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Abstract

In this article, we prove the transcendence of certain infinite sums and products by applying the subspace
theorem. In particular, we extend the results of Hančl and Rucki [‘The transcendence of certain infinite
series’, Rocky Mountain J. Math. 35 (2005), 531–537].
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1. Introduction

There are several methods to prove the transcendence of an infinite series. Using
Mahler’s method [8], one can prove the transcendence of certain infinite sums and
products. In 2001, Adhikari et al. [2] proved the transcendence of certain infinite series
by an application of Baker’s theory of linear forms in logarithms of algebraic numbers.
In the same year, Hančl [4] and Nyblom [9] (see also [10]) studied the transcendence
of infinite series by invoking Roth’s theorem. In 2004, using the subspace theorem,
Adamczewski et al. [1] proved a transcendence criterion for a real number based on
its b-ary expansion.

In 1974, Erdős and Straus [3] studied the linear independence of certain Cantor
series expansions. In particular, they proved the following result.

Theorem 1.1 [3]. Let Q = (bn)n≥1 be a sequence of positive integers with bn ≥ 2 for
all integers n ≥ 1 and let δ > 1

3 be any positive real number. Suppose that for all
sufficiently large values of N,

(b1b2 · · · bN)δ ≤ bN+1.

Then the real numbers

1,
∞∑

n=1

σ(n)
b1b2 · · · bn

,

∞∑
n=1

φ(n)
b1b2 · · · bn

,

∞∑
n=1

dn

b1b2 · · · bn
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areQ-linearly independent. Hereσ(n) =
∑

d|n d, φ(n) denotes the Euler totient function
and (dn)n is any sequence of integers such that |dn| < n(1/2)−δ for all large n and dn , 0
for infinitely many n.

Since bn > n(1/2)+δ for all large n, Theorem 1.1 follows from [3, Theorem 3.7]. We
prove the following extension of Theorem 1.1.

Theorem 1.2. Let Q = (bn)n≥1 be a sequence of positive integers with bn ≥ 2 for
all integers n ≥ 1 and let δ > 1

3 be any positive real number. Suppose that for all
sufficiently large values of N,

σ(N + 1)(b1b2 · · · bN)δ ≤ bN+1. (1.1)

Then at least one of the real numbers

β1 =

∞∑
n=1

σ(n)
b1b2 · · · bn

, β2 =

∞∑
n=1

φ(n)
b1b2 · · · bn

, β3 =

∞∑
n=1

dn

b1b2 · · · bn

is transcendental.

In 2005, Hančl and Rucki [7] gave sufficient conditions under which an infinite sum
is transcendental. We mention one of their results here.

Theorem 1.3 [7]. Let δ > 0 be a real number. Let (bn)n and (cn)n be sequences of
positive integers such that

lim sup
n→∞

bn+1

(b1b2 · · · bn)2+δ

1
cn+1

=∞ and lim inf
n→∞

bn+1

bn

cn

cn+1
> 1.

Then the real number α =
∑∞

n=1 cn/bn is transcendental.

We extend the results in [7] and study the transcendence of certain infinite products.
In order to state the main results, we first fix some notation. Let δ > 0 and ε > 0

be given real numbers. For any given integer m ≥ 2, let (ci,n)n, i = 1, 2, . . . ,m, be a
collection of sequences of nonzero integers. Consider the following two conditions on
a sequence (bn)n of positive integers:

lim sup
n→∞

bn+1

(b1b2 · · · bn)1+δ

1
ci,n+1

=∞, (1.2)

lim inf
n→∞

bn+1

bn

ci,n

ci,n+1
> 1, (1.3)

holding in both cases for all i ∈ {1, 2, . . . ,m}. We may now state our results.

Theorem 1.4. For any given integer m ≥ 2, let δ > 1/m be a real number. Let (ci,n)n,
i = 1, 2, . . . ,m, and (bn)n be sequences of positive integers satisfying (1.2) and (1.3).
Then either at least one of the real numbers

β1 =

∞∑
n=1

c1,n

bn
, β2 =

∞∑
n=1

c2,n

bn
, . . . , βm =

∞∑
n=1

cm,n

bn

is transcendental or 1, β1, β2, . . . , βm are Q-linearly dependent.
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The following corollary shows that Theorem 1.4 extends Theorem 1.3.

Corollary 1.5. Let δ > 1
2 be a real number and let (bn)n be a sequence of positive

integers such that b1 = 2 and

bn+1 = (b1b2 · · · bn + 1)2 for all integers n ≥ 1.

Then the real numbers

1,
∞∑

n=1

1
bn

and
∞∑

n=1

d(n)
bn

are Q-linearly independent. Here d(n) =
∑

d|n 1.

