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PROCESSES* * }
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Dedicated to Professor K. Urbanik on his 60th birthday

We study a class of Markov processes which arise in the theory of general-

ized convolutions and stand for a generalization of processes with independent in-

crements.

1. Notation and preliminaries

Let P be the set of all probability measures (p.m.'s) on the positive half-line

i?+ = [0, oo) with the weak convergence —>. We write δx for the unit mass at

point x and write Tx for the map given by

TjiiB) = μ(x~ιB)

for x > 0, μ e P and fie SS, the σ-field of Borel subsets of R+. We define

TQμ = δ0. We denote by Q the class of all sub-probability measures (sub-p.m.'s)

on R+. Let Cb be the Banach space of all real bounded continuous functions on R+

with supremum norm || || and Co its subspace consisting of functions vanishing at

infinity.

A commutative and associative P-valued binary operation ° on P with δ0 as

the unit element is called a generalized convolution, if it is continuous in each vari-

able separately and distributive with respect to convex combinations and maps Tx,

and if it satisfies the following law of large numbers:
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1 5 6 NGUYEN VAN THU

(LLN) There exists a sequence of positive numbers cn such that the sequence

TCfpT i s convergent to a limit other than δ0.

Here P°n denotes the nth power of P under the operation °.

The pair (P, °) is called a generalized convolution algebra, which was intro-

duced by K. Urbanik in [6] and studied by many researchers (cf. [2], [10], [11],

[12], [17-22], [23]).

We assume throughout the paper that the algebra (P, °) is regular, i.e. it

admits a characteristic function fi ^ Cb defined by the following properties: the cor-

respendence μ «-* fi is one-to-one, β is distributive with respect to convex com-

binations, μ°v = μΰ, Txμ{t) — β(xt), and the uniform convergence of βn to fi on
w

every finite interval is equivalent to μn —* μ. The characteristic function fi is rep-

resented as

(1.1) fi(t) = $Ω{tx)μ(dx).

Here and in the sequel the symbol J denotes the integral over [0, oo). The

function Ω is called a kernel of the characteristic function. The system of charac-

teristic functions is unique in the following sense: If there are two systems of

characteristic functions with kernels Ωx and Ω2, respectively, then

Ωx(t) = Ω2(ct) (t>0)

for some c > 0 (cf. Urbanik [18], Theorem 2.1). Henceforth we fix a system of

characteristic functions.

The limiting measure in (LLN), denoted by σκ, is called the characteristic mea-

sure of the algebra in question and (with cn replaced by their constant multiples if

necessary) has the following characteristic function:

(1.2) σx(t) = exp(- tx)

where t i> 0 and K is a positive constant called the characteristic exponent of the

generalized convolution °. The concepts of infinite divisibility and self-

decomposability are introduced in the algebra (P, °).

In a natural way the operation ° as well as the characteristic function can be

extended to the set Q. Moreover, one can also extend the generalized convolution °

and the map Tx (x > 0) to the set P of all p.m.'s defined on the compactified

half-line R+ = [0, oo]. Namely,

{aμf + (1 - a)δj*(bi/ + (1 - b)δj = ab(μ'*v') + (1 - ab)δm
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Tc(aμ' + (1 - a)δj = aTcμ! + (1 -

for 0 < a < 1, 0 < b < 1, 0 < c < °° and μ', i/ e P. The pair (P, °) is called

the extended generalized convolution algebra (cf. Urbanik [21]). The concepts of in-

finitely divisible measures and self-decomposable measures can be defined in

terms of the operation ° also in the extended algebra (P, °). Consider μ G P with

μ — aμf + (1 — cOδ^ where //' e P and 0 < 0 < 1. Then μ is infinitely divisible

in (P , °) if and only if μf is infinitely divisible in (P, °). Similarly, μ is

self-decomposable in (P, °) if and only if μ! is self-decomposable (P, °).

Now we quote some examples of regular generalized convolutions which will

be needed in the subsequent discussion. The examples will be given in terms of

the kernel Ω and the characteristic measure σκ or its density gκ. Except Example

4, which was essentially considered by S. Cambanis, R. Keener and G. Simons in

[4], the examples can be found in Urbanik's and Kingman's standard papers [16,

17, 18] [10]. The symmetric unimodal convolution in Example 3 and relation (1.3)

are given by N. V. Thu.

