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Abstract Let S be the semigroup with identity, generated by x and y, subject to y being invertible and
yx = xy2. We study two Banach algebra completions of the semigroup algebra CS. Both completions are
shown to be left-primitive and have separating families of irreducible infinite-dimensional right modules.
As an appendix, we offer an alternative proof that CS is left-primitive but not right-primitive. We show
further that, in contrast to the completions, every irreducible right module for CS is finite dimensional
and hence that CS has a separating family of such modules.
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1. Introduction

In 1964 Bergman [1] gave the first example of a ring which is right-primitive (has a faithful
irreducible right module) but not left-primitive. Further examples were given in 1969 by
Jategaonkar [9]. In 1979 Irving [8] gave a whole family of examples of rings, even linear
algebras, which are left-primitive but not right-primitive. The question of whether or not
there exists a Banach algebra with this property was raised by Bonsall and Duncan [2],
and remains open. With a view to examining the Banach algebra situation we look in
detail at one of the examples of Irving, namely the semigroup algebra CS, where S is
the semigroup with identity, generated by x and y, subject to y being invertible and
yx = xy2. Thus,

S = {xmyn : m ∈ Z+, n ∈ Z, yx = xy2},

where Z+ = {k ∈ Z : k � 0}. In Appendix A we present a proof of Irving’s result for CS

that may be more amenable to Banach algebraists. In fact, we prove further that every
irreducible right module of CS is finite dimensional. Since CS is left-primitive and hence
semi-simple, it follows that CS has a separating family of irreducible right representations
on finite-dimensional spaces. In the language of representation theory this says that S is
residually finite. It follows that the algebra CS has the property of direct finiteness: that
is, for a, b ∈ CS we have ba = 1 if and only if ab = 1.
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Our principal aim in § 2 is to study two Banach algebra completions of CS. The
obvious completion, A, say, is given by �1(S), where we replace finite sums by absolutely
convergent sums with the usual �1-norm. It will be convenient to view A as a graded
algebra; thus,

A =
{

a =
∞∑

m=0

xmφm(y) : φm ∈ �1(Z),
∞∑

m=0

‖φm‖1 < ∞
}

,

the norm being given by ‖a‖ =
∑∞

m=0 ‖φm‖1. The convolution Banach algebra �1(Z) is
isometrically isomorphic to the Wiener algebra, W , of all continuous complex functions
on T, the unit circle, with absolutely convergent Fourier series (the norm being the
absolute sum of the Fourier coefficients). On occasions it will be helpful to regard the
φm as functions on T. We shall also consider the completion B given by

B =
{

b =
∞∑

m=0

xmφm : φm ∈ C(T),
∞∑

m=0

‖φm‖∞ < ∞
}

,

the norm being given by ‖b‖ =
∑∞

m=0 ‖φm‖∞. The product in A and in B is determined
by the formula

xmφ(y)xnψ(y) = xm+nφ(y2n

)ψ(y).

We shall show that both A and B are left-primitive and also residually finite and hence
also have the property of direct finiteness. We show that, in contrast to the situation for
CS, the Banach algebras A and B have many non-faithful irreducible infinite-dimensional
right modules: enough, in fact, to separate the points of the algebra. We are still unable
to prove that either A or B fails to be right-primitive. A key step in the proof that CS

is not right-primitive involves a technique that has no analogue for infinite series. It is
amusing to note that any answer to the right-primitivity of A or B will be interesting. If
either A or B is not right-primitive, then we have a desired example. If they are right-
primitive, then we have a dramatic difference between the purely algebraic CS and two
of its natural Banach algebra completions.

We remark here that it is much easier to establish primitivity than to establish non-
primitivity. To prove that an algebra A is right-primitive, it is sufficient to construct
one faithful irreducible right module. To prove that A is not right-primitive we have to
show that every irreducible right module fails to be faithful. Equivalently, we have to
identify every maximal modular right ideal K of A and show that the quotient ideal
K : A is always non-zero. Bergman was able to do this for his example. For Banach
algebras, identifying all maximal modular right ideals is usually a hopeless task. We are
thus forced (along with Irving) to assume the existence of some faithful irreducible right
module and look for some contradiction. We note also that a candidate for a left-primitive
Banach algebra which is not right-primitive appeared in [2]. The Banach algebras A and
B considered below are much more tractable.
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2. Some representation theory for the Banach algebras A and B

As in § 1, A is the Banach algebra �1(S) which we may regard as all elements of the form
a =

∑∞
m=0 xmφm with φm ∈ �1(Z), where we identify �1(Z) with the Wiener algebra W .

