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The aim of this paper is to explore some facets of the geometry of generic isotopies of
plane curves. Our major tool will be the paper of Arnol'd [1] on the evolution of
wavefronts. The sort of questions one can ask are: in a generic isotopy of a plane curve
how are vertices created and destroyed? How does the dual evolve? How can the Gauss
map change? In attempting to answer these questions we are taking advantage of the fact
that these phenomena are all naturally associated with singularities of type Ak. Now the
bifurcation set of an Ak+1 singularity and the discriminant set of an Ak singularity
coincide. So we can apply Arnol'd's results on one parameter families of Legendre
(discriminant) singularities (e.g. the duals) to get information on one parameter families of
Lagrange (bifurcation) singularities (e.g. the evolutes). For bifurcation sets of functions
with singularities other than those of type Ak one runs up against problems with smooth
moduli—see [4].

The paper is divided into four sections. The first reviews the results of Arnol'd we
shall need. In the second we consider the geometry of plane and space curves associated
with the families of distance squared and height functions. We determine the conditions
under which an isotopy gives rise to generic changes in this geometry. In the third section
we prove a transversality result which shows that generic isotopies are open and dense; in
particular two connected generic plane curves can be joined by a generic isotopy.

In the final section we describe the generic changes which do occur. The same
methods suffice (with suitable modifications) to describe the geometry of generic isotopies
of space curves and we hope to do this in a later paper.

The author would like to thank Dr. P. J. Giblin for pointing out a mistake in an
earlier version of this paper, and the referee for some very useful comments.

1. In this section we introduce some results of Arnol'd [1] concerning functions
defined on the bifurcation and discriminant sets of Ak singularities.

A function germ g:R, 0—»R, 0 is said to be of type Ak if it can be reduced by a
change of co-ordinates in the source to the normal form f(t) = ±tk+1 i.e. if the germs / and
g are right equivalent. (Using Taylor's theorem it is not hard to see that g is of type Ak if
and only if g(p)(0) = 0, for 1 < p < k and g(k+1)(0) f 0.) Sometimes the zeros of the function
g, and nearby functions, will be important and we then simply refer to g as a function. In
other context however the values of g, and nearby functions, are not relevant, but its
critical points are. We then refer to g as a potential function. (We are considering the same
germ: there is simply a different emphasis.)

A family of functions G:RxR", 0 —»R, 0 is said to be an unfolding of g if the germs
g and G(-, 0) :R, 0—»R, 0 coincide. The unfolding G is of dimension n. The family G is a
versal unfolding of the function g with an Ak singularity if and only if the truncated Taylor
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196 J. W. BRUCE

expansions of — (t, 0), 1 < i < n, span the space of polynomials in t of degree at most

fc-1. (We write this, rather loosely, as —(t, 0), l < i < n , span R[t]/((k). Roughly

speaking a versal unfolding of g contains all germs close to g. See [2].)
Given an unfolding G of the function g the discriminant set of G is the set germ

D(G), 0 = j aeR" : G(t,a) =— (t, a) = 0 for some t\,0.
I dt J

If G is an unfolding of the potential function g the bifurcation set of G is the set germ

B(G),0 = jaeR": — (r, a) = ̂ -=- (t, a) = 0 for some (1,0.
I dt dt J

The first result we require is the following.

THEOREM 1.1 [2, p. 123]. Let g0 and gi be right equivalent functions, and Go and Gi
versal unfoldings of g0 and g1 respectively, of the same dimension. Then the discriminant
sets of Go and Gx are diffeomorphic (i.e. there is a germ of a diffeomorphism <j>: Rn, 0-»
R", 0 taking D(G0), 0 to DiG^, 0). Similarly if g0 and gx are right equivalent potential
functions, and Go and Gl are versal unfoldings of g0 and gx then the bifurcation sets of Go

and G] are diffeomorphic.