First, note that if 1
2 < δ < 1, then (b1b2 · · · bn)1+δ < bn+1 in the statement of

Corollary 1.5 and (b1b2 · · · bn)2+δ > bn+1 for any choice of δ > 0 and for all sufficiently
large values of n. Therefore, we cannot conclude the transcendence of either of the
numbers

∞∑
n=1

1
bn

and
∞∑

n=1

d(n)
bn

from Theorem 1.3. On the other hand, by taking c1,n = 1 and c2,n = d(n) in
Theorem 1.4, we see that at least one of the real numbers

∞∑
n=1

1
bn

and
∞∑

n=1

d(n)
bn

is transcendental.
The conclusion of Theorem 1.4 can be strengthened to show that at least one of the

βi’s is transcendental under additional assumptions on the growth rate of the sequences
(ci,n)n and (bn)n. More precisely, we have the following theorem.

Theorem 1.6. For any given integer m ≥ 2, let δ > 1/m be a real number. Let (ci,n)n,
i = 1, 2, . . . ,m, and (bn)n be sequences of positive integers satisfying (1.2) and (1.3).
Further, suppose that

1 ≤ lim inf
n→∞

b1/(m+1)n

n < lim sup
n→∞

b1/(m+1)n

n <∞,

lim
n→∞

ci,n/c j,n = 0 for all i, j ∈ {1, 2, . . . ,m} with i > j.

Then at least one of the real numbers

β1 =

∞∑
n=1

c1,n

bn
, β2 =

∞∑
n=1

c2,n

bn
, . . . , βm =

∞∑
n=1

cm,n

bn

is transcendental.
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Using the same notation as in (1.2) and (1.3), we consider two more conditions
on the sequence of positive integers (bn) and the collection (ci,n)n, i = 1, 2, . . . ,m, of
sequences of nonzero integers:

lim sup
n→∞

bn+1

(b1b2 . . . bn)1+δ+1/ε

1
ci,n+1

=∞, (1.4)

1+ε

√
bn+1

ci,n+1
≥

1+ε

√
bn

ci,n
+ 1, (1.5)

holding in both cases for all i ∈ {1, 2, . . . ,m}.

Theorem 1.7. For any given integer m ≥ 2, let δ and ε be positive real numbers such
that δε/(1 + ε) > 1/m. Let (ci,n)n, i = 1, 2, . . . ,m, and (bn)n be sequences of positive
integers satisfying (1.4) and (1.5). Then at least one of the real numbers

β1 =

∞∑
n=1

c1,n

bn
, β2 =

∞∑
n=1

c2,n

bn
, . . . , βm =

∞∑
n=1

cm,n

bn

is transcendental or 1, β1, β2, . . . , βm are Q-linearly dependent.

The conclusion of Theorem 1.7 can be strengthened to show that at least one of
the βi’s is transcendental under some additional assumptions on the growth of the
sequences (ci,n)n and (bn)n. More precisely, we have the following theorem.

Theorem 1.8. For any given integer m ≥ 2, let δ and ε be positive real numbers such
that δε/(1 + ε) > 1/m. Let (ci,n)n, i = 1, 2, . . . ,m, and (bn)n be sequences of positive
integers satisfying (1.4) and (1.5). Further, suppose that

1 ≤ lim inf
n→∞

b1/(m+1)n

n < lim sup
n→∞

b1/(m+1)n

n <∞,

lim
n→∞

ci,n/c j,n = 0 for all i, j ∈ {1, 2, . . . ,m} with i > j.

Then at least one of the real numbers

β1 =

∞∑
n=1

c1,n

bn
, β2 =

∞∑
n=1

c2,n

bn
, . . . , βm =

∞∑
n=1

cm,n

bn

is transcendental.

Finally, we give the following result for infinite products.

Theorem 1.9. For any given integer m ≥ 2, let δ > 1/m be a real number. Let (ci,n)n,
i = 1, 2, . . . ,m, and (bn)n be sequences of positive integers satisfying all the hypotheses
of Theorem 1.6. Suppose that ci,n ≤ bn for all n ≥ 1 and i = 1, 2, . . . ,m. Then at least
one of the real numbers

β1 =

∞∏
n=1

(
1 +

c1,n

bn

)
, β2 =

∞∏
n=1

(
1 +

c2,n

bn

)
, . . . , βm =

∞∏
n=1

(
1 +

cm,n

bn

)
is transcendental.
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2. Preliminaries

The following theorem is a well-known corollary of the subspace theorem (see for
instance [11, page 176]).

