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Abstract. This paper is dedicated to extending and adapting to modal logic the approach of
fractional semantics to classical logic. This is a multi-valued semantics governed by pure proof-
theoretic considerations, whose truth-values are the rational numbers in the closed interval [0, 1].
Focusing on the modal logic K, the proposed methodology relies on three key components:
bilateral sequent calculus, invertibility of the logical rules, and stability (proof-invariance). We
show that our semantic analysis of K affords an informational refinement with respect to the
standard Kripkean semantics (a new proof of Dugundji’s theorem is a case in point) and it
raises the prospect of a proof-theoretic semantics for modal logic.

§1. Introduction. In a previous paper [24], two of the current authors introduced an
informational refinement of the standard Boolean semantics for classical propositional
logic. This account reverses the traditional perspective whereby proof-systems are
shown to be sound and complete under a preassigned external semantic structure:
primacy is instead accorded to proofs which, through their very combinatorial
structure, determine from within the semantic value of logical formulas. The
intrinsically finitary notion of derivation makes the nature of such semantics finitary as
well, despite the infinitude of its truth-values which are elements of the set of rational
numbers Q in the closed interval [0, 1]. The most visible upshot of the new treatment
is the breaking of the symmetry between classical tautologies and contradictions: the
former are uniformly interpreted by the value 1, while the latter become susceptible to
different fractional interpretations. This is why we called such semantics “fractional”
and we argued that it conforms with the general project of proof-theoretic semantics
in considering the classical rules as a medium through which meaning propagates.

Fractional semantics, however, requires an appropriate proof-theoretic platform
within which it can be articulated. Namely, in order to allow for a fractional
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1034 MARIO PIAZZA ET AL.

interpretation of its formulas, a decidable logic L needs to be displayed in a sequent
system S (or its variants) meeting three conditions:

(1) Bilateralism: S proves all the valid formulas of L and refutes all the invalid
ones through logical rules involving both deduction and refutation [4, 10, 28,
29, 35]. In other words, S, as a bilateral system, generates S-derivations for any
well-formed formula A of L: if A is valid, its S-derivation will be an actual
proof of A; if A is invalid, its S-derivation will provide a formal refutation of
A, i.e., a proof of its unprovability.1

(2) Invertibility: each logical rule of S is invertible, meaning that the provability
of its conclusion implies the provability of (each one of) its premise(s) [16].
This means that proof-search in S boils down to an algorithm for decomposing
any given sequent into an equivalent multiset of clauses which includes exactly
the top-sequents (valid or invalid) of the achieved proof. By such a proof-as-
decomposing setting, every S-derivation � ending with A shapes a numerical
evaluation

[[
A

]]
of A. To be more precise,

[[
A

]]
is expressed in terms of the

ratio between the number of �’s valid top-sequents and the total number of
top-sequents.

(3) Stability: two analytic S-proofs with the same end-sequent share the same
multiset of top-sequents. This property ensures that fractional evaluations
accommodate the demands of an effective semantics: because (bottom-up)
proof-search generates a certain multiset of top-sequents, stability can refer
directly to such multiset associated with any formula of L.

In sum: on the fractional view, proving a certain sentence A amounts to measuring
the quantity of validity involved in A, relative to A’s decomposition into elementary
top-sequents. In [24] the adopted system for classical propositional logic was the

bilateral version of Kleene’s sequent calculus G4 [17, 30], called G4, and satisfying

both the invertibility and stability properties. By way of example, in G4 the classical
contradiction (p ∨ ¬p) ∧ (¬p ∧ p) is thus derivable:

axp ⇒ p ⇒ ¬⇒ p,¬p ⇒ ∨⇒ p ∨ ¬p

p ⇒ ⇒ ¬⇒ ¬p ⇒ p ⇒ ∧⇒ ¬p ∧ p ⇒ ∧
⇒ (p ∨ ¬p) ∧ (¬p ∧ p)

The G4-derivation above qualifies as a disproof of (p ∨ ¬p) ∧ (¬p ∧ p) and, insofar
as it contains only one tautological clause out of three top-sequents in total,

[[
(p ∨

¬p) ∧ (¬p ∧ p)
]]

= 1/3 = 0.3. Stability intervenes to guarantee that any other possible

G4-derivation of ⇒ (p ∨ ¬p) ∧ (¬p ∧ p) will always return the value 0.3.
In this paper, we aim at expanding this fractional account to modal logic by

designing a modal proof-system constrained by bilateralism, invertibility, and stability.

1 As remarked by a referee, there is an important distinction to spot between our system (where
a formula may be invalid without its negation being provable) and the more traditional kind
of bilateralism where there is a close relation between refutation and proof of negation, and
not all formulas are either provable or refutable (e.g., atomic formulas). Although other
terms in the literature (for example, “hybrid” in [13, 14]) can describe our system, we prefer
to use “bilateralism” as an umbrella term capable of including our system as well.
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FRACTIONAL-VALUED MODAL LOGIC 1035

Notoriously, the inadequacy of a truth-functional approach to modal logic was
established by Dugundji’s celebrated result in 1940, according to which Lewis systems
from S1 to S5 cannot be semantically characterized by an n-valued semantics [8, 9].
Still, many well-known modal systems such as K, T, 4, B, GL, and S1-5 are decidable
and satisfy the finite model property [7]. Furthermore, in the past two decades many of
the above systems have received a satisfactory proof-theoretic treatment and for each
of them different frameworks of proof systems have been furnished.