EXAMPLE 1. a-convolutions * α (0 < a < oo) : Ω(t) exp(— f)y tc = a>

σK = δv For a = 1 we get the ordinary convolution i.e. * λ = *

EXAMPLE 2. Symmetric convolution # u : Ω(f) = cos t, tc — 2,

1 - 1 2
gx(x) = ^ = e x p ( — 4 x ).

V7Γ

EXAMPLE 3. Kingman convolutions *1 > i 8 (β = 2(s + 1)) > 1) : We have

= 4ω=r( s + i)/sω/(|ί)s,

where / s is the Bessel function and

gχ(x) = 2 - 2 s - V s + 1 e x p ( - 4 ' 1 χ 2 )/Γ(5 + 1).

The limiting case s ~ ~ ~o r educes to the symmetric convolution. Moreover, as

observed by Bingham [2], every Kingman convolution is subordinate to the sym-

metric convolution:

The case β = 3, s — y reduces to the following symmetric unimodal convolu-
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tion.

Let W denote the uniform distribution on [— 1,1]. For two independent ran-

dom variables X and Fwith distributions F and G we denote by FG the distribu-

tion of the product XY. By Khintchine-Shepp representation (cf. e.g. [6], Theorem

1.5, p. 10), every symmetric unimodal distribution μ on the real line can be un-

iquely represented by μ = FW with F ^ P. Furthermore, by a routine computa-

tion we have the following equation:

(1.3) FW*GW= (F*13G)W (F,GeP),

which is a more specific form of the well-known theorem of Wintner (cf. [24])

asserting that the convolution of two symmetric unimodal distributions on R is un-

imodal.

EXAMPLE 4. n-symmetric convolutions \Z\n (w = 2,3,. . . ) : These convolutions

appear in the contex of α-symmetric distributions (cf. [4]). We have K = 1,

(1.4) Ω(t) =EΛs(t/yfD),

with n = 2(s + 1) and D being a random variable with Beta ( y , — ^ — )

distribution, and

+ X )

The paper is organized as follows: in §2 we introduce generalized indepen-

dent increments processes (°-i.i. processes) and °-Levy processes. We prove that

o-Levy processes are strong Markov Feller processes. In §3 the infinitesimal

genarators associated with °-Levy processes are studied. Generalized Bernstein

functions are discussed in §4. Finally, in §5 we obtain analogues of some of Sato's

and Lamperti's results on self-similar processes (cf. [13], [15]).

2. Generalized independent increments processes

Suppose that μStt (0 < s < f) is a family of p.m.'s on R+ such that the follow-

ing eguation is satisfied:

(2.1) βs,t°βt,u = βs,u (0<s<t<u).

For every x in R+ and B G $, S being the Borel σ-field of R+, we put
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(2.2) PSJ(x, B) = δx>μSJ(B).

This definition and (2.1) imply the Chapman-Kolmogorov equation

f p S t t ( x , dy)Pt>u(y, B) = P S M { x , B) ( 0 < s < t < u ) ,

which can be proved by characteristic functions. Hence, there exists a i?+-valued

Markov process {Xt} with transition probability Ps t given by (2.2), that is

P(Xt ^B\Xu,u<s)= PStt(Xs, B).

The probability measure under the initial condition Xo = x is denoted by Px. As

usual the expectation with respect to P is denoted by E .

If ° is the ordinary convolution then {Xt} is a process with independent in-

crements. Therefore, in general case, {Xt} will be referred to as a generalized inde-

pendent increments process, or more prec i se ly , ° -independent increments process (°-i.ί.

process).

We say that a family of p.m.'s {μt} in P is a generalized convolution semigroup

(shortly, ° -semigroup), if the following conditions are satisfied:

βrVs = Vt+s (t, s > 0)

μt->δ0 as / - * 0 .

It follows that μ0 = δ0.

