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Abstract

Answering a problem posed by John Michael Rassias, we study the functional inequality

f (x + y + xy) ≤ f (x) + f (y) + f (xy),

with real unknown mapping f .
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1. Introduction

In a recent paper [1] the authors studied the functional equation

f (x + y + xy) = f (x) + f (y) + f (xy),

together with its Hyers–Ulam stability. In connection with this research, John
Michael Rassias in a personal communication asked about real solutions of the related
functional inequality

f (x + y + xy) ≤ f (x) + f (y) + f (xy). (1.1)

The purpose of the present note is to answer his question.

2. Main results

We begin with some elementary observations. A map f : R→ R is called
subadditive if it satisfies the functional inequality

f (x + y) ≤ f (x) + f (y),

for all x, y ∈ R. For a detailed discussion of the notion of subadditive mappings the
reader is referred to Kuczma [4, Ch. 16]. It is straightforward to notice that every
subadditive mapping is a solution of (1.1). However, the example below shows that
the converse is not true.
The research of the author was supported by the Polish Ministry of Science and Higher Education in the
years 2013–2014, under Project No. IP2012 011072.
c© 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 $16.00

494

Bull. Aust. Math. Soc. 89 (2014), 494–499

first published online 27 September 2013)

https://doi.org/10.1017/S0004972713000889 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000889


E 2.1. Define f : R→ R by the formula

f (x) =

3 if x ∈ Q,

1 if x < Q.

It is easy to note that, for every x, y ∈ R,

f (x + y + xy) ≤ 3 = 1 + 1 + 1 ≤ f (x) + f (y) + f (xy).

Therefore, f is a solution of (1.1). On the other hand, to see that f is not a subadditive
function, take x =

√
2 and y = −

√
2 and observe that

f (
√

2 + (−
√

2)) = f (0) = 3 > 2 = 1 + 1 = f (
√

2) + f (−
√

2).

However, it is easy to observe that, for every solution f of (1.1),

f (0) = f (0 + 0 + 0) ≤ 3 f (0);

therefore f (0) ≥ 0.
In view of the foregoing example, in our subsequent studies we will assume

additionally that f possesses some smoothness around zero and f (0) = 0.
We will employ the Dini derivatives of f . Assume that I ⊆ R is an open interval.

For an arbitrary mapping f : I→ R, the Dini derivatives are defined as follows:

D± f (x) = lim sup
h→0±

f (x + h) − f (x)
h

and

D± f (x) = lim inf
h→0±

f (x + h) − f (x)
h

,

for every x ∈ I. It is clear that the Dini derivatives can attain infinite values. Therefore,
in each inequality which involves Dini derivatives it is to be understood that it is valid
provided that both sides are meaningful (that is, no indefinite expression of the form
∞−∞ or∞/∞ appears).

We will prove the following lemma.

L 2.2. Assume that I is a nonvoid open interval containing zero and f : I→ R
is differentiable at zero, satisfies f (0) = 0 and solves (1.1) for all x, y ∈ I such that
x + y + xy ∈ I. Then the following estimate holds true:

x ∈ I \ {−1} =⇒ D+ f (x) ≤ f ′(0) ≤ D− f (x). (2.1)

P. Fix x, y ∈ I such that x + y + xy ∈ I and y > 0 and rearrange (1.1) in the
following way:

f (x + (1 + x)y) − f (x) ≤ f (y) + f (xy)
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and

(1 + x)
f (x + (1 + x)y) − f (x)

(1 + x)y
≤

f (y)
y

+ x
f (xy)

xy
. (2.2)

Let us assume that x > −1 and pick a sequence (yn)n∈N (possibly depending upon x) of
positive elements of I tending to zero and for which the equality

lim
n→+∞

f (x + (1 + x)yn) − f (x)
(1 + x)yn

= D+ f (x)

holds true. Next, replace y by yn in (2.2) and let n→ +∞. Note that, since yn→ 0,
the condition x + (1 + x)yn ∈ I will be fulfilled for every n large enough. Using the
assumptions that f (0) = 0 and f ′(0) exists, we arrive at

(1 + x)D+ f (x) ≤ (1 + x) f ′(0),

that is, D+ f (x) ≤ f ′(0) for all x ∈ I such that x > −1.
Similarly, if x < −1, then we choose a sequence (yn)n∈N of positive real numbers

tending to zero such that

lim
n→+∞

f (x + (1 + x)yn) − f (x)
(1 + x)yn

= D− f (x).

Taking the limit in (2.2),

(1 + x)D− f (x) ≤ (1 + x) f ′(0),

that is, D− f (x) ≥ f ′(0) for all x ∈ I such that x < −1.
Next, for x, y ∈ I such that x + y + xy ∈ I and y < 0, we derive from (1.1) the

inequality

(1 + x)
f (x + (1 + x)y) − f (x)

(1 + x)y
≥

f (y)
y

+ x
f (xy)

xy
. (2.3)

Assume that x > −1 and choose a sequence (yn)n∈N of negative elements of I tending
to zero and for which the equality

lim
n→+∞

f (x + (1 + x)yn) − f (x)
(1 + x)yn

= D− f (x)

is satisfied. Taking the limit in (2.3) leads us to the inequality D− f (x) ≥ f ′(0) for all
x ∈ I such that x > −1.

For x < −1, we take a sequence (yn)n∈N of negative real numbers tending to zero
such that

lim
n→+∞

f (x + (1 + x)yn) − f (x)
(1 + x)yn

= D+ f (x).