Initially this treatment attained cut-free and decidable sequent calculi, but failed
to encompass modal systems such as B or S5, where the axiom corresponding to
symmetry proved to be very hard to handle. The picture changed when suitable
generalizations of the classical sequent calculus entered the scene. These new
frameworks were presented in two different fashions: either via the internalization
of semantics [22, 31], or by enriching the structure of sequents [3, 6, 26]. Both
these approaches allowed for the formulation of proof-systems with good structural
properties and, in most cases, yielding well-defined decision procedures. In sum, the
quest for a well-behaved Gentzen-style proof theory has progressively brought modal
logics closer to classical logic by recovering proof-theoretic properties such as symmetry
and harmony which typically characterize sequent calculi for classical logic.

In what follows we will be concerned with the normal modal logic K, that is the
minimal modal system including the K-axiom �(A→ B) → (�A→ �B) and closed
under the rule of necessitation: if A is a theorem, so is �A. K represents a base for
the other modal systems—obtained via the addition of specific axioms—in which the
modality gains more and more sophisticated interpretations. Moreover, our perspective
also involves an attempt to develop a proof-theoretic semantics for modal logic by
building a bridge between modal and classical logic. Indeed, we subscribe to the
claim that proof-theoretic semantics is “seriously incomplete” without an account of
the meanings of modal operators in terms of rules of inference [18, p. 724]. There is,
however, an important methodological difference between the approach here proposed
and the more standard ones [11, 25, 32]. Traditional stances share the view that the
meaning of logical operators should be transmitted by the rules governing their use.
This is an essentially local approach in the sense that single inference steps are taken to
convey an operational interpretation irrespective of the specific formal proof in which
inferences occur. In the context of fractional semantics, by contrast, the approach we
are pursuing can be classified as global: it appeals, indeed, to the macro-structure of
proofs determining the decomposition of formulas and, consequently, to the multiset
of clauses displayed as top-sequents. Single inferences still contribute to meaning
but, so we argue, the latter can be fully extracted only from the proof as an organic
unity.

On the other hand, fractional semantics affords an informational refinement of
modal logic, in which, like in classical logic, the notion of validity is traditionally
interpreted as a sharp one, without some degree of truth or validity. It is important
to appreciate, however, that analyticity and invertibility of the calculus weed out
any suspicion that such an informational refinement is an arbitrary one. Indeed, the
decomposition induced by the rules of the calculus reduces the validity (or invalidity) of
the end-sequent to the validity (or invalidity) of the top-sequents. So, every branch of a
derivation terminating in a non-axiomatic sequent may be understood as a successful
attempt at falsifying the end-sequent. Therefore, the ratio between axiomatic and
complementary sequents determines the degree of validity of a formula. In particular,
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1036 MARIO PIAZZA ET AL.

this refinement enables us to propose a novel proof of Dugundji’s theorem, relative to
K, which gets rid of the construction of an infinite countermodel.

Our proof-theoretic machinery comes as a bilateral hypersequent calculus for K ; as
far as we know, this is the first calculus of this type for some systems of modal logic
in the literature. Moreover, as well as being a deductive setting in which fractional
semantics can be implemented, this system has an intrinsic proof-theoretic interest
to the extent that it reconciles the invertibility of the rules (thus eliminating the
need for backtracking) with the finiteness of the proof-search space. As a matter
of fact, the standard sequent calculus for modal logic K [33] satisfies termination,
but it essentially requires a backtracking procedure due to the failure of invertibility.
Vice versa, extensions of the standard framework of sequent calculus such as labeled
sequent calculi [22], nested sequents [6], or display calculi [34] enjoy full invertibility,
but the proof-search space is not finite.

The plan of the paper is as follows. In Section 2, we first introduce the proof-system

HK, a bilateral hypersequent calculus sound and complete with respect to the set of K-

valid formulas. HK is shown to satisfy some desirable structural properties, including
the invertibility of the logical rules and cut-elimination. In Section 3, we establish

stability and, contextually, we show how to employ HK as an algorithm to fractionally
evaluate K-formulas. Then, in Section 4, such a fractional interpretation becomes a
lens through which we closer look at Dugundji’s theorem. Finally, Section 5 offers
some concluding remarks.

§2. An invertible bilateral hypersequent calculus for K .

2.1. The calculus HK. We shall be mainly working with hypersequents, introduced
under a different name by Mints in the early seventies of the last century [20, 21] and
independently by Pottinger [27], then further elaborated (and so named) by Avron
[1–3]. They are a generalization of the standard notion of sequent in the style of
Gentzen. A sequent is a syntactic entity of the form Γ ⇒ Δ, where Γ,Δ are finite
multisets of modal formulas from the set F recursively defined by the grammar:

F ::= AT | ¬F |F → F |F ∧ F |F ∨ F |�F

with AT collecting the atomic sentences. As usual, ♦A abridges the formula ¬�¬A.
If Γ = [A1, A2, ... , An], then

∧
Γ and

∨
Γ are the two formulasA1 ∧ A2 ∧ ··· ∧ An and

A1 ∨ A2 ∨ ··· ∨ An, respectively. If Γ = ∅, then we set
∧

Γ = � and
∨

Γ = ⊥, where �
and ⊥ stand for an arbitrarily selected tautology and contradiction, respectively. With
�Γ we mean the multiset [ �A1,�A2, ... ,�An]. For every formula A we denote with
An the multiset containing exactly n occurrences of A.