It is easily seen that if {μt} is an °-semigroup then the family {μStt) given by

βs,t = βt-s (0<s<t)

satisfies (2.1) and induces a time-homogenous °-i.i. process {Xt} which will be

called in the sequel an ° -Levy process.

For an extended generalized convolution algebra (P, °) define generalized

translation operators by

(2.4) (τaf)(x) = f f(u)δa*δx(du>>

where a, x ^ R+ and / is a continuous function on R+. Here and in the sequel

J denotes the integral over R+. The operators τa

y a ^ R+, will be called

°-translation operators (cf. Levitan [14]). Using these operators, Volkovich [23]

obtained an analytic characterization of generalized convolutions.

Let μ be a finite measure on R+. We put
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(2.5) (τuf)(x) = f f(u)μ°δx(du) = f (τaf)(x)μ(dά),

where x ^ R+ and / is a continuous function on R+.

LEMMA 2.1. For every finite measure μ the operator T transforms Co into Co.

Proof. The assertion follows from the fact that the extended generalized con-

volution o is continuous in each variable separately (cf. Urbanik [21], Proposition

2.4). •

Proofs of Lemmas 2.2, 2.3 and 2.4 below are similar to those for the ordinary

convolution and will be omitted.

LEMMA 2.2. Every τu is a positive bounded operator on Co commuting with

° - translation operators.

In the sequel, any operator on a function space commuting with ° -translation

operators will be called °- translation invariant.

LEMMA 2.3. Let A be a positive bounded °-translation invariant operator on Co.

There exists a uniquely determined finite measure μ on R+ such that

A=τ".

LEMMA 2.4. For any μ, υ e P

(2.6) r V = r V = τ"°\

We note that

/ f(u)(μ°v)(du)= f f (τuf)(v)μ(du)v(dυ),

where μ, v e P and / is a continuous function on R+.

THEOREM 2.5. Let iμ) be an °-semigroup of p.m. 's onR+. The formula

(2.7) St = τUt (t > 0)

defines a strongly continuous °- translation invariant contraction semigroup on Co.
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Conversely, if (St) is a strongly continuous °- translation invariant contraction

semigroup of positive operators on Co, then it is given by (2.7) with the same

°- semigroup of p.m.'s on R+. The correspondence {μt} *-* {St} is one-to-one.

Proof From Lemmas 2.1, 2.2 and 2.4 it follows that {St} defined by (2.7) is

an o -translation invariant contraction semigroup. Its strong continuity follows

from Chung's remark (cf. Chung [5], p. 49). The converse statement follows from

Lemma 2.3. Finally, the one-to-one correspondence {μt} *-* {St} is a consequence

of Lemma 2.2. O

Let {Xt} be an °-Levy process with the transition probability given by

Pt(x,.) = μt°δx ( ί > 0 , χ e R+).

The corresponding semigroup {St} can be written in the form

(2.8) (S/)(x) = Exf(Xt).

By Theorem 2.5 ίSt} is a strongly continuous semigroup on Co, which implies

that {Xt} is a Feller process. Moreover, since the function {ty x, f) *-* (S/)(x) is

continuous (cf. Chung [5]), it follows that the process is a strong Markov process

(cf. Blumenthal and Getoor [3], p.41). Thus we have the following theorem (cf.

Chung [5], Proposition 2, p.50 and Theorem 6, p.54):

THEOREM 2.6. Every °-Levy process is a strong Markov Feller process. Conse-

quently, it is stochastically continuous and has a version with right continuous paths

having left limits.

Remark 2.7. For some generalized convolution °, there exist °-Levy proces-

ses with continuous paths. For example, the absolute value of the Brownian motion

is a * U - L e v y process having continuous paths.

3. Infinitesimal generators

The aim of this section is to study the infintesimal generators of the semi-

groups associated with °-Levy processes.

To begin with we introduce the following generalized differential operator:
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where / is a function in Co and the limit is taken in C0-norm and the function

w(.) is defined by

) , 0 < y < x0

(3.2)
= 1 - Ω(x<), y > x0

x0 being a number such that 0 < Ω(y) < 1 for 0 < y < x0. The domain of D° is

denoted by3)(fl°).

