Missing Galactic PNe: [SIII] Imaging Survey

J. Shiode, D. P. Clemens, K. A. Janes and A. Pinnick

Institute for Astrophysical Research, Boston Univ., 725 Comm. Ave., Boston, MA, USA

Abstract. The total number of Galactic planetary nebulae (GPNe) is highly uncertain; the most inclusive current catalog contains only $\sim 1,500$. We will use the PRISM wide-field imager on the 1.83 m Perkins Telescope to conduct a pilot survey of the Galactic plane in search of [S III] emission from PNe obscured by dust and missed by surveys of H α . We are employing the method of Jacoby & Van de Steene (JVS), who surveyed the bulge for [S III] $\lambda 9532$. In addition to seeing through more of the extinction, use of the [S III] emission line will a priori reject the most troublesome catalog contaminants: ultracompact H II regions.

Keywords. Surveys, Catalogs, Galaxy: disk

Current estimates of the number of Galactic Planetary Nebulae (GPNe) in the Milky Way range from a few thousand (de Marco & Moe 2005) to several tens of thousands Frew & Parker (2006). The actual number of observed and verified GPNe is just \sim 3,000 (Parker et al. 2003). Figure 1 is an updated version of the histogram compiled by Kistiakowsky & Helfand (1993), showing the Galactic latitude distribution of GPNe in the Catalogue of Galactic Planetary Nebulae (Kohoutek 2001). The sample includes all GPNe at low Galactic latitude, and $|\ell| > 10^{\circ}$ (to exclude the Galactic bulge). There is a clear deficit in the number of known GPNe near $b=0^{\circ}$, most likely due to obscuration by dark clouds. This low-latitude region is not easy to survey for GPNe using the standard [O III] or H α signposts because of the large extinctions.

Figure 1. Numbers of known disk PNe binned by Galactic latitude.

The [S III] $\lambda 9532$ emission line is seen in most PNe. Ultra-compact H II regions (UCH II regions) are the most numerous contaminants of current GPNe catalogs. Detectable [S III] $\lambda 9532$ emission is expected from only the hottest and most massive UCH II regions due to the high ionization levels needed to produce and sustain S ⁺⁺. The [S III] $\lambda 9532$ line has been used at least twice before to look for PNe. Kistiakowsky & Helfand (1993) looked for [S III] $\lambda 9532$ emission from compact 20 cm radio sources in the Galactic plane, finding [S III] emission toward 10 of 11 candidate PNe, but none associated with candidate SNRs. JVS surveyed the center $4^{\circ} \times 4^{\circ}$ of the Milky Way for obscured PNe, finding 94 new

candidates—roughly 6 per square degree. Each group found [S III] $\lambda 9532$ to be the most prominent line for V-band extinctions of 4 to 12 mag.

Our survey uses two 20 Å narrow bandpass interference filters to sample the emission line and spectrally adjacent continuum. The on-band filter rejects the Paschen 8 recombination line at 9546 Å, while avoiding telluric OH lines. The off-band filter is close in wavelength while also avoiding telluric OH. Two matched filters, placed close together, produce differenced images able to accurately identify [S III] emission sources, and thus candidate GPNe (see Fig. 2)

Figure 2. Test field in the Galactic plane, centered on PNG326.7+00.7. a.) off-band image b.) on-band image c.) an enlarged portion of the on-minus-off differenced image.

Observations will be conducted during Summer (and possibly Fall) 2006 using the new *Perkins Re-Imaging System (PRISM)* on the Perkins 1.83 m telescope in Flagstaff, AZ. Figures 2a and 2b display PRISM's $10' \times 10'$ effective field-of-view. Five minute integrations through each filter for each field allow us to reach the same depth as the JVS survey. We will observe the Galactic plane in one-field-wide latitude strips from $b = -1^{\circ}$ to $b = +1^{\circ}$. Some known GPNe and H II regions will be sampled for calibration.

The images obtained through each filter will be calibrated and on-minus-off differenced images will be computed. We will visually inspect the differenced images in search of resolved [S III] emission, compile point source catalogs with pairs of filter magnitudes, and perform magnitude differencing in search of unresolved [S III] $\lambda 9532$ emission. The resulting list of candidate GPNe will be cross-referenced with current H α and centimeter-wavelength radio surveys for confirmatory evidence about the candidate sources. We expect that verified GPNe selected as candidates using the [S III] $\lambda 9532$ emission line will form a deep, minimally contaminated list of Galactic Planetary Nebulae.

We thank George Jacoby for his help and advice. JS is supported by the NSF-REU Program under grant AST-0440936-1. PRISM was developed with support from the NSF (AST-0079541, KAJ, P. I.), Boston Univ. and Lowell Obs.

References

de Marco, O. & Moe, M. 2005, in: *Planetary Nebulae as Astronomical Tools* AIP Conference Proc. Vol. 804, p. 169

Frew, D. J. & Parker, Q. A. (2006)

Hanuschik R. W. 2003, A&A 407, 1157

Jacoby, G. H. & Van de Steene G. 2004, A&A 419, 563 (JVS)

Kistiakowsky, V. & Helfand, D. J. 1993, ApJ 105, 2199

Kohoutek, L. 2001, A&A 378, 843

Parker, Q. A., Hartley, M., Russeil, D., et al. 2003, in: S. Kwok, M. Dopita & R. Sutherland (eds.), Proc. IAU Symposium No. 209, p. 25