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Abstract. If G is a semisimple Lie group and �p;H� an irreducible unitary representation of G
with square integrable matrix coef¢cients, then there exists a number d�p� such that

�8v; v0;w;w0 2 H� 1
d�p� hv; v

0ihw0;wi �
Z
G
hp�g�:v;wihp�g�:v0:w0i dmG�g�:

The constant d�p� is called the formal dimension of �p;H�andwas computed by Harish-Chandra
in [HC56, 66].
If now HnG is a semisimple symmetric space and �p;H� an irreducible H-spherical unitary
�p;H� belonging to the holomorphic discrete series of HnG, then one can de¢ne a formal
dimension d�p� in an analogous manner. In this paper we compute d�p� for these classes of
representations.
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Introduction

Let HnG be a semisimple irreducible simply connected non-compact symmetric
space admitting relative holomorphic discrete series, i.e., there exists a unitary
highest weight representation �pl;Hl� of G and a non-zero H-invariant
hyperfunction vector Z 2 Hÿol such that

1
d�l� :�

1
jhZ; vlij2

Z
HZnG
jhZ; pl�g�:vlij2 dmHZnG�HZg�

is ¢nite. Here vl denotes a highest weight vector, Z the center of G and mHZnG a
G-invariant measure on the homogeneous spaceHZnG. Note that vl and n are unique
up to scalar multiple as well as hn; vli 6� 0. Therefore the number d�l� is well de¢ned
and we call it the formal dimension of the spherical highest weight representation
�pl;Hl�. We remark here that our de¢nition of the formal dimension generalizes
Harish-Chandra notion in the `group case', i.e., where G � G0 � G0 and
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H � D�G� � f�g; g�: g 2 G0g for a simply connected hermitian Lie group G0 (cf.
[HC56] and Remark 3.5 below).

Note that the constants d�l� determine the part of the Plancherel measure onHnG
which corresponds to the relative holomorphic discrete series. Thus the explicit
knowledge of the formal dimensions gives us a better understanding of the
Plancherel Theorem on HnG which was recently obtained by van den Ban and
Schlichtkrull and Delorme (cf. [BS97,99], [De98]).

Let �g; t� be the symmetric Lie algebra attached toHnG and write g � h� q for the
t-eigenspace decomposition. If g � k� p is a t-invariant Cartan decomposition of g,
then the algebraic characterization of HnG admitting relative holomorphic discrete
series is z�k� \ q 6� 0. Symmetric Lie algebras �g; t� having this property are called
compactly causal (cf. [HiOè l96]). In the group case, i.e., �g; t� � �g0 � g0; s� with
s�X ;Y � � �Y ;X � the £ip involution, this just means that g0 is Hermitian. We remark
here that the formal dimension in the group case was computed by Harish-Chandra
(cf. [HC56]).

In this paper we derive the formula for the formal dimension d�l� for compactly
causal symmetric spaces. For the special class of Cayley type spaces this problem
has been dealt with by Chadli with Jordan algebra methods (cf. [Ch98]). The
approach presented here is general and purely representation theoretic.

Our key result is the Averaging Theorem (cf. Theorem 2.16) which asserts that for
large parameters l the H-integral over vl converges. More precisely, for large par-
ameters l we prove that

Z
H
pl�h�:vl dmH �h� �

hvl; vli
hZ; vli c�l� r�Z;

where the left-hand side has to be understood as a vector valued integral with values
in the Frëchet space of hyperfunction vectors and

c�l� �
Z
N\HAN

aH �n�ÿ�l�r� dmN�n�

denotes the c-function of the non-compactly causal c-dual space HcnGc (cf.
[HiOè l96]).

To obtain the formula for the formal degree d�l�, we plug in the relation for n
obtained from the Averaging Theorem in the de¢nition of d�l� and obtain for
large parameters: d�l� � d�l�Gc�l� r�; where d�l�G is the formal dimension of
�pl;Hl� for the relative discrete series on G (cf. Theorem 3.6). Using some ideas
of Oè lafsson and �rsted (cf. [Oè �91]) we prove the analytic continuation of our for-
mula for d�l� (cf. Theorem 4.15).

The c-function c�l� can be written as a product c�l� � c0�l�cO�l�; where c0�l� is the
c-function of a certain Riemannian symmetric subspace of HnG and cO�l� is the
c-function of the real form O of the bounded symmetric domain D � G=K . In par-
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ticular we have

d�l� � d�l�Gc0�l� r�cO�l� r�:
The ingredients in this formula of d�l� are known: Harish-Chandra computed d�l�G
in [HC56], Gindikin and KarpelevicÆ c0�l� (cf. [GiKa62]) and ¢nally Oè lafsson
and the author computed cO�l� in [KrOè l99] (see also [Fa95], [Gr97] for earlier results
in important special cases).

In the ¢nal section we give applications of our results to spherical holomorphic
representation theory. Recall that a unitary highest weight representation
�pl;Hl� of G extends naturally to a holomorphic representation of the maximal open
complex Ol'shanski�� semigroup S0

max � GExp�iW 0
max� (cf. [Ne99b, Section 11.2]). If

�pl;Hl� is an H-spherical unitary highest weight representation of G, then we de¢ne
its spherical character by

Yl:S0
max ! C; s 7! hvl; vli

jhZ; vlij2
hpl�s�:Z; Zi:

Note that Yl is an H-biinvariant holomorphic function on S0
max. On the other hand

on S0
max \HAN one de¢nes the spherical function with parameter l 2 a�C by

jl:S
0
max \HAN ! C; s 7!

Z
H
aH �sh�lÿr dmH �h�;

whenever the right hand side makes sense(cf. [FHOè 94] or [KNOè 98]). For large par-
ameters l we prove the long searched relation of Oè lafsson (cf. [Oè l98, Open Problem
7(1)])

�8s 2 S0
max \HAN� Yl�s� � 1

c�l� r�jl�r�s�

(cf. Theorem 5.4). Finally we want to point out that the results of this paper are a
major step towards a proof of the Plancherel Theorem of G-invariant Hilbert spaces
of holomorphic functions on G-invariant subdomains of the Stein variety
X0

max � G�H iW 0
max (cf. [Ch98], [HiKr98, 99b], [HOè �91], [Kr98, 99b], [KNOè 97],

[Ne99a].)

1. Causal Symmetric Lie Algebras

This subsection is a brief introduction to causal symmetric Lie algebras. Purely
algebraic de¢nitions of `causality' are given and the basic notation on the algebraic
level is introduced.

DEFINITION 1.1. Let g denote a ¢nite-dimensional Lie algebra over the real
numbers.
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(a) A symmetric Lie algebra is a pair �g; t�, where t is an involutive automorphism of
g. We set

h:� fX 2 g: t�X � � Xg and q:� fX 2 g: t�X � � ÿXg

and note that g � h� q. We call �g; t� irreducible, if f0g and g are the only
t-invariant ideals of g.

(b) We denote by gC the complexi¢cation of g. If t is a involution on g, we also denote
by t the complex linear extension of t to a endomorphism of gC.

(c) The c-dual gc of �g; t� is de¢ned by gc � h� iq.
(d) If g is semisimple, then there exists a Cartan involution y of g which commutes

with t (cf. [Be57] or [KrNe96, Prop. 1.5(iii)]).We write g � k� p for the corre-
sponding Cartan decomposition. By subscripts we indicate intersections, for
example hk � h \ k, etc. Since t and y commute, we have g � hk � hp � qk � qp.
The prescription yc:� yt jgc de¢nes a Cartan involution on gc and we denote
by gc � kc � pc the corresponding Cartan decomposition of gc. &

If V � g is a subspace, then we set z�V � � fX 2 V : �8Y 2 V ��X ;Y � � 0g.

DEFINITION 1.2. Let �g; t� be an irreducible semisimple symmetric Lie algebra and
y a Cartan involution of g commuting with t. Then we call �g; t�
(CC) compactly causal if z�qk� 6� f0g.
(NCC) non-compactly causal, if �gc; t jgc � is (CC).
(CT) of Cayley type, if it is both (CC) and (NCC). &

LEMMA 1.3. Let �g; t� be a symmetric Lie algebra. Then the following assertions
hold:

(i) The symmetric Lie algebra �g; t� is compactly causal ifand only if it belongs to one of
the following two types:

(1) The Lie algebra g is simple Hermitian and z�k� � q .
(2) The subalgebra h is simple Hermitian and �g; t� � �h� h; s�, where s denotes

the £ip involution s�X ;Y � � �Y ;X �.
(ii) If �g; t� is compactly causal, then

(a) z�k� \ q is one-dimensional,
(b) every maximal Abelian subspace b � qk is maximal Abelian in q and hp � qk.

Proof. (i) This follows from [HiOè l96, Lemma 1.3.5, Th. 1.3.8] or [KrNe96, Prop.
5.6].
(ii) This is a consequence of [HiOè l96, Prop. 3.1.11]. &

Remark 1.4. (a) From the view point of convex geometry and complex analysis the
compactly causal symmetric spaces are the natural generalization of Hermitian
groups in the symmetric space setting (cf. [HiOè l96], [KrNe96], [KNOè 97, 98] and
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[Ne99b]). The compactly and non-compactly causal symmetric Lie algebras have
been classi¢ed; for a complete list see [HiOè l96, Th. 3.2.8].

(b) Suppose that HnG is a simply connected symmetric space associated to an
irreducible semisimple symmetric Lie algebra �g; t�. If �g; t� is compactly causal, then
Lemma 1.3(ii)(b) implies that the symmetric spaceHnG admits relative holomorphic
discrete series (cf. [FJ80]). The converse is also true. This result seems to us to be well
known. But since we do not know a proof in the literature, we added a proof in
Appendix B (cf. Lemma B.1). &

Let �g; t� be compactly causal. Recall that this implies in particular that g is
hermitian (cf. Lemma 1.3(i)).