As in Klosowska [11] and Bingham [2] we shall assume that

(3.3) V'1 = f xκσκ(dx) < oo,

which holds true for all known examples of regular generalized convolutions.

LEMMA 3.1. Let {μt} be an °-semigroup in ( P , °). There exists a finite measure

m on R+ such that

(3.4) ^γ-μt(dx)^m as ί-^0.

Proof. Since μx is »-infinitely divisible, there is a unique finite measure m on

i?+ such that

= exp J
Ω(ux) - 1

by [16] Theorem 13 and [17] Theorem 1. Hence

Let mt{dx) = t 1w(x)μt(dx) for t > 0. Then

rflW-i , - I / ^ / Λ Ίx r Ω(ux) -

uniformly on every finite interval. Now the argument in the proof of [16] Theorem

13 applies and we get w ^ m a s ί - ^ O . •

LEMMA 3.2. Suppose that (3.3) holds. Define

βy(u) = Vy~κuκTyσK(du) (y>0).
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Then every βy is a p.m. on R+ and

(3.5) β

Proof. We have

βy(f) = juκΩ(tuy)Vσ(du),

which implies that βy(0) = 1 and therefore βy is a p.m. Moreover, lettng y tend to

zero we have βy(f) —+ 1. Consequently, (3.5) holds. •

Let H be the class of functions of the form

fa(x) = e x p ( - a*xx) {a > 0, x e i?+).

LEMMA 3.3. Suppose that (3.3) /w/ds. 77i£ operator D° is densely defined in Co,

and the domain Φ(Z)°) contains the class H, (3.1) is equivalent to the foHoming

Proof When (3.3) holds, Klosowska ([11], Lemma 1) shows that

(3.6)
y

which implies that (3.1) is equivalent to (3.1') The linear combinations of elements

of H are dense in Co. Let us prove that D°fa is defined for any a > 0. By (1.2),

(2.4) and (3.3) we have

Vyκ
1- / Ω{axυ)a υ σΛdυ)

J

J J Ω(auv)σκ(dv)δx°δy(du) — j Ω(axυ)σK(dυ)

Vyx

r n f N \Ω(ayυ) - 1 , x x\
I Ω\axυ)\ V a υ \σΛdv)

J l Vy* J

I Ω(axuy

h / Ω(axυ)aκυκσΛdυ)
J

)
Vy

σΛdu)
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< f I Ωiau) - 1 + Van \ V~YκTyσκidu)

Ω(au) - 1Ί\ Va Vy u Tyσκidu),

where the integrand is a continuous bounded function of u and vanishes at u = 0.

By Lemma 3.2, the last expression tends to zero as y—* 0, which implies that H c

®(ΰ°) and

(3.7) lim LίeW - f'^ = - f

uniformly in x for every positive number a.

THEOREM 3.4. Suppose that (3.3) /w/ds. Lei Λ be the infinitesimal generator of

the semigroup associated with an °-Levy process on R+ with domain Ί)(A). Then

c 3) (A) and

0.8)

for / ^ QiD*), where p is a nonnegative constant and v is a finite measure on R+.

The integrand assumes the value D°f(x) at u = 0. 77^ pair (v, p) is uniquely deter-

mined by A.

Conversely, for any pair (v, p), there exists a unique °-Levy process on R+ satis-

fying (3.8) for all f ^ ®(Z)°).

Proof Let A be the infinitesimal generator for the semigroup {S,} given by

(2.7) and (2.8). Putting

α>o)
and taking into account the continuity of {μt}, we have

pit) =exp(- pt) (t>0)

with some p > 0. L e t / e 2)(D°). We have

A f(x) = hm — ~
ί—0

= lim Γ iτxfiy)-fix)]\μtidy)
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= lim {/ [rjiy) -fix)] ^ Γιw{y) μt{dy) ~ * ~ f® fix)}

f τxf(y) - fix)
= J My) vUy) ~ pf{x)<

where v is the weak limit of t~ιw(y)μt(dy) as /—>0 (Lemma 3.1), and the integ-

rand in the last expression assumes the value D°f(x) (Lemma 3.3).