For the Ak singularities ±tk+l we have the following standard versal (resp. potential
versal) unfolding of minimal dimension:

F(x, a) = ±tk+1 + bit
k~1 + - • • + bk-]t + bk

(resp. F(x, a) = ±rlc+1 + b1r
lc~1 + - • - + fcfc_if.)

By Theorem 1.1 the discriminant (resp. bifurcation) set of any versal unfolding of an Ak

singularity is diffeomorphic to the product of that of F (resp. F) with some Euclidean
space. (This uses the fact that one can increase the dimensions of the versal un-
foldings F, F simply by adding variables to the left of the above expressions which do not
appear on the right.) Clearly the discriminant set of an n-dimensional versal unfolding of
an Afc singularity, and the bifurcation set of an n -dimensional versal unfolding of an Ak+,
(potential type) singularity are diffeomorphic.

We now outline the results we need from Arnol'd. In [1] Arnol'd classified generic
functions on the discriminant sets of unfoldings of simple singularities, and hence in
particular on the discriminant and bifurcation sets of Ak singularities. The results will be
used by us in the following situation. We shall be considering a versal unfolding G(t, a, u)
of the potential function G(t, 0,0) = g(r), where (a, u) are the unfolding parameters and u
is a (single) distinguished parameter. The bifurcation (or parent bifurcation) set is defined
as above and is a subset of the (a, u)-space A x U. The discriminant set arises in the guise
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of the set of critical values of G. So we consider the extended unfolding G(t, a, u, c) =
G(t, a, u)-c. The discriminant (or parent discriminant) set of G is clearly the set

\ (a, u, c): G(t, a, u) = c, — (t, a, u) = 0 for some t \.
I dt i

The unfoldings G and G give rise to families of bifurcation, resp. discriminant, sets
obtained by fixing the parameter u. (This explains the parental role of G and G.) So we
have natural projections T T : A X [ / — > l / (resp. TTV A x ( / x R - > U) and we want to
consider the restriction to B(G) (resp. D(G)). The results we require follow from the
following interpretation of Arnol'd's theorems.

THEOREM 1.2. Let G(t, a, u) be as above. If 1, — (t, 0, 0) (1 < i < n) and — (t, 0, 0)

dat du
span R[t]/(tk) then G (resp. G) is a versal unfolding of the function (resp. potential
function) g(t). When this is the case we have the following.

(a) If 1, — (t, 0,0) span R[t]/(fk) the projection TT (resp. TT^ is equivalent, via a
daf

bifurcation (resp. discriminant) preserving diffeomorphism, to the trivial projection onto one
factor of a product bifurcation (resp. discriminant) set.

(b) / / G is of minimal dimension fe - 1 and 1, —(t, 0, 0) span R[(]/(tk"1) then the
da1

projection TTX (resp. IT) is equivalent to the projection of the standard discriminant (resp.
bifurcation) set of F (resp. F) above onto the ax-coordinate.

Proof. The first assertion follows immediately from our definition of versality. Parts
(a) and (b) follow from (4.5) of [1]. (Roughly speaking (a) follows because the discriminant
(or bifurcation) set must be a product in the u -direction since g is versally unfolded by the
a parameters). To deduce (b) from [1] we have to show that the condition given above
coincides with Arnol'd's criterion for a generic function, namely that if / is the function in

question on the standard discriminant set of F then — (0) must be non-zero. (We shall
dbx

discuss the bifurcation set case later.) To simplify notation in what follows we will relabel
c as ak_! and replace A x R by A.

Using the fact that G is a versal unfolding of an Ak singularity of minimal dimension
we can find smooth germs ^ : R x R ( t , 0 ^ R , 0 , i / c B k , 0 ^ A x [ / , 0 with </>(-, 0): R, 0 -> R,
0 a diffeomorphism, \p a diffeomorphism and

G(*(f, b), 0(6)) = (k+1 + b^-1 + ... + bk=F(t, b).