We choose a maximal abelian subalgebra ia � qk and extend ia in k to a compactly
embedded Cartan subalgebra t of g. Recall from Lemma 1.3(ii)(b) that a is maximal
abelian in iq and pc. Then t � th � ia and z�k� \ q � ia. By Lemma 1.3 we know that
z�k� \ q � RZ0 is one-dimensional and by [Hel78, Ch. VIII, ½7] we can normalize
Z0 in such a way that Spec�adZ0� � fÿi; 0; ig holds. We denote by bD � bD�gC; tC�
the root system of gC with respect to tC and by D � D�gc; a� the restricted root system
of gc with respect to a. Note that bDanf0g � D. The corresponding root space
decompositions are denoted by

gC � tC �
M
ba2bD gbaC and gc � a� zh�a� �

M
a2D
�gc�a:

A rootba 2 bD is called compact ifba�Z0� � 0 and non-compact otherwise. Analogously
one de¢nes compact and non-compact roots in D. Write bDk and bDn for the set of all
compact, resp. non-compact, roots in bD. Analogously one de¢nes Dk and Dn.

Once and for all we ¢x now a positive system bD� of bD such that

bD�n :� bD� \bDn � fba 2 bDn:ba�Z0� � ig
holds. A positive system D� of D is de¢ned by D�:� bD� nf0g.
2. Spherical Highest Weight Representations

In this section we brie£y recall the classi¢cation of analytic and hyperfunction
vectors of a a unitary highest-weight representation �pl;Hl� of a simply connected
compactly causal group �G; t�. Further we collect the basic facts of H-spherical
highest weight representations. Then, after giving the de¢nitions of the various
c-functions associated to the non-compactly causal c-dual space �Gc; t� of �G; t�,
we prove the key result of the whole paper: The Averaging Theorem, which asserts
that for large parameters l the H-integral over the highest weight vector converges
in the Frëchet space of hyperfunction vectors. One obtains the up to scalar multiple
uniquely determined H-spherical vector with a normalization constant which is
given by a certain c-function.

FORMAL DIMENSION FOR SEMISIMPLE SYMMETRIC SPACES 159

https://doi.org/10.1023/A:1002462711588 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002462711588


2.1. UNITARY HIGHEST-WEIGHT REPRESENTATIONS

Recall that ifG is a simply connected Lie group associated to a symmetric Lie algebra
�g; t�, then t integrates to an involution on G, also denoted by t, and that the ¢xed
point group Gt is connected (cf. [Lo69, Th. 3.4].)

To a compactly causal symmetric Lie algebra �g; t� we associate the following
analytic objects:

G simply connected Lie group with Lie algebra g;
Gc simply connected Lie group with Lie algebra gc;
GC simply connected Lie group with Lie algebra gC;
H t-fixed points in G;
Hc t-fixed points in Gc;
HC t-fixed points in GC;
K analytic subgroup in G corresponding to k;
Kc analytic subgroup in Gc corresponding to kc;
KC analytic subgroup in GC corresponding to kC;
H0 centralizer of a in H;
Hc;0 centralizer of a in Hc;
Z center of G:

Note that even though both H and Hc are connected and have the same Lie algebra,
they are in general not isomorphic. Recall that Z � K.

If X is a topological space and Y � X is a subspace, then we denote by Y 0 or intY
the interior of Y in X .

For each X 2 gC we denote by X the complex conjugate of X with respect to the
real form g.

DEFINITION 2.1 (Complex Ol'shanski�� semigroups, cf. [Ne99, Ch. XI]). Let �g; t�
be a compactly causal symmetric Lie algebra and bD� � bD��gC; tC� be the positive
system from Section 1.

(a) Associated to bD� we de¢ne the maximal cone in t by

bCmax � fX 2 t: �8a 2 bD�n � ia�X �X 0g:

We set bWmax:� Ad�G�:bCmax and note that bWmax is a closed convex
Ad�G�-invariant convex cone in g admitting no a¤ne lines and which is maximal
with respect to these properties (cf. [Ne99b, Section 7.2.3]).

(b) Let G1:� hexpGC
�g�i. By Lawson's Theorem Smax;1:� G1 expGC

�ibWmax� is a
closed subsemigroup of GC, the maximal complex Ol'shanskii� semigroup, and
the polar map

G1 � bWmax ! Smax;1; �g;X � 7! g exp�iX �

is a homeomorphism (cf. [La94, Th. 3.4]).
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Denote by Smax the universal covering semigroup of Smax;1 and write Exp: g�
ibWmax ! Smax for the lifting of expGC

j
g�ibWmax

: g� ibWmax ! Smax;1. Then it is easy
to see that Smax � GExp�ibWmax� and that there is a polar map

G� bWmax ! S; �g;X � 7! gExp�iX �
which is homeomorphism. We de¢ne the interior of Smax by S0

max :� GExp�ibW 0
max�.

Note that S0
max is an open semigroup ideal in Smax which carries a natural complex

structure for which the semigroup multiplication is holomorphic. Further the pre-
scription s � gExp�iX � 7! s� � Exp�iX �gÿ1 de¢nes on Smax the structure of an
involutive semigroup. Note that the involution is antiholomorphic on S0

max. &

Remark 2.2. Let �pl;Hl� be a unitary highest-weight representation of G with
respect tobD� and highest weight l 2 it�. Denote by B�Hl� the C�-algebra of bounded
operators on Hl. Recall from [Ne99b, Th. 11.4.8] that �pl;Hl� has a natural exten-
sion to a holomorphic representation pl:Smax ! B�Hl� of Smax, i.e. pl is strongly
continuous, holomorphic when restricted to S0

max and satis¢es pl�s�� � pl�s�� for
all s 2 Smax.

Note that for X 2 bWmax one has pl�Exp�iX �� � eidpl�X �. &

DEFINITION 2.3. Let G be a Lie group andH a Hilbert space. If �p;H� is a unitary
representation of G, then we call v 2 H an analytic vector if the orbit map
G!H; g 7!p�g�:v is analytic. We denote by Ho the vector space of all analytic
vectors of �p;H�. There is a natural locally convex topology on Ho for which
the representation �po;Ho� of G on Ho is continuous (cf. [KNOè 97, Appendix]).
The strong antidual of Ho is denoted by Hÿo and the elements of Hÿo are called
hyperfunction vectors. Note that there is a natural chain of continuous inclusions
Ho,!H,!Hÿo: The natural extension of �p;H� to a representation on the space
of hyperfunction vectors is denoted by �pÿo;Hÿo� and given explicitly by

hpÿo�g�:Z; vi :� hZ; po�gÿ1�:vi: &

PROPOSITION 2.4. Let �pl;Hl� be a unitary highest-weight representation of Gwith
respect tobD� and highest weight l. Let X 2 int bWmax be an arbitrary element. Then the
analytic vectors of �pl;Hl� are given by

Ho
l �

[
t>0

pl�Exp�tiX ��:Hl

and the topology on Ho
l is the ¢nest locally convex topology making for all t > 0 the

maps Hl !Ho
l ; v 7! pl�Exp�tiX ��:v continuous.

Proof. [KNOè 98, Prop. A.5]. &

If l 2 it� is dominant integral for bD�k , we denote by �pKl ;F �l�� the irreducible
highest-weight representation of K with highest-weight l. Note that �pKl ;F �l��
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extends naturally to a holomorphic representation of the universal covering groupfKC of KC and which we denote by the same symbol.

Remark 2.5. Recall that �pl;Hl� can be realized in the Frëchet space Hol�D;F �l��
of F �l�-valued holomorphic functions on the Harish-Chandra realization D of the
Hermitian symmetric space G=K . So let us assume Hl � Hol�D;F �l��. Then for
all z 2 D and v 2 F �l� the point evaluation

Hl! C; f 7! hf �z�; vi
is continuous, hence can be written as hf �z�; vi � hf ;Kl

z;vi for some Kl
z;v 2 Hl. One

can show that all vectors Kl
z;v are analytic. Then, if Hl denotes the closure of

Hl in the nuclear Frëchet space Hol�D;F �l��, then the mapping

r:Hÿol ! Hol�D;F �l��; n 7! r�n�; hr�n��z�; vi � n�Kl
z;v�

is a G-equivariant topological isomorphism onto its closed image im r � Hl. In par-
ticular, Hÿol is a nuclear Frëchet space (cf. [Kr99a, Section 3] for all that). &

2.2. SPHERICAL REPRESENTATIONS

DEFINITION 2.6. Let G be a Lie group, H � G a closed subgroup and �p;H� a
unitary representation of G. Then we write �Hÿo�H for the set of all those elements
Z 2 Hÿo satisfying pÿo�h�:Z � Z for all h 2 H. The unitary representation �p;H�
is called H-spherical if there exists a cyclic vector Z 2 �Hÿo�H for �pÿo;Hÿo�. &

For l 2 it� dominant integral with respect to bD�k recall the de¢nition of the gen-
eralized Verma module

N�l�:� U�gC� 
U�kCj�p�� F �l�;

which is a highest-weight module of g with respect to bD� and highest-weight l (cf.
[EHW83]). We denote by L�l� the unique irreducible quotient of N�l�.

PROPOSITION 2.7. Let �pl;Hl� be a unitary highest-weight representation of Gwith
respect to bD�.
(i) If �pl;Hl� is H-spherical, then �pKl ;F �l�� is H \ K-spherical. In particular l 2 a�

and the highest-weight vector vl 2 Hl is ¢xed by H0.
(ii) The restriction mapping

Res: �Hÿo�H ! F �l�H\K ; Z 7! Z jF �l�

is injective. In particular, dim�Hÿo�H W 1 and hZ; vli 6� 0 for n 6� 0. Moreover, if
L�l� � N�l�, then Res is a bijection, i.e., �pl;Hl� is H-spherical if and only if
�pKl ;F �l�� is H \ K-spherical.