We have ‖a‖ =
∑∞

m=0 ‖φm‖1, the latter norm being the �1 norm. Also, B is the Banach
algebra of all elements of the form b =

∑∞
m=0 xmφm with φm ∈ C(T) and with the norm

‖b‖ =
∑∞

m=0 ‖φm‖∞.
Our first task is to show that A and B are left-primitive. It is not difficult to give

continuous extensions of Irving’s faithful irreducible left representation of CS to both A

and B. In passing we are able to simplify dramatically the provision in [2] of an example
of specific dual representation behaviour. We then consider an averaging construction
on irreducible right representations and thereby obtain equivalent irreducible right rep-
resentations on classical Banach spaces. This enables us to describe all the irreducible
matrix right representations of A and B. Also, we introduce a family of non-faithful irre-
ducible infinite-dimensional right modules parametrized by a rich collection of subsets
of T, namely infinite compact sets which are square-closed, and minimal with respect
to set inclusion. The argument for the case of A requires us to generalize the classical
Wiener Lemma on the invertibility of continuous functions on the circle with absolutely
convergent Fourier series.

We recall a fundamental construction for dual representations of Banach algebras (see
[2] or [3]). Let A be any Banach algebra; for convenience, we suppose A has a unit, 1.
Given f ∈ A′ we get left and right ideals given by

Lf = {a : f(Aa) = (0)} and Kf = {a : f(aA) = (0)}.

We have associated left and right regular representations on the quotient spaces Xf =
A/Lf and Yf = A/Kf , respectively. The quotient spaces Xf and Yf are in normed duality
with 〈a′, b′〉f = f(ba) for any choice of a and b in the cosets, and the representations are
linked by

〈aξ, η〉f = 〈ξ, ηa〉f .

The left and right representations have the same kernel {a : f(AaA) = (0)}. The repre-
sentations are irreducible if and only if Lf and Kf , respectively, are maximal one-sided
ideals. Every irreducible left representation of A is equivalent to the representation on
some Xf (but then we know nothing in general about the irreducibility of the right
representation on Yf ), and similarly for right representations.

We write δn for the usual point mass function on Z (with value 1 at the point n of Z).
Irving’s faithful irreducible left representation of CS on CZ is then determined by

xδ2n−1 = 0, xδ2n = δn, yδn = δn−1.

It is routine to verify that the above formulae determine a bounded left representation
of A on �1(Z). We write VA for �1(Z) with this left module action. For the case of B we
rewrite δn as the function ζn on the unit circle. We take the corresponding left module
for B to be C(T). The left action by y is given by

yf(ζ) = ζ−1f(ζ), ζ ∈ T.
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More generally the action by φ(y) is given by

φ(y)f(ζ) = φ(ζ−1)f(ζ), ζ ∈ T.

The left action by x is well defined by the formula

xf(ζ) = 1
2 [f(ζ1/2) + f(−ζ1/2)], ζ ∈ T.

We denote this left module by VB .
Here we introduce the natural dual representations (see [3, p. 141]) associated with

VA and VB . There is a dual pairing on VA × VA given by〈 ∑
αnδn,

∑
βnδn

〉
=

∑
αnβn

and there is a dual pairing on VB × VB given by

〈f, g〉 =
∫ 2π

0
f(eiθ)g(e−iθ) dθ.

In each case we get a dual representation in which the right actions are (both) given by

f(ζ)x = f(ζ2), f(ζ)φ(y) = φ(ζ)f(ζ). (2.1)

In the case of A, (2.1) holds for all f ∈ W , so we may identify VA with W . For each
module we have

〈av, w〉 = 〈v, wa〉

and so the left representation is faithful if and only if the right representation is faithful.
This allows us to choose whichever leads to a simpler argument.