Since the last expression of the above equalities belongs to Co and since the

convergence is boundedly pointwise, the limit can be taken in C0-norm by the use

of a general theory (Dynkin [7] Lemma 2.11). This shows that Ί)(D°) c 3)(A) and

(3.8) holds.

To prove the uniqueness of representation (3.8), use the fact H c ©CD°) in

Lemma 3.8. By (3.7) we have Z?%(0) = - 7 " V . Hence

Since Afa(0) —• — p as a —• 0, p is unique. Since a~K(Afa(0) + p)—>

— V v({0}) as a—+ oo, v({0}) is unique. Moreover, if finite measures v and v'

satisfy

exp(— ακz/κ) - 1 Γ e x p ( - ακz/κ) -v{dy) = L
for all a > 0, then y = ι/ on (0, oo) by the uniqueness theorem for Laplace

transforms, because the above equality is written to

«^c Γ {dy) - Γ -aKsA Γ v'{dy)
e dsJ X e dsJ

dsJs -MW~X e dsJs

Conversely, given a pair (v, p), let j be an °-infinitely divisible p.m. on R+

satisfying

/

(cf. Urbanik [16]). Then the infinitesimal generator A for the semigroup {St} given

by (2.7) with

μt(t) = e x p ( - pί)r o ί + (1 - e x p ( -

satisfies (3.8). It is easy to see that this μt is uniquely determined by (y, p). D
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A particular but very important case of °-Levy processes is the processes in-

duced by the characteristic measure σκ.

THEOREM 3.5. Suppose that (3.3) holds. Let A be the infinitesimal generator for

the °-Levy process {Xt} such that the P -distribution of Xλ is equal to oK. Then

Af = D°f for every / e © (D°).

Proof. Apply Theorem 3.4. The measure v there must satisfy

C Ω(ux) - 1
J w(x) v{dx) = ~ u

in this case by virtue of (1.2). Since the integrand assumes the value u at x = 0,

we have v — δ0. Π

Now, by virtue of formulas (3.1') and (3.7), we get the following examples of

D°:

a-convolutions: D°f(x) = a~1χι~af'(x).

Symmetrie convolution: D°f—frί.

Kingman convolution * l i S (β — 2(5 + 1) > 1) : By Gradshteyn and Ryzhik ([8],

3.381 (4)), the constant Kin (3.3) is given by

V- '4(s + 1)

Next, f o r / e Co and x, y > 0 we have (cί. Urbanik [16])

which together with Lemma 3.3 leads to the following formula (cf. Gradshteyn and

Ryzhik [8], 3.251 (1) and 3.249 (5)):

D°f(x) =f"(x) + (2s

4. Generalized Bernstein functions

We say that the family {vt} of sub-p.m.'s on R+ is an °-semigroup if the fol-

lowing conditions are satisfied:

^ / ° ^ = vt+s tt> ^ > 0).
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vt —> δ0 vaguely as t tends to 0,

that is, J f(x)vt(dx) —•/(()) as t—*0 for every continuous function/on R+ with

compact support.

Clearly, these conditions imply that v0 = δ0 and vt^δ0 as £—• 0. Let {Xt} be

an °-Levy process on R+ induced by an °-semigroup {μt} of p.m.'s (cf. §2). The

restriction of {μt} to R+, denoted by ivt}, is an °-semigroup of sub-p.m.'s. Since

every measure vt is infinitely divisible with respect to °, the characteristic func-

tion of vt is of the form (cf. Urbanik [16], [17])

(4.1) vt(u) = exp(- tf(u)), (u, t > 0),

where / is given by

(4.2) f(u) = a + bu + J (1 - Ω(ux))m(dx),

a, b being nonnegative constants and m being a measure on i?+ vanishing at the

origin such that

(4.3) f w(x)m(dx) < °°,

where w{.) is a function defined by (3.2).

Let F(°) denote the set of all functions of the form (4.2). Let S(°) denote the

set of all functions in F(°) corresponding to °-self-decomposable sub-p.m.'s (cf.

Urbanik [17]). For the ordinary convolution the set F(°) coincides with the set of

all Bernstein functions (cf. Berg & Forst [1], p. 61). Hence in general case the

functions in F{°) will be called generalized Bernstein functions, shortly

o -Bernstein functions.