Theorem 2.1 [11]. For any given integer m ≥ 2, let α1, α2, . . . , αm be real numbers.
Let δ > 0 be a real number such that δ > 1/m. Suppose that there exist infinitely many
(m + 1)-tuples (pn1, pn2, . . . , pnm, qn) of integers satisfying qn , 0 and∣∣∣∣∣αi −

pin

qn

∣∣∣∣∣ < 1
q1+δ

n
for 1 ≤ i ≤ m.

Then either the real numbers 1, α1, α2, . . . , αm are Q-linearly dependent or at least one
of the αi is transcendental.

The following result of Hančl [5] will also be useful.

Theorem 2.2 [5]. For a given integer m ≥ 2, let (bn)n be a sequence of positive integers
such that

1 ≤ lim inf
n→∞

b1/(m+1)n

n < lim sup
n→∞

b1/(m+1)n

n <∞ and bn ≥ n1+ε

for all large n and for some ε > 0. Let (ci,n)n, i = 1, 2, . . . ,m, be a collection of
sequences of positive integers such that, for 1 ≤ i < j ≤ m,

lim
n→∞

ci,n

c j,n
= 0,

ci,n < 2(log bn)α for some fixed α > 0 and for all large enough n.

Then the real numbers

1,
∞∑

n=1

c1,n

bn
, . . . ,

∞∑
n=1

cm,n

bn

are Q-linearly independent.

Hančl et al. [6] proved the following theorem for infinite products.

Theorem 2.3 [6]. Let (bn) be a sequence as in Theorem 2.2. For any given integer
m ≥ 2, let (ci,n)n, i = 1, 2, . . . ,m, be a collection of sequences of positive integers such
that, for 1 ≤ i < j ≤ m,

lim
n→∞

ci,n

c j,n
= 0,

ci,n < b1/ log1+ε log bn
n for all large enough n.

Then the real numbers

1,
∞∏

n=1

(
1 +

c1,n

bn

)
, . . . ,

∞∏
n=1

(
1 +

cm,n

bn

)
are Q-linearly independent.
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3. Proofs of the theorems

Proof of Theorem 1.2. We define sequences (β1,N)N , (β2,N)N and (β3,N)N of rational
numbers as follows. For each integer N ≥ 1 and for i = 1, 2 and 3,

βi,N =

N∑
n=1

fi(n)
b1b2 . . . bn

=
pi,N

b1b2 . . . bN
,

where the pi,N are positive integers and f1(n) = σ(n), f2(n) = φ(n), f3(n) = dn. By (1.1)
and using the fact that σ(N + 1) > dN+1 and σ(N + 1) > φ(N + 1),∣∣∣∣∣βi −

pi,N

b1b2 · · · bN

∣∣∣∣∣ < 1
(b1b2 · · · bN)1+δ′

,

for all sufficiently large N and for some δ′ > 1
3 .

Put α1 = β1, α2 = β2, α3 = β3, qN = b1b2 · · · bN and piN = pi,N for 1 ≤ i ≤ 3 in
Theorem 2.1 with N sufficiently large. Then, either 1, β1, β2 and β3 are Q-linearly
dependent or at least one of them is transcendental. By Theorem 1.1, we know that
1, β1, β2 and β3 are Q-linearly independent. Therefore, we conclude that one of β1, β2

and β3 is transcendental. This proves the assertion. �

Proof of Theorem 1.4. For each integer i with 1 ≤ i ≤ m, we define the sequence
(βi,N)N of rational numbers by

βi,N =

N∑
n=1

ci,n

bn
=

pi,N

b1b2 · · · bN
, N ≥ 1,

where the pi,N are positive integers. By (1.3), there exists a real number A > 1 and a
positive constant N0 such that, for all positive integers N > N0,

1
A
·

ci,N

bN
>

ci,N+1

bN+1
.

Therefore, inductively, for every N with N > N0,

1
Ap ·

ci,N

bN
>

ci,N+p

bN+p

for any natural number p. Hence, for all sufficiently large positive integers N,∣∣∣∣∣βi −
pi,N

b1b2 · · · bN

∣∣∣∣∣ =

∣∣∣∣∣ ∞∑
n=1

ci,n

bn
−

N∑
n=1

ci,n

bn

∣∣∣∣∣ =

∣∣∣∣∣ ∞∑
n=N+1

ci,n

bn

∣∣∣∣∣
=

ci,N+1

bN+1
+

ci,N+2

bN+2
+ · · ·

<
ci,N+1

bN+1

(
1 +

1
A

+
1
A2 + · · ·

)
=

ci,N+1

bN+1

A
A − 1

.
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Choose M > A/(A − 1). Then, by (1.2), there exist infinitely many integers N such that
1

M(b1b2 · · · bN)1+δ
>

ci,N+1

bN+1
.