Theorem 2.1. A and B are left-primitive Banach algebras.

Proof. For the left module VA we again write {δj} for the usual normalized basis.
Since ykδ0 = δ−k, k ∈ Z, it follows that δ0 is strictly cyclic. We show next that any
non-zero ξ =

∑
ξjδj can be mapped arbitrarily close to δ0 by the left module action.

It then follows that A is topologically irreducible on VA. Since it has one strictly cyclic
vector it is then strictly irreducible on VA (see, for example, [5, Lemma 1]). We have
ξk �= 0 for some k ∈ Z. Note that ykξ =

∑
ξnδn−k and that the coefficient of δ0 is ξk,

which is non-zero. Since ξ ∈ �1(Z), it is straightforward to show that ξ−1
k xNykξ → δ0 as

N → ∞.
To prove faithfulness we shall use the right representation. Thus, we have

δnx = δ2n, δny = δn+1.

Suppose that VAa = 0 with a =
∑∞

m=0 xmφm(y). This is equivalent to saying that δja = 0
for all j ∈ Z: that is,

∑∞
m=0 δ2mjφm(y) = 0. Rewrite this in the notation of the Wiener
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algebra W and we have
∑∞

m=0 ζ2mjφm(ζ) = 0 for all ζ ∈ T and all j ∈ Z. Alternatively,
we may write this as

N∑
m=0

ζ2mjφm(ζ) + M(ζ) = 0,

where ‖M‖1 is arbitrarily small. Multiply through by ζ−j−k, integrate around the circle
and let |j| → ∞ to get the kth Fourier coefficient of φ0 arbitrarily small and hence zero
for all k. This forces φ0 = 0. Now repeat the argument with a slight modification to get
φ1 = 0. Similarly, we obtain that all φm = 0 and so a = 0, as required.

The above arguments require only minor modifications for the module VB . �

Remark 2.2. Let T be the semigroup generated by x and y subject only to the
relation yx = xy2; thus, we may regard T as a subsemigroup of S. Irving [7] proved
that CT is both left-primitive and right-primitive. He also proved that all non-faithful
(left and right) irreducible representations of CT are finite dimensional. We get Banach
algebra completions of CT by replacing A by �1(T ) and modifying B by replacing C(T)
by the disc algebra A(D). It may be verified that each completion is both left-primitive
and right-primitive; the modules are then �1(Z+) and A(D).

In [2] the authors presented a rather complicated example of a dual representation of
a Banach algebra in which the left representation is irreducible, while the right repre-
sentation is invariant on a chain of closed subspaces with zero intersection. We can now
present a simpler example of this behaviour.

Theorem 2.3. For the dual representation of both A and B as given above, the left
representation is irreducible and the right representation is invariant on a chain of closed
subspaces with zero intersection.

Proof. The argument is essentially the same in each case. We present it for A. For
p ∈ N, define

Vp = {f ∈ VA : f(ζ) = 0 whenever ζ2p

= 1}.

Clearly, each Vp is a closed subspace and is non-zero since it contains polynomials. Also
Vp+1 ⊆ Vp and

⋂
p∈N

Vp = (0) since any f in the intersection vanishes on a dense subset
of T. Clearly, Vp is invariant under right action by y and it is also invariant under x since
ζ2p+1

= 1 whenever ζ2p

= 1. Then Vp is invariant under right action by A, as required. �

We turn now to an averaging construction for irreducible right representations. Recall
that any irreducible module for a Banach algebra may be assumed to be a Banach
space, with continuous action. Let the Banach space V be an irreducible right module
for A or B. We may suppose without loss that y and y−1 have operator norm 1 on V

(apply [3, Theorem 4.1]), and hence the operator y has spectrum contained in T. Suppose
that vy = αv for some α ∈ T and some non-zero v ∈ V . Choose ρ ∈ V ′ with ρ(v) = 1,
and define f ∈ A′ (or f ∈ B′) by

f(a) = LIM
n→∞

α−nρ(vayn),
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where LIM is a Banach limit. Note that f(1) = 1 and, for all a in A or B,

f(ay) = LIM
n→∞

α−nρ(vayyn) = LIM
n→∞

αα−n−1ρ(vayn+1) = αf(a).