Taking the limit in (2.3), we obtain the inequality D+ f (x) ≤ f ′(0) for all x ∈ I such that
x < −1. Therefore, the estimate (2.1) is proved. �
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We have the following corollary.

C 2.3. Assume that I is a nonvoid open interval containing zero and f : I→ R
is a mapping which is differentiable at zero, satisfies f (0) = 0 and solves (1.1) for all
x, y ∈ I such that x + y + xy ∈ I. Then, the following conditions are equivalent:

(i) f is convex;
(ii) f is differentiable on I;
(iii) f is of the form

f (x) = f ′(0) · x for all x ∈ I.

P. We prove the implication (i) ⇒ (ii). A well-known property of convex
functions (see, for example, [4, Theorem 7.4.1]) guarantees that at every point x ∈ I
there exist the left derivative f ′−(x) and the right derivative f ′+(x) of f , and moreover, we
have f ′−(x) ≤ f ′+(x). This jointly with Lemma 2.2 implies that f (x) = f ′(0)x for every
x ∈ I \ {−1}. Using the convexity of f once more we get that also f (−1) = f ′(0)(−1) in
case −1 ∈ I.

Obviously (iii)⇒ (ii) and (iii)⇒ (i). Moreover, directly from Lemma 2.2 we obtain
the implication (ii)⇒ (iii). �

The assumptions imposed upon f in the foregoing corollary seem to be fairly strong.
However, the following example shows that one cannot drop them.

E 2.4. Let a > −1 be an arbitrary constant. Define a function f : R→ R by the
formula

f (x) =

x if x , −1,

a if x = −1.

One can check that f is a solution of (1.1) and f satisfies all the assumptions of
Lemma 2.2. Indeed, note that the equality x + y + xy = −1 holds precisely if x = −1 or
y = −1. Therefore, it is enough to verify (1.1) in the cases x = −1 and y = −1. And it
is straightforward to see that this is equivalent to f (x) + f (−x) ≥ 0 for all x ∈ R, which
is obviously true thanks to the assumption that a > −1.

On the other hand, note that f is not subadditive, since

f (− 1
2 + (− 1

2 )) = f (−1) = a > −1 = f (− 1
2 ) + f (− 1

2 ).

Therefore, there exist nonconvex and nondifferentiable solutions of (1.1) which vanish
at the origin and are differentiable except at one point different from zero.

In our next result, we prove some more about (1.1) in the case where its solutions
are defined on the whole real line.

T 2.5. Assume that f : R→ R is a mapping which is differentiable at zero,
satisfies f (0) = 0 and solves (1.1) for all x, y ∈ R. Then

f (x) = f ′(0) · x for all x ∈ (−1, 0).
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P. Replace x in (1.1) by x + y and simultaneously y by −y. After some
rearrangements

f (x − (x + y)y) − f (x) ≤ f (x + y) − f (x) + f (−y) + f (−(x + y)y),

which is true for all x, y ∈ R. If we assume that y > 0, then we obtain the inequality

− (x + y)
f (x − (x + y)y) − f (x)

−(x + y)y

≤
f (x + y) − f (x)

y
−

f (−y)
−y

− (x + y)
f (−(x + y)y)

(x + y)y

(2.4)

and the converse one for y < 0. Suppose that x ∈ (−1, 0). Pick a sequence (yn)n∈N of
positive numbers which tend to zero such that

lim
n→+∞

f (x − (x + yn)yn) − f (x)
(x + yn)yn

= D+ f (x).

Substitute y→ yn in (2.4). Letting n→ +∞ we deduce the inequality

−xD+ f (x) ≤ D+ f (x) − (1 + x) f ′(0),

which gives us that f ′(0) ≤ D+ f (x) for all x ∈ (−1, 0).
Next, we can pick a sequence (yn)n∈N of negative numbers which tend to zero such

that

lim
n→+∞

f (x − (x + yn)yn) − f (x)
(x + yn)yn

= D− f (x).

Letting n→ +∞ in the inequality converse to (2.4) (for negative y),

−xD− f (x) ≤ D− f (x) − (1 + x) f ′(0),

which gives us that D+ f (x) ≤ f ′(0) for all x ∈ (−1, 0). Comparing our inequalities
with Lemma 2.2 we eventually get that f is differentiable on the interval (−1, 0) and
f ′(x) = f ′(0) for all x ∈ (−1, 0). �

3. Remarks

R 3.1. Inequality (1.1) is similar to the functional inequality

f (x + y) + f (xy) ≥ f (x) + f (y) + f (x) f (y),

postulated for all x, y ∈ R, which was introduced by Hammer [3]; see also [2] for a
generalisation. In fact, our method of solving (1.1) is an extension of the approach of
Hammer.
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R 3.2. Two other functional inequalities related to Hosszú’s functional equation
have already been studied. Hosszú’s equation is

f (x + y − xy) = f (x) + f (y),

where x, y ∈ (0, 1). Maksa and Páles [5] and later Pečarić [6] and Powązka [7] have
dealt with the following two functional inequalities:

f (x + y − xy) ≤ f (x) + f (y) (3.1)

and
f (x + y − xy) + f (xy) ≤ f (x) + f (y) (3.2)

for a function f defined on the open interval (0, 1). They established some connections
of the solutions of (3.1) and (3.2) with Jensen-concave functions and Wright-concave
functions.
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