It is evident that the set F(°) is a cone which does not depend upon the

choice of the system of characteristic functions and is closed under the converg-

ence that is uniform on every compact set.

PROPOSITION 4.1. Let iμ) be an °-semigroup {of sub-p.m.'s) and {vt} a

*α-semigroup (a > 0). Then the integral

τt = f μsavt(ds) (t > 0)

defines an °- semigroup.
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Proof We have, for t, u > 0,

τt{u) = f exp(- saf(u))vt(ds)

= exp(-tg(fa~\u))),

/ , g being generalized Bernstein functions associated with {μt} and {vt}, respec-

tively, π

As an immediate consequence of the above proposition we have

COROLLARY 4.2. If f ^ F(°) and g e F ( * α ) , ίfeen ^ Z " 1 ) e F(°). in

/αn if h is a Bernstein function, then h(f) is an °-Bernstein function.

The converse statement is also true. Namely, we have

PROPOSITION 4.3. Let g be a function such that for every generalized convolution

° and for every f ^ F(°) the composite function g(f ) belongs to F(°). Then g is

*a-Bernstein function.

Proof It follows from the fact that the function fix) = χa belongs to F ( * α ) .

•
Let and •' be regular generalized convolutions. Let us denote G(°) =

{fi:μ^ Q}, which is independent of the choice of the system of characteristic

functions. Then we have the following inclusions:

G(*a) c G( )

(4.4) F ( * β ) c F ( )

S(*α) c S( )

where 0 < α ^ /c(°), /c(°) being the characteristic exponent of ° . Moreover,

Theorem 2.2 in Urbanik [18] can be formulated as follows:

THEOREM 4.4. If G(°) = G(°0, then ° = o /.

Similarly, we have the following:

https://doi.org/10.1017/S0027763000004785 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004785


INDEPENDENT INCREMENTS PROCESSES 1 6 9

THEOREM 4.5. The following equalities are equivalent:

(i) • = •',

(ii) F(') C F ( ' ) ,

(iii) SO) c SO').

Proof. We shall prove that (ii) implies (i). Suppose that (ii) is true. Let Ω and

Ωf be the kernels of ° and °\ respectively. By (4.2) there exist a', V and m' such

that

1 - Ω{u) = a'+ VuW) + f (1 - Ω'{ux))m'(dx).

Since Ω(0) = 1 and β(w) is bounded, we have a' = b' = 0. Similarly, there is a

measure m such that

1 - Ω'(u) = J (1 - Ω{uy))m{dy).

Hence

1 - fl(iί) = / / ( ! " Ω{uxy))m/{dx)m{dy)

(4-5)

= J (1 ~ Ω(ux))H(dx),

where

/ί(ώ ) = f m/(dx/y)m(dy).

In particular, we have the equation

Γ° (1 - Ω{x))H(dx) = Γ° w(x)H(dx)

( 4 6 )

where ,r0 is the same as in (3.2). On the other hand, by formula (41) in Urbanik

[16] and by Fatou's lemma

1 > lim inf f \~_ΩQ^ H(dx) > f xκMH(dx).

Consequently, H is finite on every half-liine [A, oo) (̂ 4 > 0), which together

with (4.6) implies that H satisfies the condition (4.3). Therefore, by (4.5) and by
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uniqueness of the representation (4.2), it follows that H = δγ and consequently,

nΐ — bδc for some positive b, c, which implies that

(4.7) Ω(u) = bΩ'(cu) + 1 - b, (w>0).

Let p be a positive number less than min(/c(°), tc(°')). Let σ̂  and σp

be o-stable and °'-stable measures, respectively, with the same exponent p (cf.

Urbanik [16]). Integrating both sides of (4.7) with respect to σp and σp and using

Fubini's theorem, we get the equation

f e x p ( - ypup)σf

p(dy) = b f e x p ( - cpxpup)σp(dx) + 1 - 6 .

Notice that σ̂  and σ̂  do not have point mass at 0 (cf. Urbanik [19] Lemma 2.2; the

proof becomes simpler since our generalized convolutions are regular).