We easily verify that

Kf = {a : f(axmyn) = 0 (m ∈ Z+, n ∈ Z)} = {a : f(axm) = 0 (m ∈ Z+)}.

Let K = {a : va = 0} so that K is a maximal right ideal giving a right regular repre-
sentation equivalent to the given representation. Clearly, f(K) = (0) and so K ⊆ Kf .
But Kf is proper since f(1) = 1, and hence K = Kf . For each a in A (or B), define the
bounded sequence on Z+ by ga(m) = f(axm), and let G be the space of all such ga. It
is straightforward to check that our given right representation is equivalent to the right
representation on G defined by gab = gab (in fact, we simply map V to G by va → ga).
Moreover, we have explicit formulae for the actions of x and y on G:

(gax)(m) = gax(m) = f(axxm) = ga(m + 1),

(gay)(m) = gay(m) = f(ayxm) = f(axmy2m

) = α2m

ga(m).

}
(2.2)

Notice what happens for the case α = 1. Then y acts as the identity operator on G and
so the irreducible image Banach algebra is commutative; but its centre is C and hence
V is one dimensional. In general, the one-dimensional representations come from the
multiplicative linear functionals χ, and we pause here to list them. They are determined
by the complex numbers χ(x) and χ(y) in the closed unit disc subject to

χ(y)χ(x) = χ(yx) = χ(xy2) = χ(x)χ(y)2.

Since y is invertible, we have either χ(y) = 1 and 0 < |χ(x)| � 1, or χ(x) = 0 and
|χ(y)| = 1.

We return to the general case of α ∈ T and show that this leads to the finite dimen-
sionality of the module V . We have already dealt with the one-dimensional case.

Lemma 2.4. Let V be an irreducible right module for A or B with dim V � 2, and
let α be an eigenvalue for y on V (and so α ∈ T). Then α2k

= α for some k ∈ N and
dim V < ∞. Moreover, xk acts as a non-zero multiple of the identity on V .

Proof. We use the equivalent representation on G which we constructed above
(see (2.2)). We have a non-zero g with gy = αg and hence

αg(m) = α2m

g(m), m ∈ Z+.

If, for all m � 1, α2m �= α, then we have g(m) = 0 for all m � 1. Then G = Cg and the
representation is one dimensional. So we must have α2k

= α for some k ∈ N. It is routine
to verify that yxk = xky as operators on G. It follows that xk is in the centre of an
irreducible Banach algebra of operators and hence is a complex multiple of the identity.
Since y2k

= y as operators on G, it follows that the image algebra is a finite-dimensional
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irreducible algebra and hence V is also finite dimensional. Let k be minimal with the
property that α2k

= α. Then g(m) �= 0 implies α2m

= α, which implies that k divides m.
Suppose that xk = 0 on G. For m � k, g(m) = gxk(m−k) = 0. Hence, g(m) �= 0 implies
m = 0 and again the representation is one dimensional. �

Note that if V is any finite-dimensional irreducible right module for A or B, then y

automatically has an eigenvalue on V . This enables us to list all the finite-dimensional
irreducible right representations for A and B. We determine all the corresponding canon-
ical matrices for x and y. These matrices essentially appear in [7].

We may suppose that k is minimal with the property that α2k

= α. It follows that the
numbers α, α2, α4, . . . , α2k−1

are then distinct, for otherwise k � 2 and we get α2i

= α2j

with 1 � i < j � k. Raise both sides to the power 2k−j and we find that α2k+i−j

= α

with 1 � k + i − j < k, which is impossible. We continue to work with the equivalent
representation on the subspace G of �∞, so that xk = β1 on G for some |β| � 1. Consider
first the case when β = 1. Since xk = 1 on G, it follows that each g ∈ G is periodic with
period k. Let K = {α2m

: m ∈ Z+}, a finite set. For g ∈ G, let h(α2m

) = g(m), and let
H denote all such functions h. This is well defined because of the periodicity of each g.
It is easy to verify that we get an equivalent right representation on H defined by

(hx)(α2m

) = (gx)(m) = g(m + 1) = h(α2m+1
),

(hy)(α2m

) = (gy)(m) = α2m

g(m) = α2m

h(α2m

).