162 BERNHARD KRÚTZ

https://doi.org/10.1023/A:1002462711588 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002462711588


Proof. (i) is a special case of [KNOè 97, Prop. 6.5] and (ii) a special case of [Kr99a,
Th. 3.14]. &

Remark 2.8. In general, it is not true that �pl;Hl� is H-spherical if the minimal
K-type �pKl ;F �l�� is H \ K-spherical. For a counter example see [Kr99a,
Ex. 3.16]. &

2.3. THE c-FUNCTIONS ON THE c-DUAL SPACE HcnGc.

To the positve system D� � D��gc; a� we associate several subalgebras of gc

n �La2D��gc�a; n �La2Dÿ�gc�a;

n�n �
L

a2D�n �gc�
a; n�k �

L
a2D�k �g

c�a:

Further we set

p�:�
M
ba2bD�n g

ba
C and g�0�:� hk � iqk � gc:

Remark 2.9. (a) The subalgebras p� and kC of gC are invariant under complex
conjugation with respect to gc and we have p� \ gc � n�n as well as
kC \ gc � g�0�. Thus the decomposition gC � p� � kC � pÿ induces a splitting in sub-
algebras of gc

gc � n�n � g�0� � nÿn :

(b) Recall that gc � h� a� n. The h� a� n- decomposition restricted to g�0�
coincides with an Iwasawa decomposition of g�0� given by g�0� � k�0� � a� n�k ,
where k�0�:� h \ g�0� � kc \ g�0�. &

We let HC \ KC act on HC � KC from the left by x:�h; k�:� �hxÿ1; xk� and denote
byM:� HC �HC\KC KC the corresponding quotient space. TheHC \ KC-coset of an
element �h; k� 2 KC �HC is denoted by �h; k�. If gHC and fKC denote the universal
coverings of HC and KC, respectively, then we realize the universal cover eM of
M by

eM �gHC ��eHC\eKC�0
fKC:

Further let P�:� expGC
�p��. Recall that p� are Abelian and that the exponential

mapping expGC
jp� : p� ! P� is an isomorphism. In particular P� is simply con-

nected.
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PROPOSITION 2.10 (TheHCKCP�-decomposition).The following assertions hold:

(i) The multiplication mapping

M � P� ! GC; ��h; k�; p�� 7! hkp�

is a biholomorphic map onto its open image HCKCP�. Furthermore:

(a) The open submanifold HCKCP� is dense in GC with complement of Haar
measure zero.

(b) We have Smax;1 � HCKCP�.

(ii) If j:Smax;1 !M � P� denotes the injection obtained from the isomorphism in (i),
then j lifts to an inclusion mappingej:Smax ! eM � P�.

Proof. (i) [KNOè 97, Prop. 2.6, Lemma 3.7].
(ii) Since p1�Smax;1� � p1�G1� � Z�G� � Z�K�, it suf¢ces to show that ej jK is

injective. We may assume that K � fKC, since both K and fKC are simply connected
and k is a maximal compact subalgebra of kC. Further, K normalizes P�, and so
establishing the injectivity of ej jK boils down to proving injectivity of
K ! eM; k 7! �1; k�, which is obvious. &

We denote by G�0�, A,N,N,N�k andN�n the analytic subgroups of Gc correspond-
ing to g�0�, a, n, n, n�k and n�n .

Remark 2.11. (a) In view of the Bruhat decomposition of fKC, we may identify
AN�k as a subgroup of fKC. Note that N � N�k j�N�n and so every n 2 N can be
written uniquely as n � nknn with nk 2 N�k and nn 2 N�n . Thus we conclude from
Proposition 2.10(ii) that the map

H � A�N ! eM � P�; �h; a; nknn� 7! ��h; ank�; nn�
is an analytic diffeormphism onto its image which we denote by HAN. Accordingly
every element s 2 HAN can be written uniquely as s � hH �s�aH �s�nH �s� with
hH �s� 2 H, aH �s� 2 A and nH �s� 2 N all depending analytically on s 2 HAN.

(b) IfD � p� denotes the Harish-Chandra realization of the Hermitian symmetric
spaceG=K andD its conjugate in pÿ, then we setO:� D \ nÿn . In the sequel we realize
O as a subset ofNÿn via the exponential mapping. Recall from [KNOè 98, Lemma 1.18]
that

HcAN � OG�0�N�n and N \HcAN � O j�Nÿk :

On the other hand, O can also naturally be realized in eM � P�. In particular we
obtain that the submanifold O j�Nÿk of N is naturally included in eM � P�. Denote
this realization by N \HAN. Further, the HAN-decomposition and the
HcAN-decomposition (cf. [KNOè 97, Prop. 2.4]) coincide onN \HAN. In the sequel,
we will use this fact frequently without mentioning it.
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(c) Let p:X ! HcAN the universal covering of HcAN. Since X is simply con-
nected, there exists a natural regular map p:X ! eM � P� with p�X � � HAN. In
particular, the prescription

Kc \HAN:� p�pÿ1�Kc \HcAN��

de¢nes an open submanifold of HAN. &

Note that the exponential mapping expeKC
ja: a! A is an isomorphism, hence has

an inverse which we denote by log:A! a. For each l 2 a�C and a 2 A we set
al � el�log a�.

DEFINITION 2.12 (The c-functions). We write r, rk and rn for the elements of a�

given by 1
2 tr adn, 1

2 tr adn�k
and 1

2 tr adn�n , respectively. To l 2 a�C we associate the
following c-functions:

c�l�:�
Z
N\�HAN�

aH �n�ÿ�l�r� dmN�n�;

cO�l�:�
Z
O
aH �n�ÿ�l�r� dmNÿn �n�;

and

c0�l�:�
Z
Nÿk

aH �n�ÿ�l�rk� dmNÿk �n�

provided the integrals converge absolutely (cf. [FHOè 94] and [KNOè 98]). We write E
for the set of all l 2 a�C for which the de¢ning integral for c converges absolutely.
Accordingly we de¢ne EO and E0. Note that c0 is the c-function of the non-compact
Riemannian symmetric space K�0�nG�0�, where K�0�:� G�0�t. &

For each a 2 D� let �a 2 a be the corresponding coroot, i.e., �a 2 ��gc�a; �gc�ta� such
that a��a� � 2. Associated to D� we de¢ne two minimal cones in a by

Cmin:� cone�f�a: a 2 D�n g� and �Ck:� cone�f�a: a 2 D�k g�:

DEFINITION 2.13. Let V be a ¢nite-dimensional vector space and V� its dual.
(a) If C � V is a convex set, then its limit cone is de¢ned by

limC � fx 2 V : x� C � Cg. Note that limC is a convex cone and that limC is
closed if C is open or closed.

(b) If E � V is a subset, then its dual cone is de¢ned by E?:� fa 2 V�: a jV X 0g.
Note that E? is a closed convex cone in V�. &
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THEOREM 2.14. The various c-functions are related by

c�l� � c0�l�cO�l�
and E � EO \ E0. Further:
(i) The domain of convergence EO of cO is a tube domain EO � ia� � EO;R with

EO;R � fl 2 a�: �8a 2 D�n � l��a� < 2ÿmag;

where ma:� dim�gc�a. Further for all l 2 EO we have

cO�l� �
Y
a2D�n

B
�
ÿ l��a�

2
ÿma

2
� 1;

ma

2

�
;

where B denotes the Euler beta function. In particular:

(a) ÿrÿ C?
min � EO;R and lim EO;R � ÿC?

min.
(b) The function cO is holomorphic on EO and cO jEO�m is bounded for all

m 2 ÿrÿ C?
min.

(ii) The domain of convergence of c0 is given by

E0 � ia� � int �C?
k;

c0 is holomorphic on E0 and c0 jE0�m is bounded for all m 2 rk � �C?
k.

Proof. The product formula c�l� � c0�l�cO�l� and the relation E � EO \ E0 are a
special case of [KNOè 98, Lemma 4.5].

(i) [KrÖl99, Th. 3.5].
(ii) All this follows from the Gindikin^Karpelevic product formula for c0 (cf. [Hel84,

Ch. 4, Th. 6.13]). &

2.4. THE AVERAGING THEOREM

LEMMA 2.15. The group H0 is compact and up to normalization of Haar measures
for all f 2 L1�H=H0� the following integration formulas hold:

�i�
Z
H
f �hH0� dmH �h� �

Z
N\�HAN�

f �hH �n�H0�aH �n�ÿ2r dmN �n�:

�ii�
Z
H
f �hH0� dmH �h� �

Z
Kc\�HAN�

f �hH �k�H0�aH �k�ÿ2r dmKc �k�:

Proof. In [KNOè 98, Lemma 3.15(i)] it is proved that Hc;0 is compact and exactly
the same argument also yields that H0 is compact. In view of this fact and our
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identi¢cations of the various domains in the big complex manifold eM � P� (cf.
Remark 2.11), (i) follows from [KNOè 98, Prop. 1.19] and (ii) from [Oè l87, Lemma
1.3]. &

THEOREM 2.16 (The Averaging Theorem). Let �pl;Hl� be a unitary highest-weight
representation of G for which �pKl ;F �l�� is H \ K-spherical. If vl is a highest-weight
vector, then the vector-valued integral

R
H pl�h�:vl dmH �h� with values in the Frëchet

spaceHÿol (cf. Remark 2.5) converges and de¢nes a non-zero H-¢xed hyperfunction
vector if and only if l� r 2 EO. If this condition is satis¢ed and 0 6� Z 2 �Hÿol �H, thenZ

H
pl�h�:vl dmH �h� �

hvl; vli
hZ; vli c�l� r�Z:

Proof. Step 1: The analytic function S0
max \HAN !Hl; s 7! pl�s�:vl extends to

an analytic function F :HAN !Hl and is given ecplicitly by F �s� �
aH �s�lpl�hH �s��:vl.

In fact since dpl�X �:vl � 0 for all X 2 n, the standard argument of differentiating
yields

pl�s�:vl � pl�hH �s�aH �s�nH �s��:vl � pl�hH �s�aH �s��:vl � aH �s�lpl�hH �s��:vl;

establishing Step 1.

Step 2: The integral exists if and only if l� r 2 EO.
Let X 2 int bWmax be an arbitrary element and set at:� Exp�itX � for all t > 0. For

each t > 0 consider the possibly unbounded linear functional

ft:Hl! C; w 7!
Z
H
hpl�h�:vl; pl�at�:wi dmH�h�:

In view of Proposition 2.4, we have to show that l� r 2 EO is equivalent to ft 2 H0l
for all t > 0.