Arnol'd's condition for our projection -JT is now equivalent to —r- (0) =f=- 0, where ijjk is
db

https://doi.org/10.1017/S0017089500005292 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500005292


198 J. W. BRUCE

the u -coordinate of i/». From the chain rule we find that

at , i j j

Since G is an unfolding of an Ak singularity — (<f>(t, 0), 0) has a Taylor series starting
with terms of degree at least k. So

If

dC
(<t>(t,0),0) Y.aPit™od{t) and — (<t>(t, 0), 0) = £ apkt

p~l mod(tk)

then clearly

where 8 is the usual Kronecker symbol. Using the cofactor method of inverting matrices it

is not hard to see that —- f 0 if and only if det(Opj) f 0, where 1 < p, i < k - 1 .
dbi

In our case where we are considering the unfolding G one easily checks that this
latter condition is equivalent to the condition given in (b) above.

In the case of the bifurcation set one notes that if H is a versal unfolding of a

potential function germ h which an Afc+1 singularity then — is a versal unfolding of the
dh *" AH

function germ — , which has an Ak singularity, and the discriminant set of — coincides
at dt

with the bifurcation set of H. The condition then for the projection IT above to be generic

is that (t, 0,0) (1 < i < k -1) should span R[t]l(tk~2) which clearly coincides with the
da{ dt

condition given in (b).
Note. The Morse components of the projection, which Arnol'd discusses in [1], never

arise in this paper.

2. Plane curves. The situation we shall be considering is as follows. If U is the
interval (—1,2) and C a circle we shall consider isotopies $ : C x U—»R2, O(f, u) = <&u(t),
which we shall regard as a smooth isotopy between <1>O(C) = Co and 3>i(C) = Cx. We shall
always suppose that Co and Cx are generic (the precise meaning of generic will depend on
what features of the curves C, we are considering.) Our wish is to replace the isotopy <& by
one which is generic in that projecting the relevant bifurcation or discriminant sets onto U
yields a generic function on these sets in the sense of Arnol'd. We shall first review the
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ISOTOPIES OF GENERIC PLANE CURVES 199

geometry associated with a single generic curve and then compute the conditions for an
isotopy to be generic. In §4 we shall prove the relevant transversality lemma which will
ensure that the conditions are generically satisfied.

I. The Height Functions. First we shall consider the geometry of plane curves
reflected in their contact with lines. So if S is the unit circle in R2 we are considering the
family of height functions parametrized by S.

(a) Single curve. Given a smooth curve <j>: C—»R2 we have a family of height
functions h:CxS —>R denned by h(t, a) = $(t). a = ha(t) (where . denotes the usual
inner product in R2). The set of pairs

a = {(t, a):ha: C -> R has an A, singularity at t for some I > 1}

is the unit normal bundle to C. If cr+ is one of the two components of <r, the set
8 = {(h(t, a), a)eRxS:(r, a)ea+} is the affine dual of C. The natural projection p: <j—> S
is the Gauss map of C. (See [3] for details.)

Ignoring quasi-global phenomena, one has the following results. Generically the ha

have only A, and A2 singularities, both versally unfolded by the family h. The A2

singularities correspond to ordinary inflexions of the curve. The corresponding points on
the affine dual are cusp points, and the Gauss map has ordinary folds associated with each
inflexion.

(b) An isotopy of curves. Let <I>: C x U —> R2 be an isotopy as above, and consider
the associated family of height functions

H: C x U x S -+ R , H(t, u, a) = <D(t, u).a = Ha(t, u ) .

The set 2 = {(t, u, a): Ha(-, u): C x { u } ^ R has an A, singularity at t for some / > 1} is the
family of unit normal bundles. If 2 + is one of the two components of 2 the set
A = {(H(t, u, a), u, a ) e R x C/xS: (t, u, a)e2+} is the family of affine duals. The natural
projection P: 2 —> 1/xS is the family of Gauss maps.

