition of the element Z;, € 3(f) from Section 1
and set Xy: = —iZ, € i3(f). Then the spectrum of X}, considered as an operator on the
symmetric algebra S(p~), is —INy, and we obtain a natural grading by homogeneous
elements: S(p~) = P,y S(™)™". Then N(1) = P2, S(p~)™" ® F(4) and we con-
clude from (B.1) that X; acts on S(p~)™" ® F(A) by —n + A(Xp) times the identity.

HNK
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Write n =) -, v;" according to the decomposition N(1) = @2 S»™) ™" ® F(4).
Since Xy € i(hN¥T), the element vy is annihilated by X; and so we must have
vo = vp" for some n € Ny with A(Xp) =n > 0. But a necessary condition for L(4)
to be unitarizable is A(Xp) < 0 (cf. [Ne99b, Th. 11.2.37(i1)]). This gives us a con-
tradiction and proves the lemma. O
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