Since vl is ¢xed byH0 (cf. Proposition 2.7(i)), Step 1 and the integration formula of
Lemma 2.15(ii) yield

Z
H
hpl�h�:vl; pl�at�:wi dmH �h�

�
Z
Kc\�HAN�

hpl�hH �k��:vl; pl�at�:wiaH �k�ÿ2r dmKc �k�

�
Z
Kc\�HAN�

hpl�kaH �k�ÿ1�:vl; pl�at�:wiaH �k�ÿ2r dmKc �k�

�
Z
Kc\�HAN�

hpl�atk�:vl;wiaH �k�ÿ�l�2r� dmKc �k�:

�2:1�
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Recall from [FHOè 94, Prop. 5.3] that

EO � fl 2 a�C:

Z
Kc\�HAN�

aH �k�ÿRe�l�r� dmKc �k� <1g: �2:2�

In view of [KNOè 98, Lemma 3.15(ii)], the set Xt:� at�Kc \HAN� is a compact
subset of HAN. In particular, we ¢nd compact sets Ct

H , C
t
A, C

t
N contained in H,

A and N, respectively, such that Xt � Ct
HC

t
AC

t
K . Thus we conclude from Step 1 that

�8w 2 Hl��8x 2 Xt� jhpl�x�:vl;wijW supa2Ct
A
alkvlk � kwk <1: �2:3�

Hence, in view of (2.1), (2.2) and (2.3) the proof of Step 2 will be complete, provided
we can show that for each element x in the compact space Xt we can ¢nd
an open neighborhood U � Xt of x and an element w 2 Hl such that
infy2U jhpl�y�:vl;wij > 0 holds. But this follows from hpl�y�:vl;wi � hF �y�;wi and
the continuity of F .

Step 3: If the integral exists, then its value is hvl; vli=hn; vlic�l� r�Z.
By Step 1 we know that l� r 2 EO in the case where the integral exists. Since l

is a highest weight for an H \ K-spherical representation of K , it has to be
dominant integral with respect to D�k , i.e., hl; ai 2N0 for all a 2 D�k . In particular
c�l� r� exists (cf. Theorem 2.14). Now by Step 2, we know thatR
H pl�h�:vl dmH �h� 2 �Hÿol �H . Since dim�Hÿol �H W 1 (cf. Proposition 2.7(ii)), it
follows that

R
H pl�h�:vl dmH �h� � cZ for some constant c 2 C. To determine c we

apply the integral to the element vl. With Step 1 and the integration formula of
Lemma 2.15(i) we compute

Z
H
hpl�h�:vl; vli dmH �h�

�
Z
N\�HAN�

hpl�hH �n��:vl; vliaH �n�ÿ2r dmN�n�

�
Z
N\�HAN�

hpl�naH �n�ÿ1�:vl; vliaH �n�ÿ2r dmN �n�

�
Z
N\�HAN�

hpl�n�:vl; vliaH �n�ÿ�l�2r� dmN �n�

� hvl; vli
Z
N\�HAN�

aH �n�ÿ�l�2r� dmN �n�

� hvl; vlic�l� r�:

This proves Step 3 and completes the proof of the theorem. &
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3. Representations of the Relative Discrete Series

In this section we state and prove the Harish-Chandra^Godement Orthogonality
relations for homogeneous spaces carrying an invariant measure. Then we give
the de¢nition of the formal dimension d�l� of a unitary highest-weight representation
�pl;Hl� which belongs to the relative discrete series of HnG. Finally we derive the
formula for d�l� for large values of l.

3.1. ORTHOGONALITY RELATIONS

DEFINITION 3.1. Let G be a Lie group, Z its center and bZ the group of unitary
characters of Z.Let H � G be a closed subgroup. Suppose that HZ is closed
and that HZnG carries an invariant positive measure mHZnG. For a ¢xed w 2 bZ
we consider the Hilbert space of sections

G2
w�HnG� �ff :HnG! C: f measurable; �8z 2 Z��8g 2 G� f �Hzg� �w�z�f �Hg�;

hf ; f iw:�
Z
HZnG
jf �Hg�j2 dmHZnG�HZg� <1g:

Let �p;H� be an irreducible unitary H-spherical representation of G with central
character w. Then for all n 2 �Hÿo�H and v 2 Ho we de¢ne a continuous section by

pv;Z:HnG! C; Hg 7! hZ; p�g�:vi:

We say that �p;H� belongs to the relative discrete series of HnG, if there exists
non-zero elements Z 2 �Hÿo�H and v 2 Ho such that pv;Z belongs to G2

w�HnG�.
We denote �Hÿo�H2 the subspace of �Hÿo�H which corresponds to the relative discrete
series for HnG. &

In the proof of the following Proposition we adapt a nice idea of J. Faraut to our
setting (cf. [Gr96, Section 3.3]).

PROPOSITION 3.2 (Orthogonality Relations). Let G be a Lie group with center Z.
Then, if H is a closed subgroup of G such that HZ is closed and HZnG carries a
positive G-invariant measure, then the following assertions hold:

(i) If �p;H� belongs to the relative discrete series of HnGtransforming under the central
character w 2 bZ and 0 6� Z 2 �Hÿo�H2 , then all matrix coe¤cients pv;Z, v 2 Ho,
belong to G2

w�HnG� and there exists a constant d�p; n� depending on the equivalence
class of p and on Z such that the mapping

T :Ho ! G2
w�HnG�; v 7!

��������������
d�p; n�

p
pv;Z

extends to a G-equivariant isometry.
(ii) If �p;H�and �s;K� are two inequivalent representations of the relative discrete series

of HZnGtransforming under the same central character for Z, then for Z 2 �Hÿo�H2
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and Z 2 �Kÿo�H2 one has

hpv;Z; sw;Zi �
Z
HZnG
hn; p�g�:vihZ; s�g�:wi dmHZnG�HZg� � 0

for all v 2 Ho and w 2 Ko.

Proof. (i) (cf. [Gr96, Section 3.3]) Let D:� fv 2 Ho: pv;n 2 G2
w�HnG�g and consider

the unbounded operator

S:D! G2
w�HnG�; v 7!pv;Z:

Since mHZnG is G-invariant by assumption, the same holds for D and therefore D is
dense in H by the irreducibility of �p;H�. We de¢ne a positive Hermitian form
on D by

�vjw�:� hv;wi � hS:v;S:wiw �3:1�

for v;w 2 D. Denote byD the Hilbert completion ofDwith respect to ��j�� and denote
the extension of ��j�� to its completion by the same symbol. Since D is continuously
embedded into H, there exists a bounded selfadjoint injective operator A 2 B�H�
such that imA � D and �A:vjw� � hv;wi for all v 2 H, w 2 D. Since h�; �iw is
G-invariant by the G-invariance of mHZnG, it follows from (3.1) that A commutes
with p�G�. Now Schur's Lemma applies and yields A � c id for some constant
c > 0. Thus we deduce from (3.1) that

hS:v;S:wiw �
1
c
ÿ 1

� �
hv;wi

for all v;w 2 D. In particular d�p; Z�:� ÿ�1=c� ÿ 1
�
> 0. Moreover S being weakly

continuous, its extension to Ho coincides with 1=
��������������
d�p; Z�p

T , concluding the proof
of (i).

(ii) Let Tp:H! G2
w�HnG� and Ts:K! G2

w�HnG� be the equivariant isometric
embeddings from (i). If imTp \ imTs 6� f0g, then

T�s � Tp:H! K
describes a non-trivial G-equivariant map. By Schur's Lemma T�s � Tp is a scalar
multiple of an isometric isomorphism, contradicting the inequivalence of �p;H�
and �s;K�. &

Remark 3.3. If HnG is a semisimple symmetric space, then the space
�Hÿo�H2 � �Hÿ1�2 is ¢nite-dimensional (cf. [Ba87, Th. 3.1]). Then Proposition 3.2(i)
says that one can ¢nd an inner product on �Hÿo�H2 such that

�Hÿo�H2 
Ho ! G2
w�HnG�; n
 v 7!

��������������
d�p; n�

p
pv;Z
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extends to aG-equivariant isometry (withG acting trivially on the ¢rst factor �Hÿo�H2
of the tensor product). &

3.2. THE FORMAL DIMENSION

If G denotes a unimodular locally compact group and L � G a closed unimodular
subgroup, then we denote by mLnG a positive right G-invariant measure on the homo-
geneous space LnG.

DEFINITION 3.4. Let �pl;Hl� be an H-spherical unitary highest weight represen-
tation of G and 0 6� Z 2 �Hÿol �H . If vl is a highest-weight vector for �pl;Hl�, then
the formal dimension d�l� of �pl;Hl� is de¢ned by

1
d�l� :�

1
jhZ; vlij2

Z
HZnG
jhZ; pl�g�:vlij2 dmHZnG�HZg�:

Recall that hn; vli 6� 0 and that the de¢nition of d�l� is independent of the particular
choice of vl and 0 6� n 2 �Hÿol �H (cf. Proposition 2.7(ii)).

The relation between the number d�pl; n� from Proposition 3.2 and d�l� is given by
d�l� � jhZ; vlij2=hvl; vlid�pl; Z�. In particular, if n is normalized by jhZ; vlij2=
hvl; vli � 1, then we have d�l� � d�pl; Z�. &

Remark 3.5. The particular normalization of d�l� as in De¢nition 3.4 is motivated
from Harish-Chandra's treatment of the `group case' (cf. [HC56]). The group case is
de¢ned by G � G0 � G0 and H � D�G� � f�g; g�: g 2 G0g for a simply connected
hermitian Lie group G0. Then we have a natural isomorphism

G0! HnG; g 7!H�g; 1�
and the invariant measure mZHnG corresponds to a Haar measure mZ�G0�nG0

on
Z�G0�nG0.