When we write these in standard function terms we get, for ζ ∈ K,

f(ζ)x = f(ζ2), f(ζ)y = ζf(ζ) (2.3)

(cf. (2.1)). By Theorem 2.8, below, this right representation is irreducible for any such
K. Alternatively, a computational proof of irreducibility can be constructed using the
matrices below. First verify that H contains the characteristic functions of the singletons
{α2j } for j = 0, 1, . . . , k−1. Take these functions as a basis for H, and let X and Y be the
matrices (with right action) corresponding to the right actions of x and y, respectively,
on H. It is straightforward to check that

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

α 0 0 · · · 0
0 α2 0 · · · 0
0 0 α4 · · · 0
...

...
...

. . .
...

0 0 0 · · · α2k−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Return now to the general case with xk = β1. Write β = γk. The right representations
with x and y mapped to γX and Y , respectively, are equally all irreducible with 0 <

|γ| � 1. Write πα,γ for this right representation.

Theorem 2.5. Up to equivalence, the irreducible finite-dimensional right representa-
tions of A and B are given by the one-dimensional representations listed above and the
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family πα,γ (subject to α2k

= α for some k ∈ N, and 0 < |γ| � 1). These representations
separate the points of A and B.

Proof. It remains to prove the final assertion. Suppose that aπα,γ = 0 for all these
representations. Let a =

∑
xmφm(y). Then we have∑

γmXmφm(Y ) = 0

for all complex γ with 0 < |γ| � 1. It follows that Xmφm(Y ) = 0 for each m. But X is
invertible and so φm(Y ) = 0 for each m. We now have φm(α) = 0. Since α can be any
(2k − 1)th root of unity, this shows that φm = 0, giving a = 0, as required. �

Corollary 2.6. Both A and B have the property of direct finiteness.

Proof. Let ba = 1 in A or B. Let π be any finite-dimensional irreducible right repre-
sentation from the above family. Then π(b)π(a) = π(1) = I. Since π(a), π(b) are complex
matrices, we have π(a)π(b) = I. Thus, π(ab − 1) = 0 for all such π, and hence ab = 1, as
required. �

It is clear by dual representation theory that the family of irreducible finite-dimensional
left representations of A and B may be parametrized by mapping x and y to the matrices
γX and Y , respectively, where the matrices now act on the left on column vectors.

Suppose now that K is any compact subset of T which is square-closed: that is, ζ2 ∈ K

whenever ζ ∈ K. It is easily verified that

f(ζ)x = f(ζ2), f(ζ)y = ζf(ζ)

give a right representation of B on C(K) (cf. (2.3)).
We can think of C(K), above, being derived from C(T) by the restriction mapping

f → f |K , but it is better to regard it as the quotient of C(T) by the submodule N =
{f ∈ C(T) : f(K) = (0)}. To get the corresponding right module for the Banach algebra
A, we start with the analogous right module W and take the submodule N = {f ∈ W :
f(K) = (0)}. We then get the quotient module W/N , which we denote by W (K). Of
course W (K) can be identified with the restrictions to K of all the functions in W . Since
N is a closed ideal in the Banach algebra W we can also consider W (K) as a Banach
algebra. The classic Wiener Lemma adapts to W (K).

Lemma 2.7. Let f ∈ W (K). Then f is invertible in W (K) if and only if f is never
zero on K.

Proof. This can be deduced from results in [6, § 4.1]. Alternatively, the argument
in [3, Example 19.4] can be adapted as follows. Write u(ζ) = ζ for ζ ∈ T, and write u|K
for the restriction of u to K. It is sufficient to show that Sp(W (K), u|K), the spectrum
of u|K in W (K), is K. It is clear that K ⊆ Sp(W (K), u|K) ⊆ T. For each β ∈ T \ K, we
have to show that u|K − β is invertible in W (K). Let the interval J be the component
of the open set T \ K which contains β. We can modify the function u − β only on J so
that it never vanishes on J , and we can do so infinitely smoothly. This modified function
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then has an absolutely convergent Fourier series and never vanishes on T, and so it has
an inverse in W by Wiener’s Lemma. Restrict this inverse to K and we see that u|K − β

is invertible in W (K). �

When K is a proper subset of T, the kernel of this right representation of B intersects
the subalgebra C(T) of B in the space of all functions that vanish on K, and so this
representation is certainly not faithful. A similar remark applies for A. But we show
below that the representation is irreducible if and only if K is minimal, with respect to
set inclusion, amongst all compact square-closed subsets of T.