The set A has the structure of a discriminant set, and the set of critical values of P the
structure of a bifurcation set. We now consider conditions under which these sets are
generic and their natural projections to U also are.

(i) The duals. Without loss of generality we shall work at u = 0 and t = 0. We write
<5(r, 0) = (r, c2t

2 + c3t
3 + c4t

4 + O(5)) where O(k) denotes a smooth function on R vanishing
at t = 0 to order k -1. If a = (0,1) the condition for ha to have a singularity of type A( for
some / 5= k at t = 0 is c2 = • • • = ck = 0. Generically we expect At and A2 singularities of
the height functions on the Cu, with A3 singularities occuring for isolated values of u.

Clearly from the unfolding parameter a we obtain —- (t, 0) = t. So we can express the
condition for a generic projection in terms of

^(t,0) p(t,0) d1t d2tOO) say.
du du

dH
(ii) Aj and A2. Here since 1,—-(t, 0) = t span R[t]/(rk) by 1.2(a), the projection is

the trivial one.
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(iii) A3. The condition for a versa] unfolding is that 1, t, t/f span R[t]/(f3) i.e. d2j=0.

The condition that the projection is then generic (in 1.2(b)) is that in addition 1,—-(t, 0)
span R[t]/<r2}, which is automatic. a

(iv) Singularities of the Gauss map. As explained in §1 the conditions for the
bifurcation sets to be generic with the projection to u generic coincide with those given
above.

II. Distance Squared Functions. We now consider the geometry of plane curves
reflected in their contact with circles. Thus we are considering the family of distance
squared functions from points of R2 parametrized by R2.

(a) Single Curve. Given a smooth curve <j>: C—»R2 we have a family of distance
squared functions d: C x R 2 ^ R defined by d(t,a) = \\<t>(t)-a\\2=da(t) (where ||.|| is the
Euclidean norm on R2). The set of pairs

a = {(t, a):da: C —> R has an A, singularity at t for some / > 1}

is the normal bundle to C. The natural projection p: <z—*R2 is the exponential mapping
of the normal bundle and the set of critical values of p is the evolute of C. (See [6] for
details.)

Generically the da have only A1( A2 and A3 singularities, all versally unfolded by the
family d. The function da has an A[ singularity (where i > 2) at r if and only if a is the
centre of curvature of C at <fr(t). The function da is of type A( (where / > 3) if, in addition,
<f>(t) is a vertex of C. The point on the evolute corresponding to a vertex is a cusp point.

(b) An isotopy of curves. Let O be as above and consider D: Cx[7xR 2 —>R,
D(t, u, o) = ||$(f, u)-a\\2 = Da(t, u). The set

1 = {(t, u, a): Da(-, u): C x {u} —»• R has an A, singularity at t for some 12= 1}

is the family of normal bundles. The natural projection P: X—> C/xR2 is the family of
exponential maps. The set of critical values of P is the family of evolutes. This set has the
structure of a bifurcation set; we seek conditions under which it is generic and so is its
natural projection onto U.

Generically we expect Alt A2 and A3 singularities of the distance squared functions
on the Cu, with A4 singularities occuring for isolated values of u. Without loss of
generality we shall work at u = 0 and t = 0. As before we write <&(f, 0) =
(t, c2t

2 + c3t
3 + c4t

4+O(5)). If b = (0, l/(2c2)) the condition for db to have a singularity of
type Ak is as follows.

db is of type A2 if and only if c3 ̂  0.

db is of type A3 if and only if c3 = 0, c 4 - c\ f 0.

db is of type A4 if and only if c3 = c4-c2' = 0, c5 f 0.

db is of type A( (13» 5) if and only if c3 = c4 - c\ = 0, c5 = 0.