The spherical unitary highest weight representations of G are given by
�pl 
 p�l;Hlb
H�l� with �pl;Hl� a unitary highest-weight representation of G0 and
�p�l;H�l� its dual representation. Recall that Hlb
H�l is isomorphic to the space
of Hilbert^Schmidt operators B2�Hl� on Hl and that the corresponding analytic
vectors are of trace class, i.e., B2�Hl�o � B1�Hl� (cf. [HiKr99a, App.]). The up
to scalar unique H-¢xed hyperfunction vector is given by the conjugate trace:

Z:B2�Hl�o ! C; A 7! tr�A�:
Further a highest weight vector for �pl 
 p�l;Hlb
H�l� is given by vl 
 v�l. Then
hZ; vl 
 v�li � hvl; vli and the expression for d�l� from De¢nition 3.4 gives that

1
d�l� �

1
jhvl; vlij2

Z
Z�G0�nG0

jhpl�g�:vl; vlij2 dmZ�G0�nG0
�Zg�:
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Thus we see that our de¢nition of the formal dimension coincides in the group case
with the standard one introduced by Harish-Chandra (cf. [HC56]). &

THEOREM 3.6. Let �pl;Hl� be an unitary highest-weight representations of G for
which �pKl ;F �l�� is H \ K-spherical. Assume that l� r 2 EO and that �pl;Hl� belongs
to the holomorphic discrete series of G. Then �pl;Hl� is H-spherical, belongs to the
relative discrete series of HnG and the formal degree d�l� is given by

d�l� � d�l�Gc�l� r�;

where d�l�G is the formal dimension of �pl;Hl� relative to G.
Proof. Since l� r 2 EO the assumptions of Theorem 2.16 are satis¢ed and the

theorem applies. Thus �pl;Hl� is H-spherical and if 0 6� Z 2 �Hÿol �H and vl is a
highest weight vector, then we have

Z � hZ; vli
hvl; vlic�l� r�

Z
H
pl�h�:vl dmH �h�: �3:2�

If we insert (3.2) in the formula for n in the de¢nition of the formal dimension we
obtain that

1
d�l� �

1
jhZ; vlij2

Z
HZnG
jhZ; pl�g�:vlij2 dmHZnG�HZg�

� 1
hvl; vli2c�l� r�2

Z
HZnG

Z
H

Z
H
hpl�h1�:vl; pl�g�:vli

hpl�g�:vl; pl�h2�:vli dmH �h1� dmH �h2� dmHZnG�HZg�
� 1
hvl; vli2c�l� r�2

Z
HZnG

Z
H

Z
H
hpl�h2h1�:vl; pl�g�:vli

hpl�hÿ12 g�:vl; vli dmH �h1� dmH �h2� dmHZnG�HZg�
� 1
hvl; vli2c�l� r�2

Z
HZnG

Z
H

Z
H
hpl�h1�:vl; pl�h2g�:vli

hpl�h2g�:vl; vli dmH �h1� dmH �h2� dmHZnG�HZg�
� 1
hvl; vli2c�l� r�2

Z
H

Z
HZnG

Z
H
hpl�h1�:vl; pl�h2g�:vli

hpl�h2g�:vl; vli dmH �h2� dmHZnG�HZg� dmH �h1�
� 1
hvl; vli2c�l� r�2

Z
H

Z
ZnG
hpl�h1�:vl; pl�g�:vli

hpl�g�:vl; vli dmZnG�Zg� dmH �h1�:

Thus if we apply the Harish-Chandra^Godement Orthogonality Relations for
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L2�ZnG� and once more (3.2) we obtain that

1
d�l� �

1
d�l�G �

1
hvl; vli2c�l� r�2 hvl; vli

Z
H
hpl�h�:vl; vli dmH �h�

� 1
d�l�G �

1
hvl; vlic�l� r�2 c�l� r�hvl; vli � 1

d�l�Gc�l� r� ;

as was to be shown. &

4. Analytic Continuation in l

In this section we prove the analytic continuation of the formula for the formal
dimension d�l� from Theorem 3.6. The proof is quite technical and we need some
preparation on algebraic and analytic level.

4.1. ALGEBRAIC PRELIMINARIES

In this subsection we collect some facts concerning the ¢ne structure theory of com-
pactly causal symmetric Lie algebras. The results are mainly due to Oè lafsson (cf.
[Oè l91]).

LEMMA 4.1. Let �g; t� be a compactly causal symmetric Lie algebra, then we can
choose root vectors Ea 2 gaC, a 2 bDn, such that the following conditions are satis¢ed:

(1) Ea � Eÿa.
(2) a�Ha� � 2 with Ha � �Ea;Eÿa�.
(3) t�Ea� � Eta, where ta � t � a.

Proof. Let k denote the Cartan^Killing form on gC and de¢ne a Hermitian inner
product on gC by hX ;Y i:� ÿk�X ; y�Y ��.

For each a 2 bD�n let 0 6� Ea 2 gaC be an arbitrary element of length 1. Then de¢ne
Eÿa by Eÿa:� Ea. Thus (1) is satis¢ed. Now t�Ea� � CEta implies the existence
of complex numbers ca such that t�Ea� � caEta. Now t being an involutive implies
cacta � 1, further t being an isometry implies that jcaj � 1 and ¢nally t being complex
linear implies that ca � cÿa for all a 2 bDn. Thus cta � ca � cÿa. For each complex
number z � eij, j 2 �0; 2p�, of modulus 1 we de¢ne z

1
2 � ei

j
2 . Thus redi¢ning Ea,

a 2 bD�n , by ca
1
2Ea, leaves (1) untouched and in addition satis¢es (3).

Since gaC � pC for all a 2 bD�n , we have a��Ea;Eÿa�� > 0, and so by rescaling Ea with
an appropriate positive number we may in addition assume that (2) holds. This
proves the lemma. &

Let bG � fbg1; . . . ;bgrg be a maximal system of strongly orthogonal, i.e., bgj �bgi is
never a root and bG � bD�n has maximal many elements with respect to this property.
In view of [HiOè l96, Lemma 4.1.7] or [Oè l91, Section 3], we may choose bG invariant
under ÿt.

FORMAL DIMENSION FOR SEMISIMPLE SYMMETRIC SPACES 173

https://doi.org/10.1023/A:1002462711588 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002462711588


For each 1W jW r we setbEj :� Ebgj ,bEÿj :� Eÿbgj and bXj :� i�bEj ÿbEÿj�. According to
[HC56, Cor. to Lemma 8], the space

e:�
Mr

j�1
RbXj �

Mr

j�1
Ri�bEj ÿbEÿj�

is maximal abelian in p. Note that e is t-invariant by the special choice of the
non-compact root vectors (cf. Lemma 4.5(3)) and the ÿt-invariance of bG.

We consider the Cayley transform

C � e
ip4 ad

Pr

j�1
bEj�bEÿj� �

which is an automorphism of gC. Finally we set bHj:� Hbgj for all 1W jW r.

LEMMA 4.2. The Cayley transform C has the following properties:

(i) For all 1W jW r one has C�bXj� � bHj and C�bHj� � ÿbXj.
(ii) We have i p4 �

Pr
j�1bEj �bEÿj� 2 ihp. In particular, one has

(a) t � C � C � t,
(b) y � C � Cÿ1 � y,

(iii) The Cayley transform yields an isomorphism C: e! C�e� with C�e� � it a
t-invariant subspace.

Proof. (i) This follows from sl�2;R�-reduction (cf. [HC56, p. 584], [HiOè l96,
Lemma A.3.2(3)]).

(ii) It follows from gbaC � pC, for all ba 2 bDn and Lemma 4.1(1) that
i p4 �
Pr

j�1bEj �bEÿj� 2 ip. Further Lemma 4.1(3) and the ÿt-invariance of bG imply

t
Xr
j�1

bEj �bEÿj !
�
Xr
j�1

t�bEj� � t�bEÿj� �Xr
j�1

E
tbgj � Eÿtbgj �Xr

j�1
bEj �bEÿj:

Thus i�p=4� �Pr
j�1bEj �bEÿj� 2 ihp. This proves (i).

(iii) This follows from (i) and (ii)(a). &

Recall that e is t-invariant and write b � e \ q for the set of ÿt-¢xed points.

LEMMA 4.3. Let c:� C�b�. Then c � a and the Cayley transform yields an
isomorphism C: b! c.

Proof. Since C�b� � it by Lemma 4.2(i), the fact that b � q and that C commutes
with t (cf. Lemma 4.2(ii)) imply that C�b� � i�t \ q�. But i�t \ q� � a by the de¢nition
of a, proving the lemma. &

Recall that b is maximal Abelian subspace of q \ p (this follows, for instance, from
the c-dual version of Lemma 4.1.9 in [HiOè l96]) and denote by S � S�g; b� the set of
roots of g with respect to b. Recall that S is an abstract root system (cf. [Sch84,
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Section 7.2]). We write

g � zg�b� �
M
j2S

gj

for the corresponding root space decomposition. By Lemma 4.3, the Cayley trans-
form induces a mapping Ct: a� ! b�; a 7! a � C jb and we set

Sn � Ct�Dn� jb and Sk � Ct�Dk�jbnf0g:
Let G � f12 �bgj ÿ tbgj� : 1W jW rg denote the restricted set of strongly orthogonal roots.
Note that G � c� by Lemma 4.2(i). Thus we can write G � fg1; . . . ; gsg for some
1W sW r. For each 1W jW s we de¢ne Hj 2 c by gj�Hj� � 2 and gk�Hj� � 0 for
k 6� j. We set Xj :� ÿC�Hj� for all 1W jW s. Then

b �
Ms

j�1
RXj:

As a ¢nal algebraic tool we need explicit information on the root system S which is
provided by Oè lafsson's Theorem on double restricted root systems (cf. [Oè l91, Section
3], [HOè �91, Prop. 3.1]). For all 1W jW s we set cj :� Ct�gj� and note that cj�Xj� � 2
since C�Xj� � Hj (cf. Lemma 4.2(i), (ii)).

Finally we put S� :� Ct�D��bnf0g, S�n :� Sn \ S� and S�k :� Sk \ S�.

THEOREM 4.4 (Oè lafsson). If �g; t� is compactly causal, then the following assertions
concerning the double restricted root system S � S�g; b� hold:
(i) The restricted root system has the following form

Sk � �f12 �ci ÿ cj� : i < jg [ �f12cj : 1W jW sg

and

S�n � f12 �ci � cj� : 1W i; jW sg [ f12cj : 1W jW sg:

The second sets in Sk and S�n are empty if and only if C4 � id. If further cs is chosen
to be a simple root, then

S�k � f12 �ci ÿ cj� : i < jg [ f12cj : 1W jW sg:

(ii) All cj, 1W jW s, have the same length.
(iii) The conjugacy classes of the restricted root system under theWeyl group associated

to S are given by

(1) f� 1
2 �ci � cj� : 1W i; jW s; i 6� jg

(2) f�cj : 1W jW sg
(3) f� 1

2cj : 1W jW sg
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Proof. (i) LetbS � bS�g; e� be the restricted root system with respect to the maximal
abelian subspace e and bSk, bSn de¢ned as above. Write bcj:� Ct�bgj� for all 1W jW r.
Suppose ¢rst that g is simple. Then for the analogous statement for bS in stead
of S and bcj in stead of cj , Harish-Chandra has proved in [HC56, Lemma 13^16]
thatbSk;bS�n are contained in the asserted subsets, Moore proved equality (cf. [Mo64,
Th. 2]) and ¢nally Kor�anyi and Wolf have shown in [KoWo65, Prop. 4.4 with
Remark] that the second set in bS�n is empty if and only if C4 � id. Now taking
restrictions to c yields (i) for g simple.