Theorem 2.8. Let K be a compact square-closed subset of T. Then the above right
representation of B (respectively, A) is irreducible on C(K) (respectively, W (K)) if and
only if K is minimal.

Proof. If K is not minimal, then any smaller compact square-closed set produces an
invariant subspace for the representation. Suppose now that K is minimal. The function 1
is cyclic. Let f be any non-zero function in C(K) and let g = |f |2 = ff∗ (here, f∗(ζ)
is the complex conjugate of f(ζ)). Then g ∈ fB. Let h =

∑∞
n=0 2−ngxn. Then h ∈ fB.

Note that

h(ζ) =
∞∑

n=0

2−ng(ζ2n

)

so that h is non-negative and not identically zero. Let L = {ζ ∈ K : h(ζ) = 0} so that L

is a compact proper subset of K. Let ζ ∈ L. Then g(ζ2n

) = 0 for each n and so h(ζ2) = 0:
that is, ζ2 ∈ L. Since K is minimal, it follows that L is empty and so h is invertible in
C(K). Thus, 1 ∈ hB ⊆ fB and so we can map f to 1. The proof is complete for the
case of B. The proof adapts for the case of A, with the use at the last step of the above
Wiener Lemma for W (K). �

For brevity we shall refer to minimal compact square-closed subsets of T as µ-sets. The
existence of infinite µ-sets is guaranteed by Zorn’s Lemma, but that approach gives us
little insight. We have already met a countable family of finite µ-sets: the sets of the form
{α2m

: m ∈ Z+}, where α2k

= α for some k ∈ N. There are in fact uncountably many
different infinite µ-sets (and each one is a Cantor set). Two such uncountable families
are given in [11]. The union of all infinite µ-sets is dense in T, and so the corresponding
family of irreducible infinite-dimensional right representations again separates the points
of A and B. This density property of µ-sets does not appear to be in the literature, but
the authors give a proof in [4].

We conjecture that the only irreducible right representations of dimension greater
than 1 for B are those given by minimal K as above. We do not know whether there
exist any non-faithful irreducible left representations of A or B on infinite-dimensional
spaces.
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Appendix A. Some representation theory for the semigroup algebra CS

We present here a different proof of Irving’s result in [8] that CS is left-primitive but not
right-primitive. The proof of Lemma A 5 is largely a translation of Irving’s arguments with
ideals to arguments with vectors. We prove further that the only irreducible right modules
of CS are finite dimensional. As before, S is the semigroup with identity, generated by
x and y, subject to y being invertible and yx = xy2. Thus, the product in S is given by

xmynxpyq = xm+pyn2p+q.

There is a natural left module VS for CS given by taking VS to be the linear space
CZ and restricting to VS the module action for VA defined in § 2. To see that CS is
left-primitive, we simply adapt the proof of Theorem 2.1. The use of Fourier analysis in
proving faithfulness can be avoided; we leave the reader to give a direct algebraic proof
that aVS �= (0) whenever a �= 0. We record the result.

Theorem A 1. The linear algebra CS is left-primitive.

The representation theory for CS is of course different from the representation theory
for A since there are no continuity restrictions for CS. For example, there are two (larger)
families of one-dimensional irreducible representations of CS determined by multiplica-
tive linear functionals χ. As before, these are determined by χ(x) and χ(y) subject to

χ(y)χ(x) = χ(x)χ(y)2.