In general, if M and N are two multisets, we indicate with M �N and #M their
multiset union and M’s cardinality, respectively. A hypersequent, denoted by G,H, ...,
is defined as a finite (possibly empty) multiset of sequents written as follows:

Γ1 ⇒ Δ1 |Γ2 ⇒ Δ2 | ··· |Γn ⇒ Δn.

We shall keep calling “sequents” those hypersequents listing exactly one sequent.
The set collecting hypersequents is here indicated with H . Informally speaking, a
hypersequent G proves valid whenever at least one of the sequents listed in G is valid.
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axioms

ax
1 �Π1,Γ1, p⇒ Δ1, p |�Π2,Γ2 ⇒ Δ2 | ... |�Πn ,Γn ⇒ Δn

ax where Γi ∩ Δi = ∅ for all 1 � i � n0 �Π1,Γ1 ⇒ Δ1 | ... |�Πn ,Γn ⇒ Δn

logical rules

i |Γ ⇒ Δ,A ¬ ⇒
i |Γ,¬A ⇒ Δ

i |A, Γ ⇒ Δ ⇒ ¬
i |Γ ⇒ Δ,¬A

i |Γ,A,B ⇒ Δ ∧ ⇒
i |Γ,A ∧ B ⇒ Δ

i |Γ ⇒ Δ,A j |Γ ⇒ Δ,B ⇒ ∧
i ·j |Γ ⇒ Δ,A ∧ B

i |Γ, A ⇒ Δ j |Γ,B ⇒ Δ ∨ ⇒
i ·j |Γ,A ∨ B ⇒ Δ

i |Γ ⇒ Δ,A,B ⇒ ∨
i |Γ ⇒ Δ,A ∨ B

i |Γ ⇒ Δ,A j |Γ,B ⇒ Δ → ⇒
i ·j |Γ,A → B ⇒ Δ

i |Γ,A ⇒ Δ,B ⇒ →
i |Γ ⇒ Δ,A → B

modal operator rule

i |Γ ⇒ A |�Γ,Γ′ ⇒ �Δ,Δ′
� ,

i |�Γ,Γ′ ⇒ �A,�Δ,Δ′ where Γ′ � Δ′ ⊆ AT

Fig. 1. The HK sequent calculus (read 1 as �, and 0 as �).

Here the meaning of the term “valid” has to be specified depending on the logical
context (cf. Definition 3).

The following definition introduces the notion of hyperclause which extends that of
clause for standard sequents of classical logic.

Definition 1 (Hyperclauses). A hyperclause is a hypersequent

�Π1,Γ1 ⇒ Δ1 | ··· |�Πn,Γn ⇒ Δn

such that Γi � Δi ⊂ AT , for all 1 � i � n. An identity hyperclause is such that, for
some i, Γi � Δi 
= ∅; otherwise, it is complementary.

Example 2.1. An identity hyperclause and a complementary hyperclause, respectively:

p ⇒ p |�(�p → p) ⇒ ⇒ p | ⇒ p |�(�p → p) ⇒

Figure 1 presents the bilateral hypersequent calculus HK. The rules of HK operate
on hypersequents signed with the symbols “�” and “�”: we write � G and � G to
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ax	 ⇒ p | ⇒ p | �(�p→ p) ⇒
�	 ⇒ �p, p | �(�p→ p) ⇒ ax.
 p⇒ p | �(�p→ p) ⇒ →⇒	 �p→ p⇒ p | �(�p→ p) ⇒

�	 �(�p→ p) ⇒ �p ⇒→
( p p) p

Fig. 2. An example of HK proof.

assert the validity and invalidity of G, respectively (cf. Definition 3). For the sake of

a more compact notation, in Figure 1 the HK rules are expressed by writing 1 and
0 to indicate the two signs “�” and “�,” respectively. The calculus is equipped with
two axiom rules: the ax-rule introduces any identity hyperclause, whilst the ax-rule
introduces whatsoever complementary hyperclause.

From now on, we will indicate derivations with small Greek letters �, �, .... The
height h(�) of a derivation � is given by the number of hypersequents figuring in
one of its longest branches. Moreover, we indicate with top(�) the multiset of �’s
top-hypersequents.

Example 2.2. Figure 2 displays an HK-derivation ending in �⇒ �(�p → p) → �p.

Remark 1. The rule � is the only rule in which the hypersequent structure comes
effectively into play. Informally speaking, it allows us to separate a classical and a
modal part in a derivation. In fact, every time this rule is applied, a new hypersequent
component is added, thus starting a parallel derivation.