In the group case similar considerations lead to the same result.
(ii) This can be deduced from [Mo64, Th. 2(2)], but we propose here a much

simpler proof. We use (i) and the fact that S is an abstract root system. As usual
we write sc, c 2 S, for the re£ection associated to c. Then we obtain for all
1W i 6� jW s that

s1
2�ci�cj��cj� � cj ÿ

2hcj;
1
2 �ci � cj�i

h12 �ci � cj�; 12 �ci � cj�i
1
2 �ci � cj�

� cj ÿ
2hcj;cji

hci;cii � hcj;cji
�ci � cj�:

Thus it follows from (i) and s1
2�ci�cj��cj� 2 S that

hcj;cji
hci;cii � hcj;cji

2 1
2 ;

1
4

� 	
:

Interchanging i and j then yields

hcj;cji
hci;cii � hcj;cji

� 1
2

or equivalently that hcj;cji � hci;cii. This proves (ii).

(iii) In view of (i), we have for all 1W i; j; kW r that

s1
2�ci�cj��cj� � �ci;

s1
2�ci�cj��12 �cj � ck�

� � 1
2 ��ci � ck�;

sci
�12 �ci � cj�

� � 1
2 �ÿci � cj�:

�4:1�

This proves (iii). &

From now on we assume that cs is a simple root. Then Theorem 4.4(i) says that

S�n � f12 �ci � cj� : 1W i; jW sg [ f12cj : 1W jW sg �4:2�
and

S�k � f12 �ci ÿ cj� : 1W i < jW sg [ f12cj : 1W jW sg: �4:3�
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Further it follows from Theorem 4.4(i) and the ¢rst formula in (4.1) that the Weyl
group W�Sk� of Sk acts on b as the full permutation group of the Xj's.

We write b� � fX 2 b: �8j 2 S�� j�X �X 0g for the Weyl chamber corresponding
to S�. By (4.2) and (4.3) we then have

b� �
Xs
j�1

xjXj : 0W xs W � � � W x1

( )
:

Further, let a�:� fX 2 a : �8a 2 D�� a�X �X 0g and c�:� a� \ c. Note that
C�b�� � c� by the construction of S�.

LEMMA 4.5. The following equality holds

C?
min \ �ÿ �C?

k� � �c��? \ �ÿ �C?
k�;

where the stars ? are all taken in a�.
Proof. First recall some basic rules in dealing with convex cones (cf. [Ne99b, Ch.

V]). If W is a closed convex cone in an euclidean space V , then �W ?�? �W . Further
for two closed convex cones W1;W2 � V we have �W1 \W2�? �W ?

1 �W ?
2 .

Let now the convex cone on the left hand side be denoted by W1, the other one by
W2. Let p: a! c be the orthogonal projection with respect to the Cartan^Killing
form. We claim that p�W ?

1 � � p�W ?
2 �. Assume ¢rst that no half roots in S occur.

Then from the Cayley-transform analogs of (4.2) and (4.3) it follows that

p�W ?
1 � � p�Cmin ÿ �Ck� �

Ms

j�1
R�Hj �

Msÿ1
j�1

R��Hj�1 ÿHj�;

and

p�W ?
2 � � p�c� ÿ �Ck� �

�ÿMs

j�1
R�Hj

� \ nXs
j�1

xjHj: xs W . . . W x1
o�
�

�
Msÿ1
j�1

R��Hj�1 ÿHj�:

From these two equalities the claim follows in the case of no half roots in S. The
general case is easily deduced from this.

Let r: a� ! c�; r�l�:� l jc be the restriction map and note that r is the dual map of
the inclusion mapping c! a. Since both W1 and W2 are closed, we have
�W ?

1;2�? �W1;2, and so

W1;2 jc� r�W1;2� � �p�W ?
1;2��?:

Hence our claim implies that W1 jc�W2 jc. Thus W1 �W2 by the de¢nition of W1

and W2.
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For the converse inclusion we ¢rst note that an element l 2 ÿ �C?
k belongs to W1 if

and only if l� �b�X 0, where b is the highest root (this becomes clear from our con-
struction of the positive systems). Recall that bG can be constructed inductively
starting with the highest root (cf. [HC56, p. 108]). Thus b � g1 2 G. Hence
W1 � �g1�? \ ÿ �C?

k, and so W2 �W1 since �c��? � �g1�?. &

4.2. ANALYTIC PRELIMINARIES

Recall the de¢nition of b� and set B�:� exp�b��.

LEMMA 4.6 (Flensted^Jensen). Let L � ZH\K �b�. Then for the homegeneous space
HZnG the following assertions hold:

(i) The subgroups HZ and LZ of G are closed and ZnLZ is compact.
(ii) The mapping

F:B� � LZnK ! HZnG; �b;LZk� 7!LZbk

is a di¡eomorphism onto its open image. The image is dense with complement of
Haar measure zero.

(iii) Up to normalization of measures we have for all f 2 L1�HZnG� the following inte-
gration formulaZ

HZnG
f �HZg� dmHZnG�HZg�

�
Z
ZnK

Z
b�
f �HZ exp�X �k� J�X � dX dmZnK �Zk�

with

J�X � �
Y
j2S�

cosh�j�X ��m�j sinh�j�X ��mÿj ;

where m�j :� dim�fX 2 gj: yt�X � � �Xg�.
Proof. (i) The closedness ofHZ and LZ follows from the closedness of Ad�H� and

ZAd�H��b� in the adjoint group Ad�G�. Finally ZnLZ is a closed subgroup of the
compact group ZnZ�H \ K� and hence compact.

(ii) [Sch84, Prop. 7.1.3].
(iii) It follows from [FJ80, Th. 2.6] or [Sch84, Lemma 8.1.2] that

J�X �:� det
ÿ
dF�X ;LZk�� � Y

j2S�
cosh�j�X ��m�j sinh�j�X ��mÿj
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for all X 2 b� and k 2 K. Thus it follows from (ii) thatZ
HZnG

f �HZg� dmHZnG�HZg� �
Z
LZnK

Z
b�
f �HZ exp�X �k� J�X � dX dmLZnK �Zk�

holds for all f 2 L1�HZnG�. In view of (i), we may replace the integration over LZnK
by an ZnK-integral, proving (iii). &

LEMMA 4.7. Realize G as a submanifold of eM � P� as in Proposition 2.10(ii). Then
for b � expG�

Ps
j�1 xjXj� 2 B and

m�b�:� expeKC

Xs
j�1

1
2

log cosh�2xj�Hj

 !
2 A � fKC

the following assertions hold:

(i) We have b 2 f�h; m�b��: h 2gHCg � P�.
(ii) If X 2 b�, then logm�expG�X �� 2 c�.

Proof. (i) This follows directly from [HiOè l96, pp. 210^211].
(ii) Recall that X �Ps

j�1 xjXj 2 b� if and only if 0W xs W � � � W x1. Now the
assertion follows from (i) and the monotonicity of the mapping R� ! R;
x 7! log cosh�x�. &

4.3. PROOF OF THE ANALYTIC CONTINUATION

Let �pl;Hl� be an H-spherical unitary highest-weight representation of G. Further,
let n 2 �Hÿol �H an H-¢xed hyperfunction vector and n0 � n jF �l� 2 F �l�H\K . We
normalize n by setting kn0k � 1 and then vl by jhn; vlij � 1. Then we have

d�l� � I�l�ÿ1 with I�l�:�
Z
HZnG
jhn; pl�g�:vlij2 dmHZnG�HZg�:

DEFINITION 4.8. On the non-compactly Riemannian symmetric space K�0�nG�0�
we de¢ne the spherical function with parameter l 2 a�C by

j0
l�g� �

Z
K�0�

aH �gk�lÿrk dmK�0��k�;

for all g 2 G�0�. &

Remark 4.9. Note that if l 2 a� is the highest weight of an H \ K-spherical rep-
resentation �pKl ;F �l�� of fKC, then j0

l�rk extends to a holomorphic function on
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fKC and we have

j0
l�rk�k� � hpKl �k�:n0; n0i �4:4�

for all k 2 fKC (cf. [Hel84, Ch. V, Th. 4.3]). &

PROPOSITION 4.10. With the notation of Lemma 4.7 we have

I�l� � 1
dimF �l�

Z
b�
j0
l�rk�m�expG�X ��2� J�X � dX ;

where J�X � is given as in Proposition 4.6(iii).
Proof (cf. [HC56, p. 599], [Gr96, Prop. 10]). In the sequel we identify b with B via

the exponential mapping and for b � expG�X � 2 B� we set J�b�:� J�X �. Then by
Lemma 4.6(iii) we have

I�l� �
Z
HZnG
jhn; pl�g�:vlij2 dmHZnG�HZg�

�
Z
ZnK

Z
B�
jhn; pl�bk�:vlij2 J�b� dmB�b� dmZnK �k�:

�4:5�

In view of Lemma 2.10(ii), we can write each element in b 2 B� as ��hC�b�;
m�b��; p��b�� 2 eM � P� with m�b� 2 fKC. Now the same consideration as in the proof
of Step 1 of Theorem 2.16 yields for all b 2 B� and k 2 K that

hn; pl�bk�:vli � hn; pl
ÿ��hC�b�; m�b��; p��b��k�:vli

� hn; pl��1; m�b�k�; kÿ1p��b�k�:vli � hn; pl�m�b�k�:vli
� hn0; pKl �m�b�k�:vli:

If we insert this expression for the matrix coef¢cient in (4.5), use Schur's
Orthogonality Relations for �pKl ;F �l�� and the relation pKl �m�b��� � pKl �m�b�� (cf.
Lemma 4.7), we arrive at

I�l� �
Z
B�

Z
ZnK
jhn0; pKl �m�b�k�:vlij2 J�b� dmZnK �k� dmB�b�

� 1
dimF �l�

Z
B�
hpKl �m�b��:n0; pKl �m�b��:n0i J�b� dmB�b�

� 1
dimF �l�

Z
B�
hpKl �m�b�2�:n0; n0i J�b� dmB�b�:

Now the assertion of the proposition follows from (4.4). &
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LEMMA 4.11. Let V be a ¢nite-dimensional real vector space, W � V be an open
convex cone, a1; . . . ; an; b1; . . . ; bm 2W ?nf0g and p1; . . . ; pn; q1 . . . ; qm 2N0. For
every l 2 V� we de¢ne the integral

H�l�:�
Z
W
el�x�

Yn
j�1
�sinh aj�x��pj

Ym
j�1

ÿ
coshbj�x�

�qj dmV �x�:
Then H�l� converges if and only if l�Pn

j�1 pjaj �
Pm

j�1 qjbj 2 ÿ intW ?.
Proof. If q1 � . . . � qm � 0, then this is Lemma 4.6 in [Kr98]. The general case is

easily obtained from this. &
The following characterization of the relative discrete series by the parameter l is

due to Hilgert, Oè lafsson and �rsted and was obtained in two steps (cf. [Oè �91,
Th. 5.2], [HOè �91, Th. 3.3]). We present an essentially modi¢ed proof here, but
we point out that it is not our objective to give new proofs of well-known facts.
In the course of our arguments, we obtain an important new estimate which is crucial
for the analytic continuation of I�l�.