Clearly from the tangent space to R2 we obtain t and (-l/(2c2) + c2t
2 + c3t

3 + c4t4+O(5)).
What about the tangent space to 17?
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The partial derivative

where p = l/(2c2). Setting

du du

clearly this derivative is

i.e. 2

(i) A , , A2 and A 3 . Here 1, t and (-/3 + c2r2 + - • •) span R[r]/(fk). So the projection of
the family of evolutes is trivial.

(ii) A 4 . First we need 1, t, (-(Z + c2t
2 + c3t

3) and (*) to span R[(]/<t4). Using c3 =
c 4 - c 2 = 0 one finds that this is so if and only if c2{d2 + c2eA- pe3) = c2d2 + c\ex-^e3i^0.
For the projection to be generic in addition we require 1, t and -(i + c2t

2 to span R[f]/(f3)
which they clearly do always.

3. The transversality results. One approach to the generic geometry of plane curves
(discussed elsewhere by the author) goes as follows. Given a smooth plane curve C with
an orientation, at each point p of C choose the positive tangent and outward normal as x
and y axes. The curve near p then has a unique representation as the graph y = / ( x ) , with
/ '(0) = 0. If Vp is the vector space spanned by monomials of degree d in one variable x,
with p < d < f c , taking the truncated Taylor expansion of / (to degree fc) gives a smooth
map y: C—» V2. There are then certain algebraic subsets of V2 of codimension at least 2
which one wants to avoid in order to ensure that, for example, the height functions are
generic on C. Thus one needs to prove one can make y transverse to (and hence miss)
such sets. We need to generalise this type of result.

When we concern ourselves with isotopies then it is clear from our work in §2 that we

need to consider the components of —(f, u(0)) in the tangent and normal directions to
du

Cu(0) at <J>(t, u(0)). Thus for each fc(fc>2) we consider a map T:C^> V 2 x V£x v£. The
first component of F is 7. The second and third components of F are defined as follows.

By a change of t co-ordinates we may suppose that with respect to the x and y axes
as above 4>(t, u(0)) = (f, f(t)) for some smooth /. The second and third components of F are

d<fri d<$>2the Taylor expansions of (r, u(0) + s)|s=0, (f> "(0) + s)|s=0 with respect to the above
ds ds

coordinate systems, truncated to degree fc.
Clearly we shall want to obtain a transversality theorem for the map F. To do this we

proceed as follows. Given an isotopy <I>: C x U —»R2 as above between Co and Cx then
shrinking U (to an open neighbourhood of [0,1]) we may suppose that <J>(C x U) is
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contained in some large ball neighbourhood of the origin B c R2. Let P denote the space of
polynomial maps of degree at most d from R2 to itself, and choose a sufficiently small
convex neighbourhood W of the zero map in P so that for any iplt ip2 in W, J + t/̂  + t/^
maps the ball 2B of twice the radius of B diffeomorphically onto its image (where /
is the identity). Now consider <f>: C x ( / x W2—>R2 defined by <!>(f, u, </>,, ip2) = <$>(t, u) +
il>i(<£>(t, u)) + wp2(<b(t, "))• For each u, i/rl7 ip2, t -» <!>((, u, i/>l51/>2) is an embedding of C in R2.
There is clearly an associated mapping f: C x t / x W 2 - » V2x v £ x V£.

LEMMA 3.1. The map f is a submersion at (t, 0, 0, 0).

Proof. We may as well work at (0,0). Consider ifri = (0, sxr), fa-O (for s small and
nonzero) and the quotient

for r > 2 . Writing <&(t, u) = (<J>i(f, u). <1>2((, u)) with respect to the canonical axes at *(t, 0)
we have

, u, .£„ <//2) = <*><>, M) + ( 0 , s (* , ( t s u)) r) .

Hence at « = 0 we get (t, 4>2((, 0) + str) and the limit of the quotient above as s —> 0 has xr

in its first component. It is irrelevant what the second and third components are although
they are easily computed.