Hence, ∣∣∣∣∣βi −
pi,N

b1b2 · · · bN

∣∣∣∣∣ < ci,N+1

bN+1

A
A − 1

≤
1

(b1b2 · · · bN)1+δ

for infinitely many positive integers N.
By taking αi = βi and pin = pi,n for 1 ≤ i ≤ m in Theorem 2.1, we see that either

1, β1, β2, . . . , βm are Q-linearly dependent or at least one βi is transcendental. �

Proof of Theorem 1.6. By Theorem 1.4, either 1, β1, β2, . . . , βm are Q-linearly
dependent or at least one βi is transcendental. Since the sequences (ci,n)n and (bn)n
satisfy the hypotheses of Theorem 2.2, 1, β1, β2, . . . , βm are Q-linearly independent.
Therefore, we conclude that at least one βi is transcendental. This proves the
theorem. �

Proof of Theorem 1.7. For each integer i with 1 ≤ i ≤ m, we define the sequence
(βi,N)N of rational numbers by

βi,N =

N∑
n=1

ci,n

bn
=

pi,N

b1b2 . . . bN
for N ≥ 1,

where the pi,N are positive integers. By (1.5) and mathematical induction, for all
sufficiently large integers N and every integer r,

1+ε

√
bN+r

ci,N+r
≥

1+ε

√
bN

ci,N
+ r.

Hence
bN+r

ci,N+r
≥

(
1+ε

√
bN

ci,N
+ r

)1+ε

. (3.1)

Now, for all real x > 1,
∞∑

s=0

1
(x + s)1+ε

<

∫ ∞

x−1

dy
y1+ε

=
1

ε(x − 1)ε
. (3.2)

By (3.1) and (3.2), for infinitely many N,∣∣∣∣∣βi −
pi,N

b1b2 · · · bN

∣∣∣∣∣ =

∣∣∣∣∣ ∞∑
n=1

ci,n

bn
−

N∑
n=1

ci,n

bn

∣∣∣∣∣ =

∣∣∣∣∣ ∞∑
n=N+1

ci,n

bn

∣∣∣∣∣ =
ci,N+1

bN+1
+

ci,N+2

bN+2
+ · · ·

≤

(
1+ε

√
bN+1

ci,N+1

)−(1+ε)
+

(
1+ε

√
bN+1

ci,N+1
+ 1

)−(1+ε)
+ · · ·

<
1
ε

(
1+ε

√
bN+1

ci,N+1
− 1

)−ε
.
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Since limn→∞(bn/ci,n) =∞ by (1.4), there exists a positive constant C which does not
depend on N such that∣∣∣∣∣ βi −

pi,N

b1b2 · · · bN

∣∣∣∣∣ < 1
ε

(
1+ε

√
bN+1

ci,N+1
− 1

)−ε
<

C
ε

(
1+ε

√
bN+1

ci,N+1

)−ε
=

C
ε

(ci,N+1

bN+1

)ε/(1+ε)
.

Choose M > C/ε. Then by (1.4), there are infinitely many integers N such that

1
M(b1b2 · · · bN)1+δ+1/ε >

ci,N+1

bN+1
.

This implies that ∣∣∣∣∣ βi −
pi,N

b1b2 · · · bN

∣∣∣∣∣ < 1
(b1b2 · · · bn)1+δε/(1+ε)

for infinitely many positive integers N. The rest of the proof is the same as the proof
of Theorem 1.6. �

Proof of Theorem 1.8. The proof follows the same lines as that of Theorem 1.6. �

Proof of Theorem 1.9. For each integer i with 1 ≤ i ≤ m, we define the sequence
(βi,N)N of rational numbers by

βi,N =

N∏
n=1

(
1 +

ci,n

bn

)
=

pi,N

b1b2 . . . bN
for N ≥ 1,

where the pi,N are positive integers. Consider∣∣∣∣∣βi −
pi,N

b1b2 · · · bN

∣∣∣∣∣ =

∞∏
n=1

(
1 +

ci,n

bn

)
−

N∏
n=1

(
1 +

ci,n

bn

)
=

N∏
n=1

(
1 +

ci,n

bn

)( ∞∏
n=N+1

(
1 +

ci,n

bn

)
− 1

)
. (3.3)

By the hypothesis, for all sufficiently large values of N,
∞∏

n=N+1

(
1 +

ci,n

bn

)
< 1 + 2

∞∑
n=N+1

ci,n

bn
.