Since there is no boundedness constraint on χ, we have either χ(y) = 1 and χ(x) ∈ C,
or χ(x) = 0 and χ(y) ∈ C with χ(y) �= 0. Similarly we get a larger two-parameter family
of finite-dimensional irreducible right representations of CS. As before, let α ∈ C with
α2k

= α and the positive integer k minimal. Now let γ ∈ C, γ �= 0, and let X and Y be
the matrices as in § 2. Let πα,γ be the right representation of CS determined by

xπα,γ = γX, yπα,γ = Y.

As for A and B in § 2, we now get the following result for CS.

Theorem A 2. The above finite-dimensional right representations πα,γ of CS are
irreducible and the family separates the points of CS.

Corollary A 3. CS has the property of direct finiteness.

Remark A 4. If we regard the matrices X and Y as acting on the left, then we get
a corresponding family of irreducible finite-dimensional left representations of CS with
the corresponding properties.

To help simplify the notation in places, we shall write R for the algebra of Laurent
polynomials in y; thus, R is simply a copy of CZ. We aim to show that any irreducible
right module V for CS is finite dimensional, and it will follow immediately that CS is
not right-primitive. The first (and most critical) step is to show that y must have an
eigenvalue on V . We can then adapt the right averaging construction to our algebraic
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situation to prove that V must be finite dimensional. In the non-Banach algebra setting
we need a proof that an irreducible representation of CZ is one dimensional. We could
use the Nullstellensatz, but in the course of Lemma A 5, below, we give instead a very
short elementary argument for this.

Lemma A 5. Let V be an irreducible right module for CS. Then y has an eigenvalue
on V .

Proof. Suppose first that V x = (0). Let v ∈ V , v �= 0. Consider v(1+y). If v(1+y) = 0,
then y has an eigenvalue. If v(1+y) �= 0, then by irreducibility there is a polynomial φ in y

and y−1 such that v(1+y)φ = v. Multiply by a suitable power of y to get v(1+y)ψ = vyk

for some polynomial ψ in y. Since yk − (1 + y)ψ is a non-zero polynomial it follows, by
factorizing into linear factors, that y has an eigenvalue.

Now suppose that V x �= (0). Let v ∈ V with vx �= 0. Since V is irreducible, there
exists d ∈ CS with vxd = v. This gives

0 = v(1 − xd) = v(1 + xd1 + x2d2 + · · · )

for some dj ∈ R. Suppose that a = r0 + xr1 + · · · + xmrm has m minimal such that
m � 0, va = 0, rj ∈ R and r0 �= 0. Our aim is to show that m = 0. As above, this will
prove that y has an eigenvalue on V .

From now on, we shall also regard the elements of R as functions on T, via y(ζ) = ζ.
We first choose an odd prime p so that for each zero e2πiβj of rm with 0 < βj < 1 we
have pβj /∈ Z. For this we need consider only those βj which are rational, and we may
take the prime p to be greater than any odd prime which appears in a denominator of
any βj in its lowest terms. Set α = e2πi/p. Then α2k �= e2πiβj for any j or for any k ∈ Z+;
for otherwise we should have 2k2π/p − 2πβj ∈ 2πZ and hence pβj ∈ Z. Also, α2k �= 1
since 2k/p /∈ Z. We thus have rm(α2k

) �= 0 for all k ∈ Z+.
Now put q = yp − 1 and let Q = Rq. We have qx = x(y2p − 1) = xq(yp + 1) ∈ xQ.

Similarly, qx2 ∈ x2Q, qx3 ∈ x3Q, and so on. If vq = 0, then y has an eigenvalue on V

and we are done. Suppose instead that vq �= 0 and so there is d′ ∈ CS with vqd′ = v.
This gives v(1 − qd′) = 0, where

1 − qd′ = 1 + q0 + xq1 + x2q2 + · · ·

and each qj ∈ Q. By the choice of α we have q(α) = 0 for every q ∈ Q. Thus, (1+q0)(α) =
1. Suppose now that

b = t0 + xq1 + · · · + xnqn

has n minimal such that n � 0, vb = 0, qj ∈ Q and t0 ∈ R with t0(α) �= 0. Since b

satisfies the conditions given for a above, it follows that n � m. Put n = m + k so that
k � 0. We now suppose that m > 0 and derive a contradiction. This will give m = 0 and
so complete the proof of the lemma.