Letting t—• 0 in the last equation, we get b = 1 and Ω(u) = Ωr(cu) (u > 0).

Consequently, ° = Q/ which completes the proof that (ii) implies (i). The proof that

(iii) implies (i) is similar and is omitted. \3

As a consequence of the above theorem we have the following characteriza-

tion of α-convolutions:

THEOREM 4.6. Let 0 < a < κ(°). Then the equality ° = * α (and necessarily

a = fc(0)) holds if and only if, for any °', g €= F(°), and f ^ F(°r), the composite

function g(f ) belongs to F(°r).

Proof. The "only if" part follows from Corollary 4.2. To prove the "if" part

let us take g from F(°), °f — * α , and f(x) — x . By the assumption the compo-

site function g(f a) — g belongs to F ( * α ) , which implies F(°) c F ( * α ) and, by

Theorem 4.5, ° = * α . D

We conclude this section by giving a sufficient condition for transience of

°-Levy processes.

THEOREM 4.7. Suppose that the kernel Ω is nonnegative. Then every non-constant

o-Levy process on R+ is transient.

Proof Let μt and/ be the °-semigroup and the °-Bernstein function associ-

ated with a non-constant °-Levy process {Xt}. T h u s / is not identically zero. By

Lemma 2.1 in Urbanik [20] the set of zeros of / has Lebesgue measure zero.
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Further, for every continuous nonnegative function g on R+ with compact support

there exist positive constants a and b such f(b) > 0 and for every u > 0

g(u) < aΩ(bu)

which implies that

Exg(Xt)dt <af ExΩ(bXt)dt

= affΩ(bu)(δx°μt)(du)dt

= aΩibx) f exp(- tf(b))dt

= a/f(b)«χ>. D

Remark 4.8. For some generalized convolution °, there exist non-constant re-

current °-Levy processes. In such a case the kernel Ω must take negative values

somewhere (see Kingman [10], Theorem 10, for a transience criterion for

*1)i9-Levy processes).

5. Self-similar °-i.i. processes

This section continuous the line of research of Lamperti [13] and Sato [15].

Consider an °-i.i. process {Xt} on R+ with transition probability Pst given

by (2.2). We say that the process {X) is H-self-similar ( i / > 0 ) , if it is

i/-self-similar as a Markov process, namely, if for any a > 0 and x ^ R+ the

finite-dimensional Px-distributions of {Xt} are identical with the finite-

dimensional P -distribution of {a Xat).

The following theorems stand for analogues of Sato's results [15]:

THEOREM 5.1. If {Xt} is an H-self-similar °-ii. process, then for every t the

P -distribution of Xt is °-decomposable.

THEOREM 5.2. Suppose that μ is an ° - self - decomposable measure in P and μ Φ

δ^. Then for any H > 0 and t0 > 0 there exists a unique H-self-similar °-i.i. process

{Xt} such that μ is the P -distribution of Xt . The uniqueness here is in the sense of

finite- dimensional distributions.

A natural question arises: What can be said about the P -distribution of Xt
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for x > 0? And, more generally, what can be said about the P^-distribution of Xt

for v G P ? The following theorem answers these questions and gives a character-

ization of α-convolutions by self-similarity.

THEOREM 5.3. Let {Xt} be H-self-similar °-ii. process such that μot Φ δTO for

every t > 0. Let v ^ P. Then, the P -distribution of Xt is ° - self- decomposable for ev-

ery t>0, if and only if v is °-self-decomposable.

Consequently, the following two statements are equivalent'.

(i) There exists an H-self-similar °-i.i. process {Xt} and a point x (0 < x

< oo) such that μot Φ δ^ for every t > 0 and the P -distribution of Xt is

° - self-decomposable for every t > 0.

(ii) o is an a-convolution for some a (0 < a < oo).

A p.m. μ e P is said to be °-stable if, for any pair a> b in (0, oo), there ex-

ists c e (0, oo) such that Taμ°Tbμ = Tcμ. If μ e P is o-stable, then μ = δ^ or

THEOREM 5.4. L#£ {^} fr£ α non-constant °-Levy process. Then it is self-similar

if and only if the P -distribution of Xλ is °-stable. If the stable index is

a, then the order H of self-similarity is a~ .