Thus, by (3.3), ∣∣∣∣∣βi −
pi,N

b1b2 . . . bN

∣∣∣∣∣ < 2
N∏

n=1

(
1 +

ci,n

bn

)( ∞∑
n=N+1

ci,n

bn

)
.

By a similar argument to that in the proof of Theorem 1.6, from (1.3), we conclude
that for all sufficiently large positive integers N,∣∣∣∣∣βi −

pi,N

b1b2 · · · bN

∣∣∣∣∣ ≤ 2
N∏

n=1

(
1 +

ci,n

bn

)( ∞∑
n=N+1

ci,n

bn

)
< 2

N∏
n=1

(
1 +

ci,n

bn

)ci,N+1

bN+1

A
A − 1

.
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Hence, by (1.2), ∣∣∣∣∣βi −
pi,N

b1b2 · · · bN

∣∣∣∣∣ < N∏
n=1

(
1 +

ci,n

bn

) 1
(b1b2 · · · bN)1+δ

, (3.4)

for infinitely many values of N. By the hypothesis of the theorem, ci,n/bn ≤ 1 for n ≥ 1,
so

N∏
n=1

(
1 +

ci,n

bn

)
< 2N

for all integers N ≥ 1. Therefore, by (3.4),∣∣∣∣∣βi −
pi,N

b1b2 · · · bN

∣∣∣∣∣ < 2N

(b1b2 . . . bN)1+δ
.

Since the sequence (bn)n grows like a doubly exponential sequence, we can find δ′

with 1/m < δ′ < δ such that

2N

(b1b2 · · · bN)1+δ
<

1
(b1b2 · · · bN)1+δ′

.

Therefore, for 1 ≤ i ≤ m,∣∣∣∣∣βi −
pi,N

b1b2 · · · bN

∣∣∣∣∣ < 1
(b1b2 · · · bN)1+δ′

for infinitely many values of N. The rest of the proof follows as for the proofs of
Theorems 1.4 and 1.6. �

Proof of Corollary 1.5. Suppose that these numbers are Q-linearly dependent.
Then, there exist integers z0, z1 and z2 not all zero such that

z0 + z1

∞∑
n=1

1
bn

+ z2

∞∑
n=1

d(n)
bn

= 0.

This is equivalent to

z0 + z1

N∑
n=1

1
bn

+ z2

N∑
n=1

d(n)
bn

= −

(
z1

∞∑
n=N+1

1
bn

+ z2

∞∑
n=N+1

d(n)
bn

)
.

By multiplying by b1b2 . . . bN on both sides,

b1b2 · · · bN

(
z0 + z1

N∑
n=1

1
bn

+ z2

N∑
n=1

d(n)
bn

)
= −b1 · · · bN

(
z1

∞∑
n=N+1

1
bn

+ z2

∞∑
n=N+1

d(n)
bn

)
.

(3.5)
Note that the left-hand side of this equation is an integer.
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Claim. The quantity∣∣∣∣∣−b1b2 · · · bN

(
z1

∞∑
n=N+1

1
bn

+ z2

∞∑
n=N+1

d(n)
bn

)∣∣∣∣∣→ 0 as N →∞.

To prove the claim, observe first that d(n) = O(n) and so∣∣∣∣∣−b1b2 · · · bN

(
z2

∞∑
n=N+1

d(n)
bn

)∣∣∣∣∣ ≤ |z2|

(d(N + 1)
bN+1

+
d(N + 2)

bN+2
+ · · ·

)
<

1
b1b2 · · · bN

( N + 1
b1b2 · · · bN

+
N + 2

(b1b2 . . . bN)2 + · · ·

)
<

C
b1b2 · · · bN

.

Hence, ∣∣∣∣∣−b1b2 · · · bN

(
z2

∞∑
n=N+1

d(n)
bn

)∣∣∣∣∣→ 0 as N →∞. (3.6)

Similarly, ∣∣∣∣∣−b1b2 · · · bN

(
z1

∞∑
n=N+1

1
bn

)∣∣∣∣∣→ 0 as N →∞. (3.7)

The claim therefore follows from (3.6) and (3.7).
Since the left-hand side of (3.5) is an integer, it follows that

QN := z0 + z1

N∑
n=1

1
bn

+ z2

N∑
n=1

d(n)
bn

= 0

for all sufficiently large values of N. Now, for all sufficiently large values of N,
QN = QN−1 = 0 and so

QN − QN−1 =
z1 + z2d(N)

bN
= 0 ⇐⇒

1
d(N)

= −
z2

z1

for all sufficiently large values of N. This implies that the sequence (d(n))n is
eventually constant, which contradicts the fact that it has at least two limit points. �
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