For r ∈ R put r̂(y) = r(y2k

). With a as above, we have

0 = vaxk = v(xkr̂0 + · · · + xnr̂m)
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and hence 0 = vc, where

c = br̂m − axkqn = T0 + xQ1 + · · · + xn−1Qn−1

with T0 ∈ R and Qj ∈ Q. Here we have T0 = t0r̂m if k > 0, and T0 = t0rm − r0qn if
k = 0. In either case we have

T0(α) = t0(α)r̂m(α) = t0(α)rm(α2k

) �= 0.

Thus, c has the same form as b but is of lesser degree, which is impossible. Hence, m = 0,
which was needed to complete the proof. �

Theorem A 6. Let V be any irreducible right module for CS. Then V is finite dimen-
sional, and the representation is one dimensional (as listed above) or is equivalent to one
of the form πα,γ . Thus, CS is not right-primitive.

Proof. By Lemma A 5 we have v ∈ V and α ∈ C such that vy = αv. Since y is
invertible, α �= 0. Let ρ be a linear functional on V with ρ(v) = 1. Consider first the case
|α| � 1. We note that α−nρ(vyn) = 1, n ∈ N. Also

α−2mρ(vxy2m) = α−2mρ(vymx) = α−mρ(vx)

and similarly α−2m−1ρ(vxy2m+1) = α−m−1ρ(vxy). Thus, {α−nρ(vxyn) : n ∈ N} is a
bounded sequence and hence we may apply a Banach limit to define

f(x) = LIM
n→∞

α−nρ(vxyn).

Similarly, we may define

f(xj) = LIM
n→∞

α−nρ(vxjyn), j ∈ N,

and then we can extend to a linear functional f on CS given by

f(a) = LIM
n→∞

α−nρ(vayn).

If |α| < 1, we instead define f(a) = LIMn→∞ αnρ(vay−n). In each case, as before,
f(1) = 1 and f(ay) = αf(a). We can now proceed exactly as in § 2 to get our given right
representation equivalent to the right representation on the space G = {ga : a ∈ CS}
with the actions (gax)(m) = ga(m + 1) and (gay)(m) = α2m

ga(m) for m ∈ Z+.
We have h ∈ G, h �= 0, with hy = αh. If, for all m ∈ N, α2m �= α, then h(m) = 0 for

all m ∈ N. Then hx = 0. In this case G = Ch and the representation is one dimensional.
Finally, consider the case α2k

= α for some k ∈ N. We may assume that k is minimal.
For simplicity we shall now consider the case when k = 2; the general case is just an
elaboration of the argument. Thus, we have α4 = α �= α2. We write X and Y for the
operators on G corresponding to x and y, respectively. It is immediate from the action
of y given above that the algebra generated by Y consists of all diagonal operators
with entries of the form (γ, δ, γ, δ, . . . ). It is clear that our eigenvector h for y must be
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of the form h = (h0, 0, h2, 0, h4, 0, . . . ). If hX2 = 0, then h = (h0, 0, 0, . . . ), and again
our representation is one dimensional. Suppose that hX2 �= 0. By irreducibility we get
hX2 ∑

j Xjpj(Y ) = h and, since the support of hX2m+1 is contained in {1, 3, 5, . . . }, we
can assume that only even j appear in the sum. But each p2m(Y ) acts as a multiple of
I on hX2+2m. It follows that hQ(X) = 0 for some non-zero complex polynomial Q. The
usual argument shows that X has an eigenvector g′ ∈ G. Suppose that g′X = βg′ for
some β ∈ C. Then we have g′ = (1, β, β2, β3, . . . ). If β = 0, the representation is one
dimensional. Suppose β �= 0. Let G1 be the two-dimensional subspace of G given by

G1 = {g ∈ G : g(j + 2) = β2g(j), j ∈ Z+}.

A calculation shows that G1 is invariant under X and Y . Since G1 �= (0), it follows by
irreducibility that G1 = G and hence dimG = 2.

Verification that our representation is equivalent to the representation πα,β is routine.
�

Remark A 7. The use of LIM can be avoided in § 2 by using numerical range results
from [10]; in this appendix the Banach limits can be calculated explicitly, if desired.
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