Proof of Theorem 5.1. Note that for any t>0 and x ^ R+ the

/^-distribution of Xt is equal to μOtt°δx. Hence and by iZ-self-similarity of the

process we have, for every c — ~τ > 1 and a — c~ ,

μOft = the P -distribution of c~ Xct

which proves that the P -distribution of Xt is ° -self-decomposable. O

Proof of Theorem 5.2. Suppose that μ is °-self-decomposable in P. Then for

any 0 ^ 5 < t there exist a unique p.m. μ5fί from P such that

Γ ^ = Tsμ°μSιt,

which implies the following equality

(5.1) 7 χ , = μ c s _ c u (0<s<t, c<0).

Then the family {μs>ί} satisfies (2.1) and induces an »-i.i. process {Y,} with tran-
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sition probability (2.2). We claim that the process is 1-self-similar.

Denote the indicator function of a set B by 1B. Given x e R+9 a > 0, 0 < tx

< * * < tn and B = Bλ X X i?w, J5/s being Borel subsets of R+, we have by

virtue of (2.2) and (5.1),

= J PMSX>
 dx^ "J ptn.vtn(

χn-v dxn) lB(x19... ,xH)

= j βo^δxidxj - J μ^^δ^dx^lβix^. ..,xn)

= J Ta[μOtti^δx] (adxj) J Ta[μtnv^δXn_) (adxn)\B{xλ,... ,xn)

= J βo.at^δax^dXj)" J Pat^atS^SadxJlBtev- ' "Xά

= J ^o, atSδaxiadxJ '" j μatn_v atn

oδaXnι{dxn) lB(jΓιxl9... ,ύf ^ J

This shows that {F }̂ is a 1-self-similar Markov process. Moreover, we have μ =

μ0Λ and, therefore, μ is the P°-distribution of Yv

Now let H and t0 be arbitrary positive numbers. Putting Xt = ί̂ -̂ jsr we get a

required process.

The uniqueness of {Xt} follows from the fact that the transition probability

Pst is uniquely determined by μ. Namely, for any s < t and x ^ R+ we have

T(to/tr*β°δx = T(to/t)-Hμ°Ps>t(x,.). Π

Proof of Theorem 5.3. Suppose that {Xt} is an i/-self-similar °-i.i. process

such that μ0J Φ δ^ for every t > 0. By Theorem 5.1 the P -distribution μot of Xt

is o -self-decomposable for every t > 0. If v ^ P, then the Pv-distribution of Xt

equals voμ0,f
 L e t ^o,i^+) ~ β T n e n t^oA^ ~ a f o r e v e r Y ^ > 0, since μ0>t =

TtHμOtι. We have μOtt~^ aδo+ (1 — α ) ^ as £—>0. Hence P ° //0>ί is <>-self-

decomposable for every t > 0 if and only if v is °-self-decomposable. In particu-

lar, if there exists a point x (0 < x < oo) such that the P^-distribution of Jf, is

° -self-decomposable for every t > 0, then the p.m. δ̂ . must be decomposable in

the sense that there exist p.m.'s r l f r2 other than δ0 such that (5X = rL ° r2, and

hence the generalized convolution ° is an α-convolution (0 < a < oo) by a

theorem of Kucharczak [12]. Conversely, if ° is an α-convolution and the process

is //-self-similar and °-i.i., then, for every x G R+, the p.m. δx is °-self-

https://doi.org/10.1017/S0027763000004785 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004785


174 NGUYEN VAN THU

decomposable and the /^-distribution of Xt (t > 0) is °-self-decomposable. D

Proof of Theorem 5.4. Suppose that {Xt} is a non-constant °-Levy process

induced by an ° -semigroup iμ). Then μt Φ δ^ for every t > 0. If the process is

//-self-similar, then μt = TtHμ1 and μt(R+) — 1 for every t > 0, and hence μλ is

o-stable of index H~ . Conversely, if μx is ° -stable of index α, then the process is

a -self-similar, which is proved by argument similar to the proof of Theorem

5.1. D
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