Furthermore, notice that the side condition on the � -rule about the two contexts Γ′

and Δ′ is crucial to avoid pathological situations in which, for some hypersequent G,

HK proves both � G and � G as the following:
ax

� t |p⇒p
�� p⇒p,�t

ax
� t⇒ t |�t⇒p

�� p,�t⇒�t →⇒
� p, p→�t⇒�t

ax
�⇒ t |p⇒p ax�⇒ t |p,�t⇒ →⇒

�⇒ t |p, p → �t⇒
�� p, p→�t⇒�t

Lemma 2.1. For any hypersequent G, HK proves � G or it proves � G.

Proof. Any hypersequent which is not a hyperclause can be further analyzed via
some suitable bottom-up applications of the rules in which the part concerning
the standard/reversed turnstile is simply ignored. Once the decomposition is fully
accomplished, we can recover the information about turnstiles by propagating it from
the axiom-leaves to the conclusion, according to the rules listed in Figure 1. �

2.2. Bilateral soundness and completeness. Let us begin by briefly recalling some
basic semantic notions.

Definition 2 (K-model, K-validity). A K-model M consists of a triple 〈W,R, v〉 where
W 
= ∅, R ⊆W 2 and v : AT → P(W ) is a valuation function. For every w ∈W and
every formula A, the relation w � A is thus defined:

• w � p iff w ∈ v(p) for every p ∈ AT ,
• w � ¬B iff w � B ,
• w � B ∧ C iff w � B and w � C ,
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• w � B ∨ C iff w � B or w � C ,
• w � B → C iff if w � B or w � C ,
• w � �B iff for every w ′, if Rww ′, then w ′ � B .

The sentence A is true in M iff w � A, for all w ∈W . Moreover, A is valid, in symbols
� A, in case it is true in any K-model; otherwise, it is invalid.

According to the customary operational interpretation of sequents, Γ ⇒ Δ is K-
valid if the formula

∧
Γ →

∨
Δ is K-valid. The next definition accommodates the

notion of K-validity to hypersequents.

Definition 3 (K-valid hypersequents). For any hypersequentG ≡ Γ1 ⇒ Δ1 | ··· |Γn ⇒
Δn, the function hfor : H �→ F is defined as follows:

hfor
[
G
]

= �
(∧

Γ1 →
∨

Δ1

)
∨ ··· ∨ �

(∧
Γn →

∨
Δn

)
.

A hypersequentG is said to be K-valid just in case the formulahfor
[
G
]

is K-valid.

Example 2.3. Under Definition 3, the hypersequent p ⇒ p |p ⇒ q |�(p ∨ q) ⇒ turns
out to be K-valid, being valid the following formula:

hfor
[
p ⇒ p |p ⇒ q |�(p ∨ q) ⇒

]
≡ �(p → p) ∨ �(p → q) ∨ �(�(p ∨ q) → ⊥).

It should not escape notice that hypersequents cannot be treated naively by
interpreting Γ1 ⇒ Δ1 | ··· |Γn ⇒ Δn as the formula (

∧
Γ1 →

∨
Δ1) ∨ ··· ∨ (

∧
Γn →∨

Δn). Such an interpretation would make collapse, for instance, the two hypersequents
⇒ A ∨ ¬A and ⇒ A |A⇒ into the same formula A ∨ ¬A.

Lemma 2.2. Any identity (resp. complementary) hyperclause is K-valid (resp. not
K-valid ).

Proof. Consider a generic identity hyperclause G |Γ, p ⇒ Δ, p. Then, the formula
�(

∧
Γ ∧ p →

∨
Δ ∨ p) is clearly K-valid, and so is the whole formula hfor

[
G
]
∨

�(
∧

Γ ∧ p →
∨

Δ ∨ p).
Consider now a complementary hyperclause �Π1,Γ1 ⇒ Δ1 | ··· |�Πn,Γn ⇒ Δn.

For each sequent �Πi ,Γi ⇒ Δi , take the trivial K-model Mi = 〈{wi},∅, vi〉 where
the interpretation function vi is thus defined:

• vi (p) = {wi}, for all p ∈ Γi ,
• vi (q) = ∅, for any atom q /∈ Γi .

For every i, Mi , wi �
∧

�Πi (this is vacuously true by Definition 2) and Mi , wi �
∧

Γi ,
but Mi , wi �

∨
Δi . Therefore, Mi , wi � (

∧
�Πi ∧

∧
Γi) →

∨
Δi . Then, we can easily

exhibit the sought countermodel by considering

M =

〈
{w0, w1, ... , wn}, {(w0, wi) | 1 � i � n},

⋃
1�i�n
vi

〉
.

Indeed, for every i, it turns out that Rw0wi and M, wi � (
∧

�Πi ∧
∧

Γi) →
∨

Δi , so
that we can conclude M, w0 � hfor

[
�Π1,Γ1 ⇒ Δ1 | ··· |�Πn,Γn ⇒ Δn

]
. �

Lemma 2.3 (Modal disjunction property). If � �A ∨ �B , then � A or � B .

Proof. The reader is referred to [7, pp. 90–91]. �
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Theorem 2.4 (Soundness). If the systemHK proves � G and � H, then the hypersequents
G and H are K-valid and K-invalid, respectively.