Now consider t^ = 0, <p2
 = (sxr, 0) (resp. i//2 = (0, sxr)) for s small and nonzero, and the

corresponding quotient (*) above. Here we have

u, </,„ «fe) = <D(j, u) + u(s(<D,(j, u))r, 0)

(resp. $(1, u, i/r,, 02) = 4»(t, u) + u(0,

Clearly when u = 0 we obtain <J>(t, 0) and the first component of the limit of (*) as s —» 0 is
0 in both cases. To determine the second two we note that differentiating $ with respect
to u in the tangent and normal directions at <l>(f, 0) and setting u = 0 we obtain

^ (t, 0) + smt, 0))' = ̂  (t, 0) + st' and ^ ( r 0) (resp. ̂  (t, 0) and ^ ( ( 0 ) + s r \
du du du \ du du I

And hence the limit of (*) as s -» 0 is (0, xr, 0) (resp. (0, 0, xr)) and our assertion is proved.

Of course as it stands the lemma is of little use since it only gives us information near
u - 0 . Had we considered the family <$>{t, tO + t /^^r, u)) + (u-a)t/f2(<t>(t, u)) we would
have had some control over the behaviour of the isotopy near u = a instead. Our idea is
to try to glue together deformations of the isotopy obtained by taking sufficiently many
a's in [0,1]. To do this we proceed as follows.

Consider the map C x [ / x W 2 x [ / ^ R 2 defined by

(t, u, 4>u ifc, a) *-*• 4>(t, u) + /̂1(<D(t, u)) + (u - a)^2(<5((, u)).

This yields a corresponding map T*, obtained from F by fixing a, ifrx, ip2, which is a
submersion at each point (t, u, 0, 0, u) by the lemma above. Using the fact that we are
only interested in the isotopy for u e [0,1] c U we can find neighbourhoods Ux of [0,1],
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W, of OeW, and e > 0 such that, for ueUu <//, e W, and \u-a\<e, the map F* is
a s u b m e r s i o n at (t, u, tpu \\i2, a ) . N o w c h o o s e equally spaced aua2,...,aN wi th
0 = a^ < a2 < . . . < aN = 1 and |aJ+1 - a, | < e/2, and for each a, consider the map F* obtained
from F* by fixing a = a,, and replacing W by Wx and U by l/j.

We now obtain the transversality result in the usual way for each F* by ap-
plying Thorn's lemma [5, p. 49]. So given any Whitney (A) regular stratified set X in
V2x VQX VQ we can find arbitrarily small i/»1; <̂ 2 with the isotopy

(t, U)I-KI>(», u)+ •/,,(<&(t, u)) + (u-a,)^2(4)(t, u))

yielding F*(t/>,, i/»2): Cx[/ , -» V2x v£x VQ which is transverse to X, provided that
| u - a , | < e . Indeed we can clearly do more. We can also ensure that when u = aj+1 or
u = <*,_! the corresponding curve is generic for height and/or distance squared functions.
Moreover since the set of (>]/u t]/2) excluded by an application of Thorn's lemma is of
measure zero, we can choose a fixed (tpx, i//2) so that r*(i//1( ip2) and F*(i/f1; -ij/2) are trans-
verse to X, for all /, provided again that | u - a , | < e , and that u = aj+l or u = aj-.l gives
generic curves.

But these individual isotopies can now be glued together because

,+,)) ± (aJ+i - a,)

and \ctj — aJ + 1 |<e so that we can piece together the generic isotopies obtained from fixing
a = a1; a3, a s , . . . . Of course glueing the isotopies together is no problem since the curves
at the endpoints of the relevant intervals are generic. Now this does not yield a generic
isotopy from Co to Ct but these curves are themselves generic, so provided i/fj and i\i2 are
sufficiently small the end curves of our generic isotopy will be isotopic through a family of
generic curves to Co and Ct. (This uses the fact that genericity is open.) So we have
proved the following result.