THEOREM 4.12 (Hilgert^Oè lafsson^�rsted). Let �pl;Hl� be an unitary highest
weight representation of G with �pKl ;F �l�� being H \ K-spherical. Then �pl;Hl�
belongs to the relative discrete series of HnG if and only if the condition

�8a 2 D�n � hl� r; ai < 0 �RDS�

is satis¢ed.
Proof. Recall the de¢nition of c�, a� and the relation C�b�� � c�. Set

A� :� expGc �a�� and let k � k denote an arbitrary norm on a. If we write �c��?, then
the star ? is to be taken in a�.
Step 1: I�l� <1, if l� r 2 ÿ int�c��?, the interior of �c��?.

Here we do not assume that l 2 a� is dominant integral with respect to D�k , but
only l 2 �C?

k. By Harish-Chandra's estimates for spherical functions on non-compact
Riemannian symmetric spaces, there exists constants c > 0 and d 2N such that

�8l 2 �C?
k��8a 2 A�� j0

l�a�W calÿrk �1� k log ak�d �4:6�

(cf. [Wal88, 4.5.3]). Note that J�X �W e2r�C�X �� for all X 2 b� by the formula for the
Jacobian in Lemma 4.6(iii). Thus it follows for all l 2 �C?

k and
X �Ps

j�1 xjXj 2 b� from (4.6) together with Lemma 4.7 that

j0
l�rk�m�expG�X ��2� J�X �W cm�expG�X ��2l�1� k log m�expG�X ��2k�de2r�C�X ��

W ce2l�C�X ���1� 2kC�X �k�de2r�C�X ��

W ce2�l�r��C�X ���1� 2kC�X �k�d :
�4:7�
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Now Proposition 4.11 shows that I�l� <1 if l� r 2 ÿ int�c��?, proving our ¢rst
step.

Step 2: l� r 2 ÿ int�c��?, if I�l� <1.
Recall that l is supposed to be dominant integral with respect to D�k . Thus it

follows from (4.4) and the fact that the H \ K-spherical vector n0 has a non-zero
vl-component (cf. [Hel84, p. 537, (7)]) that there is a constant cl > 0 such that
clal Wj0

l�rk�a� holds for all a 2 A�. Hence Lemma 4.7 implies that

�8X 2 b�� cl
2
e2l�C�X ��J�X �Wj0

l�rk�m�expG�X ��2�J�X �: :

In view of Proposition 4.10 and Lemma 4.11, we obtain l� r 2 ÿ int�c��? if
I�l� <1. This proves our second step.

Step 3: If l 2 �C?
k, then l satis¢es (RDS) if and only if l� r 2 ÿ int�c��?.

Note that l satis¢es (RDS) means that l� r 2 ÿ intC?
min. Now if l 2 �C?

k, then
l� r 2 int �C?

k. Thus Step 3 follows from Lemma 4.5.
In view of Steps 1^3, it follows that I�l� is ¢nite if and only if l satis¢es the con-

dition (RDS). The proof of the theorem will therefore be complete with

Step 4: If l satis¢es (RDS), then �pl;Hl� is H-spherical.
Let k:G! fKC=�fKC \gHC�0 the canonical projection de¢ned via the

decomposition in Proposition 2.10. Now the function

HnG! C; Hg 7! hpKl �k�g��:vl; n0i

generates an H-spherical module in the relative discrete series on HnG (cf. [Oè �91,
Th. 5.2]). This proves Step 4 and concludes the proof of the theorem. &

The prescription

W :� ÿ intC?
min \ �C?

k � ÿ int�c��?

de¢nes a convex cone in a�. We write TW � ia� �W for the associated tube domain
in a�C. Note that rn 2 iz�k�� by the construction of D�n and so ÿrn 2W .

LEMMA 4.13. The function I�l� extends naturally to a continuous function on the
af¢ne subtube TW ÿ r, also denoted by I, and which is holomorphic when restricted
to TW 0 ÿ r. If m 2N is suf¢ciently large, then W ÿmrn �W ÿ r and I jTWÿmrn
is bounded.

Proof. First we show that W ÿmrn �W ÿ r for large values of m 2N. Since
rn 2 intC?

min, we have rÿmrn 2 ÿ intC?
min provided m 2N is suf¢ciently large.

Further rn 2 iz�k�� shows that R:rn 2 �C?
k. Thus we have rÿmrn 2W if m is chosen

suf¢ciently large, proving our claim.
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Recall the formula for I�l� from Proposition 4.10. Then (4.7) yields constants
c > 0, d 2N such that

I�l�W c
dimF �l�

Z
c�
e2�l�r��X ��1� 2kXk�d dX �4:8�

holds for some norm k � k on a. Let brk denote the half sum of the roots in bD�k and
recall Weyl's Dimension Formula

dimF �l� �
Qba2bD�k hl�brk;baiQba2bD�k hbrk;bai :

In particular, we see that l 7! 1= dimF �l� extends to a holomorphic map on TW and
TW ÿ r which is bounded when restricted to TW ÿmrn for all m 2N0. Further for
each ¢xed b 2 B� the mapping

a�C ! C; l 7!j0
l�rk �m�b�

2�

is holomorphic. Now (4.8) together with Proposition 4.10 imply that I�l� extends to a
continuous function onTW ÿ rwhich is holomorphic on TW 0 ÿ r and bounded when
restricted to TW ÿmrn provided m is chosen suf¢ciently large. &

LEMMA 4.14. If m 2N is suf¢ciently large, then the function

TW 0 ÿmrn ! C; l 7! c�l� r�

is holomorphic and bounded.
Proof. In view of rn 2 iz�k��, this is immediate from Theorem 2.14. &

THEOREM 4.15 (The formal dimension for the relative holomorphic discrete series
on a compactly causal symmetric space). Let HnG be a simply connected symmetric
space associated to a compactly causal symmetric Lie algebra �g; t� and �pl;Hl�
be an unitary highest-weight representations of G for which F �l� is H \ K-spherical.
Then the following assertions hold:

(i) The representation �pl;Hl� belongs to the relative discrete series for HnG ifand only
if the condition

�8a 2 D�n � hl� r; ai < 0 �RDS�

is satis¢ed.
(ii) If �pl;Hl� belongs to the relative discrete series of HnG, then the formal dimension

d�l� is given by d�l� � d�l�Gc�l� r�; where d�l�G is the formal dimension of
�pl;Hl� relative to G and c is the c-function of the non-compactly c-dual space
HcnGc of HnG (cf. Theorem 2.14). Here the right-hand side has to be understood
as an analytic continuation of a product of two meromorphic functions.
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Proof. (i) Theorem 4.12.
(ii) Letbr denote the half sum of the elements in bD� and recall Harish-Chandra's

condition for the relative discrete series on G

�8ba 2 bD�n � hl�br;bai < 0

(cf. [HC56, Lemma 29]) as well as Harish-Chandra's formula for the formal
dimension d�l�G of the relative discrete series on G

d�l�G �
Qba2bD�hl�br;baiQba2bD�hbr;bai

(cf. [HC56, Th. 4]). In particular for m 2N suf¢ciently large, the prescription
l 7! 1=d�l�G de¢nes a bounded holomorphic function on the af¢ne tube TW 0 ÿmrn.

Now it follows from Lemmas 4.13 and 4.14 that the function

f :TW 0 ÿmrn! C; l 7! I�l�c�l� r� ÿ 1
d�l�G

is holomorphic and bounded form suf¢ciently large. For suchm Theorem 3.6 implies
that f �l� � 0 for all l 2W 0 ÿmrn which are dominant integral with respect to D�k .
Thus the identity criterion of Proposition A.2 in Appendix A applies and yields
f � 0. We conclude in particular that I�l�ÿ1 de¢nes a continuation of
l 7! d�l�Gc�l� r� to a continuous function on TW ÿ r which is holomorphic when
restricted to the interior TW 0 ÿ r. Since by de¢nition d�l� � I�l�ÿ1, the assertion
in (ii) follows because l satis¢es (RDS) if and only if l 2 TW ÿ r &

The following result has already been obtained earlier by Faraut, Hilgert and
Oè lafsson in [FHOè 94, Lemma 9.2], but with a completely different type of arguments
(see also Theorem 2.14).

COROLLARY 4.16. Suppose that �g; t� � �h� h; s� is of group type (cf. Lemma
1.3(i)(2)). Then the domain of convergence E for c is given by

E � ia� � �ÿ intC?
min� \ int �C?

k

and there exists a constant g > 0 only depending on the choice of the various Haar
measures such that

c�l� � g
1Q

a2D�hl; ai
for l 2 E.

Proof. In the following we use the notation of Remark 3.5. Since �g; t� is of group
type we have d�l�G � d�l��G0�G0� � �d�l�G0�2, and so it follows from Theorem 4.15(ii)
that c�l� r� � 1=d�l�G0 holds for the analytic continuations. In view of Harish^
Chandra's formula for d�l�G0 (cf. [HC56, Th. 4]), this proves the corollary. &
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PROBLEMS. The discrete series on HnG are constructed by analytic methods, i.e.,
with generating functions (cf. [FJ80], [MaOs84], [Oè �91]). But from the algebraic
point of view there are still some interesting open problems.