Proof. The proof is carried out by induction on the height of a generic HK-proof
�. Lemma 2.2 immediately supplies the base case. As for the inductive case, we limit
ourselves to discussing the case in which �’s last inference step is an application of the
� -rule. We distinguish two cases according to whether � ends in � G or � H.

• (� G). By inductive hypothesis, it results that the premise G′ |Γ ⇒ A |�Γ,Γ′ ⇒
�Δ,Δ′ is K-valid, where Γ′,Δ′ ⊂ AT . In case hfor

[
G′

]
is a K-valid formula, we

immediately get the desired conclusion. Otherwise, by Lemma 2.3, at least one
of the two formulas

∧
Γ → A and (

∧
�Γ ∧

∧
Γ′) → (

∨
�Δ ∨

∨
Δ′) turns out

to be K-valid: in both cases the conclusion easily follows from the monotonicity
of � .

• (� H). According to our inductive hypothesis, the hypersequent G |Γ ⇒
A |�Γ,Γ′ ⇒ �Δ,Δ′ (with Γ′,Δ′ ⊂ AT and Γ′ ∩ Δ′ = ∅) is now taken to be
K-invalid. Consider the hypersequent G ≡ Π1 ⇒ Σ1 | ··· |Πn ⇒ Σn and let i
and j be two parameters ranging over the sets {1, ... , n} and {1, ... , n + 2},
respectively. Clearly, none of the formulas

∧
Πi →

∨
Δi is K-valid. The two

formulas,
∧

�Γ ∧
∧

Γ′ →
∨

�Δ ∨
∨

Δ′ and
∧

Γ → A, are not K-valid as well.
This means that there is a family of models Mj = 〈Wj,Rj, vj〉 such that:

(1) 〈Wj,Rj〉 is a irreflexive, asymmetric, and intransitive tree with root wj
[5, p. 218],

(2) Mi , wi �
∧

Πi and Mi , wi �
∨

Σi ,
(3) Mn+1, wn+1 � �

∧
Γ ∧

∧
Γ′ and Mi , wn+1 �

∨
�Δ ∨

∨
Δ′,

(4) Mn+2, wn+2 �
∧

Γ and Mn+2, wn+2 � A.
Thus, finally consider the model

M =

〈
n+2⋃
j=1

Wj ∪ {w0},
n+2⋃
j=1

Rj ∪
{

(wn+1, wn+2)
}

∪
{

(w0, wk) | 1 � k � n + 1
}
,

n+2⋃
j=1

vj

〉

and observe that M, w0 � hfor
[
G |�Γ,Γ′ ⇒ �Δ,Δ′,�A

]
which yields the

desired conclusion. (Let us observe that the constraint Γ′,Δ′ ⊂ AT is essential
in the final part of the previous argument to prevent that M, xn+1 �

∧
Γ′ by

adding R(wn+1, wn+2) to the model). �

Corollary 2.5 (Completeness). If the hypersequent G is K-valid, then HK proves � G.
Otherwise, HK proves � G.

Proof. Assume that G is K-valid, but HK does not prove � G. By Lemma 2.1, HK

proves � G and so, by Theorem 2.4, G would be K-invalid. Therefore, HK does prove
� G. The case in which G is K-invalid can be treated symmetrically. �

Let us call HK the hypersequent system obtained from HK by dropping the
complementary axiom and removing everywhere the signs “�” and “�.” What we
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get in this way is a complete “monolateral” characterization of the system K. More
formally:

Theorem 2.6. HK proves ⇒ A if and only if � A.

Proof. Any proof in which no application of the complementary axiom occurs will
necessarily end with a hypersequent signed with “�.” Then, by Theorem 2.4, the
formula �A is valid and, by the rule of denecessitation (from � �A to � A), we finally
get the claim of the theorem. �

Remark 2. The rule of denecessitation is indeed sound in K, but it does not prove
admissible in every modal system, for example K5. Therefore, in order to extend the
fractional interpretation to such systems a new strategy would be required.

Corollary 2.7. The bilateral cut rule:
i G |Γ ⇒ Δ, A j

G |A,Γ ⇒ Δ
i·j

G |Γ ⇒ Δ

is admissible in HK.

Proof. We observe that the above-mentioned bilateral rendition of the cut-rule

proves sound in HK. By applying Corollary 2.5 we finally get the claim of the
theorem. �

In the proof of the next lemma, we will need to employ the notion of principal
formula of an inference rule. In case of inference rules introducing one of the classical
connectives, the notion of principal formula is just the familiar one (cf. [30]). As regards
to the rule for � in Figure 1, we take �A to be the principal formula.

Theorem 2.8 (Invertibility). Each HK logical rule proves height-bounded invertible with
preservation of top-hypersequents, namely:

(i) for any instance of a unary rule
i
G1

i
G

, if HK proves i G by way of a proof

�, then it also proves i G1 by way of a proof �1 such that h(�1) � h(�) and
top(�1) = top(�);

(ii) for any application of a binary rule i H1

j
H2
i·j

H
, if HK proves i·j

H by way of a

proof �, then it also proves i G1 and j
G2 by way of two proofs �1 and �2 such

that h(�1), h(�2) � h(�) and top(�1) � top(�2) = top(�).