THEOREM 3.2. Let X be a Whitney (A) regular stratified subset of V2 x Vj x VQ. If
<!>((, u) is an isotopy between the generic curves Co and Cl then it can be arbitrarily closely
approximated by an isotopy 6(t, u) with 6(t, 0) = 3>(f, 0), 6(t, 1) = <l>(f, 1), and the corres-
ponding F transverse to X.

Thus we now seek the stratified set X.
I. Height Functions. Take the strata to be (a) 0 x VQ x V^ (k = 4) to ensure A,, I ^ 3,

(b) 0 x {djx + d3x
2} x VQ (k = 3) to ensure that the projection at an A3 point is generic.

II. Distance Squared Functions. Take the strata to be

(a) {c2x
2 + cix4} x Vjj x Vjj (k = 5) to ensure A,, I < 4,

to ensure the projection at the A4 point is generic.
In both cases the strata are clearly of codimension at least 3, and hence the f (l(,lilfr2) is

transverse to X if and only if it misses X, which ensures that the isotopy O^,,,^) is generic.
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(i) (ii) (iii)

Figure 1

4. The pictures.
I. Height Functions.
(i) The duals. As always ignoring quasi-global phenomena there is only one "cata-

strophic" event in a generic isotopy and this occurs when the height function acquires an
A3 singularity. Thus a vertex and a parabolic point (i.e. point of zero curvature) coincide.
The duals are locally given by generic slices of the swallowtail and undergo the changes
drawn in Fig. 1, the catastrophic event taking place at stage (iii). Thus the event can be
viewed as the birth (or annihilation) of two parabolic points, together with the birth (or
death) of a local bitangent. The corresponding curve one expects to be modelled (locally)
by the one parameter family of curves y = x4 + ux2. One can clearly see the way in which
the inflexions are destroyed and the bitangent disappears as u increases through 0, with
the normal height function at the origin, when u = 0, being of type A3 (see Fig. 2). Note
that since any plane curve is isotopic to a circle (with no inflexions) every generic curve
has an even number of inflexions.

(i) u<0 (ii) u<0 (iii)

Figure 2

(iv) u<0

(ii) The Gauss maps. The corresponding changes in the Gauss map, or rather the
critical values of the Gauss map which these results give, are not as interesting. They are
given by generic slices of the cusp (Fig. 3) and again we have the birth or annihilation of
two critical values (and points) of the Gauss map. Using the model y = x4 + ux2 again one
can view the family of Gauss maps as the projections of the usual folded surface
associated with the cusp catastrophe with the parameter u being in the cuspidal tangent
direction (Fig. 4). So as u increases through zero one can think of the s -shaped curves
which are flattened onto the unit circle S sliding over each other until the twofold points
spring out simultaneously when u = 0. We should stress however that although the model
y = x4+ ux2 almost certainly does describe the local generic changes of the Gauss map at
an A4 point our results only make assertions about the changes in the critical values.
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(i) (ii) (iii)

Figure 3

(iv)

Although this is clearly a great weakness of our approach the problem is that in more
complicated situations if we want to consider all of the geometry one runs into smooth
moduli, which makes the corresponding theory quite impossible. (See [4] for a more
detailed discussion of this point.)

II. The Distance Squared Functions. Evolutes. Again there is only one "catastrophic"
even there occurring with the acquisition of an A4 singularity. The evolute undergoes the
same changes as the dual did, the interpretation this time being the birth (or annihilation)
of two vertices via a higher vertex, together with the birth (or death) of a double centre of
curvature. (One can find a model for these changes (locally), namely the one parameter
family of curves y = ux + x2 + x4 + x5.) Again since any generic curve is isotopic through a
generic family to say an ellipse (with four vertices), clearly every generic curve has an even
number of vertices. (Although this is a trivial observation the same idea yields less trivial
information in higher dimensions.)

Figure 4
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