(a) Using the classi¢cation sheme of unitary highest-weight modules (cf.
[EHW83]) together with the ¢ne structure theory of compactly causal symmetric
Lie algebras provided by Theorem 4.4 and [Oè l91] one can check case by case that
(RDS) implies that N�l� � L�l�. In view of Proposition 2.7(ii), this gives a more
algebraic proof of the fact that (RDS) implies that �pl;Hl� is H-spherical whenever
�pKl ;F �l�� is H \ K-spherical. The following questions are therefore natural: What
is the algebraic impact of the condition (RDS)? Does there exists an analog of
the Parthasarathy condition (cf. [EHW83. Prop. 3.9]) for the symmetric space
setting?

(b) Give a complete classi¢cation of H-spherical unitary highest weight
representations. A ¢rst step in this direction might be Proposition 2.7(ii) and Remark
2.8. &

5. Applications to Holomorphic Representation Theory

In this ¢nal section we give a second application of the Averaging Theorem: We
relate the spherical character of a spherical unitary highest-weight representation
of G to the corresponding spherical functions on the c-dual space.

5.1. SPHERICAL FUNCTIONS AND CHARACTER THEORY

DEFINITION 5.1. Let �pl;Hl� be an H-spherical unitary highest-weight represen-
tation of G. If 0 6� Z 2 �Hÿol �H and vl is an highest-weight vector, then we de¢ne
the spherical character Yl of �pl;Hl� by

Yl:S0
max ! C; s 7! hvl; vli

jhZ; vlij2
hpl�s�:Z; Zi :

Note that Yl is an H-biinvariant holomorphic function on S0
max (cf. [KNOè 97,

Lemma 5.6]). &

Remark 5.2. The particular normalization of Yl has two reasons. First that it
coincides in the group case (cf. Remark 5) with the standard de¢nition, and second
because it has the best analytic properties for the assignments l 7!Yl�s�,
s 2 S0

max (as less poles as possible). &

DEFINITION 5.3 (Spherical Functions). Recall the de¢nition of the domain
EO � a�C (cf. De¢nition 2.12). If l 2 EO, then the spherical function with parameter
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l is de¢ned by

jl:S
0
max \HAN ! C; s 7!

Z
H
aH �sh�lÿr dmH �h�

(cf. [FHOè 94] or [KNOè 98]). Recall that the de¢ning integrals converge absolutely if
and only if l 2 EO (cf. [FHOè 94, Th. 6.3]). &

THEOREM 5.4. Let �pl;Hl� be an H-spherical unitary highest-weight represen-
tation of G such that l� r 2 EO holds. Then the spherical character Yl of
�pl;Hl� and the spherical function jl�r are related by

�8s 2 S0
max \HAN� Yl�s� � 1

c�l� r�jl�r�s�:

In particular, jl�r extends naturally to a H-bi-invariant holomorphic function on
S0

max.
Proof. Since l� r 2 EO, the assumption of Theorem 2.16 is satis¢ed and we can

rewrite 0 6� n 2 �Hÿol �H as

Z � hZ; vli
hvl; vlic�l� r�

Z
H
pl�h�:vl dmH �h�:

Thus if we replace the ¢rst n in the de¢nition of Yl by this expression, we get for all
s 2 S0

max \HAN that

Yl�s� � hvl; vlijhZ; vlij2
hpl�s�:Z; Zi

� 1
c�l� r� �

1
hvl; Zi

Z
H
hpl�sh�:vl; Zi dmH �h�

� 1
c�l� r� �

1
hvl; Zi

Z
H
hpl�hH �sh�aH �sh�nH �sh��:vl; Zi dmH �h�

� 1
c�l� r� �

1
hvl; Zi

Z
H
hpl�aH �sh��:vl; Zi dmH �h�

� 1
c�l� r�

Z
H
aH �sh�ldmH �h�

� 1
c�l� r�jl�r�s�;

as was to be shown. &

Remark 5.5. (a) We remark here that the relation in Theorem 5.4 was long time
searched by G. Oè lafsson (cf. [Oè l98, Open Problem 7(1)]). For further interesting
problems related to this subject we refer to [Fa98] and [Oè l98].

(b) The analytic continuation of the relation in Theorem 5.4 has been obtained in
[HiKr98]. It has far reaching consequences for the theory of G-invariant Hilbert
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spaces of holomorphic functions on G-invariant subdomains of the Stein manifold
X0

max � G�H iW 0
max. In particular, it implies the Plancherel Theorem for these class

of Hilbert spaces (cf. [HiKr98]). For further information related to this subject,
we refer to [HiKr99b], [KNOè 97], [Kr98,99b] and [Ne99a]. &

Appendix

A. AN IDENTITY CRITERION FOR BOUNDED ANALYTIC FUNCTIONS ON TUBES

LEMMA A.1. Let P�:� fz 2 C: Im�z� > 0g be the upper half plane and H1:�
ff 2 Hol�P��: kf k1 <1g the Banach space of bounded holomorphic functions on
it. Let a > 0 and N � fnai: n 2Ng. Then the following identity assertion for elements
f of H1�P�� holds: If f jN� 0, then f � 0.

Proof. Let D:� fz 2 C: jzj < 1g and H1�D� � ff 2 Hol�D�: kf k1 <1g. Let
f 2 H1�D� and fbn: n 2Ng be subset of zeros of f . Then it follows from [Ru70,
Th. 15.23] that

f � 0 if
X1
n�1
�1ÿ jbnj� � 1: �A:1�

We consider the Cayley transform

c:P� ! D; z 7! zÿ i
z� i

;

which is a biholomorphic isomorphism, de¢ning an isomorphism of Banach spaces

c�:H1�D� ! H1�P��; f 7!ef � f � c:
Let an:� nai. Then we have

bn:� c�an� � nai ÿ i
nai � i

� naÿ 1
na� 1

:

Let N0 2N be such that naÿ 1 > 0 for all nXN0. ThenX1
n�1
�1ÿ jbnj�X

X1
n�N0

1ÿ naÿ 1
na� 1

� �
�
X1
n�N0

2
na� 1

� 1: �A:2�

Thus ifef 2 H1�P�� vanishes on all an, n 2N, then f �bn� � 0 for all n 2N and so
f � 0 by (A.1) and (A.2). Therefore ef � c��f � � 0, proving the lemma. &

PROPOSITION A.2. Let ; 6�W � Rn be an open convex cone, TW :� Rn � iW the
associated tube domain in Cn and H1�TW � � ff 2 Hol�TW �: kf k1 <1g the space
of bounded holomorphic functions on TW. Let G � Rn be a lattice. Then the following
identity assertion holds:

�8f 2 H1�TW �� f ji�G\W � � 0 ) f � 0:
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Proof. We prove the assertion by induction on the dimension n 2N.
If n � 1, then G � Za for some a > 0 and W � R;R� or Rÿ. If W � R, then the

assertion follows from Liouville's Theorem. In the two remaining cases the assertion
follows from Lemma A.1.

Suppose now the assertion is true for all all dimensions less or equal to nÿ 1,
nX 2. Let f 2 H1�Rn � iW � be an element vanishing on i�G \W �. We have to show
that f � 0. Since W is open, we ¢nd a basis e1; . . . ; en of Rn which is contained in
G \W . By the Identity Theorem for analytic functions, it suf¢ces to prove the
assertion for G � Ze1 � . . .�Zen and W �Pn

j�1 R
�ej. Let Gnÿ1 � Ze1 � . . .�

Zenÿ1 and Wnÿ1 �
Pnÿ1

j�1 R
�ej. Write the variables z 2 Cn as tuples z � �z0; zn� with

z0 � �z1; . . . ; znÿ1�. By induction we obtain that f �z� � f �z0; zn� does not depend
on the z0-variable. Thus f �z� � F �zn� for some F 2 H1�P�� with F jNi� 0. Thus
by the induction hypothesis F � 0 and, hence, f � 0 establishing the induction
step. &

B. A LEMMA ON SPHERICAL HIGHEST WEIGHT MODULES

Throughout this subsection �g; t� denotes a simple Hermitian symmetric Lie algebra.
Further we use the notation from Section 1^2.

LEMMA B.1. Suppose that �g; t� is a simple Hermitian symmetric Lie algebra and
�G; t� an associated simply connected Lie group. Set H � Gt and assume that there
exist a non-trivial H-spherical unitary highest-weight representation �pl;Hl� of
G. Then the symmetric Lie algebra �g; t� has to be compactly causal.

Proof. Write g � k� p for a t-invariant Cartan decomposition of g and let K
denote the analytic subgroup of G corresponding to k.

By assumption we have �Hÿol �H 6� f0g. In particular we can conclude that the mod-
ule L�l� of K-¢nite vectors of �pl;Hl� admits nontrivial H \ K-¢xed vectors. Recall
that L�l� is the unique irreducible quotient of the generalized Verma module

N�l� � U�gC� 
U�kC�p�� F �l�:
In particular, there exists an element 0 6� v0 2 N�l�H\K .

Recall that N�l� is kC-isomorphic to S�pÿ� 
 F �l�, where the kC-action on
S�pÿ� 
 F �l� is de¢ned by

X :�p
 v�:� �X ; p� 
 v� p
 X :v �B:1�
for X 2 kC, p 2 S�pÿ� and v 2 F �l� (cf. [EHW83]).

In order to show that �g; t� is compactly causal, we have to prove z�k� � q. Assume
the contrary, i.e. z�k� � h. Recall the de¢nition of the elementZ0 2 z�k� from Section 1
and set X0:� ÿiZ0 2 iz�k�. Then the spectrum ofX0, considered as an operator on the
symmetric algebra S�pÿ�, is ÿN0, and we obtain a natural grading by homogeneous
elements: S�pÿ� �L1n�0 S�pÿ�ÿn. Then N�l� �L1n�0 S�pÿ�ÿn 
 F �l� and we con-
clude from (B.1) that X0 acts on S�pÿ�ÿn 
 F �l� by ÿn� l�X0� times the identity.
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Write Z �P1n�0 vÿn0 according to the decomposition N�l� � L1
n�0 S�pÿ�ÿn 
 F �l�.

Since X0 2 i�h \ k�, the element v0 is annihilated by X0 and so we must have
v0 � vÿn0 for some n 2N0 with l�X0� � nX 0. But a necessary condition for L�l�
to be unitarizable is l�X0� < 0 (cf. [Ne99b, Th. 11.2.37(ii)]). This gives us a con-
tradiction and proves the lemma. &
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