Proof. We distinguish the cases according to the rule instances. For every rule
instance we proceed by induction on the height h(�) of the derivation � leading to the
end-hypersequent under consideration, and by distinguishing subcases on the basis of
the last rule applied. We deal with two rules; the other ones can be treated likewise.

• (∨ ⇒) For h(�) = 1, the claim holds vacuously. If h(�) > 1 and the principal
formula of �’s last rule occurs in the context of the end-hypersequent, then
the conclusion follows by applying the inductive hypothesis to the premise(s)
and then the same rule again. If h(�) > 1 and the last rule applied acted in the
component that we are considering, then it cannot be a � -rule due to context
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restrictions. We limit ourselves to treat the case in which the last inference is a
(⇒ ∧)-rule.

...�1
i G |A ∨ B,Γ ⇒ Δ, C

...�2
j
G |A ∨ B,Γ ⇒ Δ, D

⇒ ∧
i·j

G |A ∨ B,Γ ⇒ Δ, C ∧D

By applying our inductive hypothesis, we obtain the following four
derivations:

�′1 :
i1 G |A,Γ ⇒ Δ, C,

�′′1 :
i2 G |B,Γ ⇒ Δ, C,

�′2 :
j1 G |A,Γ ⇒ Δ, D,

�′′2 :
j2 G |B,Γ ⇒ Δ, D,

with i1 · i2 = i and j1 · j2 = j, that we recombine as follows:

... �′1
i1 G |A,Γ ⇒ Δ, C

... �′2
j1 G |A,Γ ⇒ Δ, D

�′ : ⇒ ∧
i1·j1

G |A,Γ ⇒ Δ, C ∧D

... �′′1
i2 G |B,Γ ⇒ Δ, C

... �′′2
j2 G |B,Γ ⇒ Δ, D

�′′ : ⇒ ∧
i2·j2

G |B,Γ ⇒ Δ, C ∧D

with (i1 · j1) · (i2 · j2) = i · j. Finally, we observe that top(�1) = top(�1) �
top(�′′1 ) and top(�2) = top(�′2) � top(�′′2 ). From these two facts we can easily
derive top(�) = top(�′) � top(�′′).

• (�) For h(�) = 1, the claim holds vacuously. If h(�) > 1 and the principal
formula occurs in the context of the end-hypersequent, then, as in the previous
case, the conclusion follows by applying the inductive hypothesis to the
premise(s) and then the same rule again. If h(�) > 1 and the last rule acted in the
component under consideration, then it will be a � -rule. If the principal formula
of the rule instance coincides with the principal formula of the application
of the � -rule, the claim clearly holds. Otherwise, we are in the following
situation:

...�1
i
G |Γ ⇒ B |�Γ,Γ′ ⇒ �Δ′′,�A,Δ′

�
i
G |�Γ,Γ′ ⇒ �Δ′′,�A,�B,Δ′

where, clearly, top(�1) = top(�). We can now apply our inductive hypothesis
so as to get a derivation � of i G |Γ ⇒ B |Γ ⇒ A |�Γ,Γ′ ⇒ �Δ′′,Δ′ such that
top(�) = top(�1) and h(�) � h(�1). A final application of the � -rule yields the
desired result. �
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Proposition 2.9. For any HK-proof � ending in the hypersequent G and such that
top(�) =

{
T1,T2, ... ,Tn

}
, the two formulas hfor

[
G
]

and
∧

1�i�n
hfor

[
Ti

]
are equivalent, i.e.,

� hfor
[
G
]

if, and only if, �
∧

1�i�n
hfor

[
Ti

]
.

Proof. By the soundness theorem we know that, for each logical rule, the conclusion
is K-valid just in case the premise(s) is(are) K-valid as well. Thus, it immediately
follows that � hfor

[
G
]

if, and only if, �
∧

1�i�n
hfor

[
Ti

]
. �

Theorem 2.10. The following statements hold:

(1) HK proves i G |�Γ′,Γ⇒ Δ if, and only if, HK proves i G |Γ ⇒ Δ with
Γ � Δ ⊂ AT .

(2) If HK proves i G |�Γ′⇒ with G 
= ∅, then HK proves i G.

Proof. We discuss the two items separately.

(1) We argue by induction on the height of derivations. From right to left the
proof is quite straightforward. As for the left-to-right direction, we proceed as
follows. If n = 0, then G |�Γ′,Γ⇒ Δ is either an instance of ax or of ax, and
so is G |Γ⇒ Δ. If n > 0 the proof follows by applying the inductive hypothesis
to the premises of the last rule of the derivation, as no formula in �Γ′,Γ⇒ Δ
is principal due to the design of the rules.

(2) If HK proves i G |�Γ′⇒, then, by the previous item, it also proves i G | ⇒.

Moreover,HK proves i G | ⇒ if and only if i G is also provable, thus we obtain
the desired conclusion. �

As a consequence of Proposition 2.9 and Theorem 2.10, the calculus HK allows us to
reduce the validity (invalidity) of a given end-hypersequent to the validity (invalidity)
of the conjunction of axiomatic or complementary hyperclauses which contain only
atomic sentences.2

§3. Stability and fractional interpretation.

3.1. The stability theorem. Our concern now is that of establishing that the system

HK enjoys the stability property, i.e., the fact that any two proofs ending with the
same hypersequent always display the same multiset of top-hypersequents. To put it
differently, two proofs having the same end-hypersequent may only differ in the specific
order in which their logical rules are applied.

Theorem 3.1 (Stability). If � and � are two HK-derivations ending with the same signed
hypersequent, then top(�) = top(�).

Proof. We proceed by induction on h(�). If h(�) = 1, then � = �, and so top(�) =
top(�). Otherwise, let’s distinguish two cases depending on whether �’s last rule is
unary or binary.

2 Observe that item (2) in the above theorem does not hold for other modal logics, such as
KD, in which ¬�⊥ is a theorem.
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• First, consider the situation whereby �’s last inference is an application of a
unary rule and let �1 indicate �’s subproof ending in

i
G.

�
... �1
i G1
i G

�

...
i G

Clearly, top(�1) = top(�) and h(�1) < h(�). By Theorem 2.8, there exists a
proof �1 of i G1 such that top(�1) = top(�). By inductive hypothesis, we get
top(�1) = top(�1) and, lastly, top(�) = top(�).

• Consider now the case in which �’s last inference is an application of a binary
rule and �1 and �2 are the two subproofs of � ending in i H1 and j

H2,
respectively.

...�1
i H1

...�2
j
H2

i·j
H

�

...
i·j

H

Note that top(�1) � top(�2) = top(�) and, clearly, h(�1), h(�2) < h(�).
Next, we apply Theorem 2.8 to � in order to infer the existence of two
derivations �1 and �2 ending, respectively, in i H1 and j

H2, and such
that top(�1) � top(�2) = top(�). By inductive hypothesis, top(�1) � top(�2) =
top(�1) � top(�2), thence we conclude that top(�) = top(�). �

3.2. Fractional interpretation. Insofar asHK is a bilateral system satisfying stability,
any logical formula A univocally determines a specific multiset of hyperclauses,
regardless of the particular proof designed to compute such a multiset. This paves
the way for the proof-based semantics proposed below.

Definition 4. Given a formula A, top(A) is the multiset of the top-hyperclauses in

any of the HK-derivations ending in (� or �) ⇒ A. The multiset top(A) is partitioned
into the two multisets top1(A) and top0(A) collecting, respectively, all the hyperclauses
signed by “�” and the hyperclauses signed by “�.”

Definition 5. Let Q∗ = [0, 1] ∩Q, i.e., Q∗ is the set of the rational numbers in the
closed interval [0, 1]. The evaluation function

[[
·

]]
: F �→ Q∗ is defined as follows:

for any logical formula A,
[[
A

]]
=

#top1(A)
#top(A)

.

Example 3.1. Getting back to the derivation � proposed in Figure 2, we have:

top0(�) =
{
⇒ p | ⇒ p |�(�p → p) ⇒

}
,

top1(�) =
{
p ⇒ p |�(�p → p) ⇒

}
.

Under Definition 5, we have
[[
�(�p → p) → �p

]]
= 0.5. In effect, any HK-proof

ending in ⇒ �(�p → p) → �p displays one identity axiom out of two axioms in
total.

Figure 3 lists some other formulas of K together with their corresponding fractional
value. For example, below is the proof of (�p → �p) ∧ (�q ∧ �r):
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Formula Value

�(p ∨ ¬p) → (�p ∨ �¬p) 0.75

�(�p→ p) → �p 0.5

(�p→ �q) → �(p→ q) 0.5

�(p→ ♦q) ∧ (♦p→ ♦q) 0.5

(�p→ �p) ∧ (�q∧ �r) 0.3

((p q) r) �(s s) 0.25

Fig. 3. Some modal formulas together with their fractional value.

ax
� p ⇒ p |�p ⇒

�� �p ⇒ �p ⇒→
�⇒ �p → �p

ax�⇒ q
��⇒ �q

ax�⇒ r ��⇒ �r ⇒ ∧�⇒ �q ∧ �r ⇒→
�⇒ (�p → �p) → (�q ∧ �r)

As the proof displays one identity axiom out of three axiom applications in total,
we get

[[
(�p → �p) ∧ (�q ∧ �r)

]]
= 0.3.

Theorem 3.2 (Conservativity). For any formula A,
[[
A

]]
= 1 if, and only if, � A.

Proof. By Theorem 2.4, any formula A is K-valid just in case top1(A) = top(A). �

Notoriously, the lack of truth-functionality is an endemic phenomenon when
modalities come into play. It should be observed, however, that in a fractional setting
truth-functionality fails already at the very classical level; in this regard, easy examples
have been presented in [24].

Let F c be the language of classical propositional logic. The next theorem establishes
the surjectivity of the interpretation function

[[
·

]]
. In particular, we have:

Theorem 3.3. For any q ∈ Q∗: (i) there is a formula A ∈ F c s.t.
[[
A

]]
= q, and (ii)

there is a formula B ∈ F – F c s.t.
[[
B

]]
= q.

Proof. Let q = m/n, where m, n ∈ N+ and m � n. (i) Consider the formula
∧

(p ∨
¬p)m ∧

∧
pn–m. It is immediate to see that

[[ ∧
(p ∨ ¬p)m ∧

∧
pn–m

]]
= m/n = q.

(ii) We consider now the modal formula
∧

(�(p ∧ q) → �p)m ∧
∧

(�p)n–m in F –
F c . It turns out, similarly, that

[[ ∧
(�(p ∧ q) → �p)m ∧

∧
(�p)n–m

]]
= m/n = q. �

Remark 3. As corollary of Theorem 3.3 and from the density of Q∗, it results that
for any pair of modal formulas A, B with

[[
A

]]
<

[[
B

]]
, there always exists a formula

C ∈ F c such that
[[
A

]]
<

[[
C

]]
<

[[
B

]]
.

In a sense, the fractional approach illustrates the continuity between modal logic
and classical logic. This claim is strengthened by observing that, in general, for every
formula A,

[[
A

]]
=

[[
�A

]]
. However, under fractional semantics modal logic is not

monotone, unlike classical logic. To witness this fact, consider the formula �p ∧ (p ∨
¬p), which gets the fractional value 1/2, whereas the formula ¬�(q ∨ r) ∨ (�p ∧ (p ∨
¬p)) receives the value 1/3. Nevertheless, a partial result on monotonicity can be
recovered if we restrict to classical formulas.
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Lemma 3.4. Let � be a derivation in HK of the hypersequent i G |Γ ⇒ Δ. For any
multiset Π,Σ ⊂ AT , there is a derivation �′ of j

G |Π,Γ ⇒ Δ,Σ such that j � i ,
#top(�) = #top(�′) and #top1(�′) � top1(�).

Proof. The proof is led by induction on h(�).
If h(�) = 0, then i G |Γ ⇒ Δ is clearly an instance of an axiom. In particular, when

i = 1, we have #top1(�′) = #top1(�); otherwise, #top1(�′) � #top1(�), as the addition
of Π,Σ may turn a complementary hyperclause into an identity one.

If h(�) > 0, we proceed by cases considering �’s last rule. We detail here just the case
in which the last rule is an application of the � -rule. There are two further subcases to
be distinguished depending on whether the � -rule directly involves the sequent Γ ⇒ Δ
or some other sequent-components in the hypersequent under consideration. In the
second case, the claim follows by inductive hypothesis and an application of � . In the
first, we have Γ ⇒ Δ ≡ �Γ′,Γ′′ ⇒ �Δ′,Δ′′,�A, with Γ′′ � Δ′′ ⊆ AT and:

i G |Γ′ ⇒ A |�Γ′,Γ′′ ⇒ �Δ′,Δ′′
�

i G |�Γ′,Γ′′ ⇒ �Δ′,Δ′′,�A

By inductive hypothesis we obtain a derivation � of j
G |Γ′ ⇒ A |�Γ′,Γ′′,Π ⇒

�Δ′,Δ′′,Σ, where j � i , #top(�) = #top(�) and #top1(�) � #top(�). By an applica-
tion of � we get j G |�Γ′,Γ′′,Π ⇒ �Δ′,Δ′′,Σ,�A. �

Theorem 3.5. Let A be a modal formula with
[[
A

]]
= q, then for every formula B in F c ,[[

A ∨ B
]]
� q.

Proof. Let
[[
A

]]
= q and let us consider a derivation � of i⇒ A ∨ B . We can

apply the rules of HK regardless of their order, so we decompose i⇒ A ∨ B and
we obtain derivations �1, ... , �n of sequents

i1 Γ1 ⇒ A,Δ1 , ... ,
in Γn ⇒ A,Δn where

each Γi ,Δi is a multiset of atomic formulas obtained by the analysis of B and
i = i1 · ... · in.

We have

top1(A ∨ B) = top1(�1) � ··· � top1(�n),

top(A ∨ B) = top(�1) � ··· � top(�n).

By Lemma 3.4, it easily follows that
[[
A

]]
�

[[
A ∨ B

]]
. �

Definition 6. Let q ∈ Q∗. Then, the bounded consequence relation Γ �q A holds just

in case
[[∧

Γ → A
]]
� q. Accordingly, for every q ∈ Q∗ we indicate with HKq the logic

whose set of theorems is
{
A ∈ F |

[[
A

]]
� q

}
.

Theorem 3.6. For every q ∈ Q∗ the bounded consequence relation �q is reflexive and
monotonic with respect to classical formulas.

Proof. Reflexivity follows from the fact that
[[
A→ A

]]
= 1 � 1. The monotonicity

property follows from Lemma 3.5. �
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D1 = �(p1 → p1) → �(p2 → p1)
) ∨

∨ �(p2 → p2) → �(p1 → p2)
)

D2 = �(p1 → p1) → �(p2 → p1) ∨
∨ �(p1 → p1) → �(p3 → p1)

) ∨
∨ �(p2 → p2) → �(p1 → p2)

) ∨
∨ �(p2 → p2) → �(p3 → p2)

) ∨
∨ �(p3 → p3) → �(p1 → p3)

) ∨
(p3 p3) (p2 p3)

Fig. 4. Dugundji’s formulas D1 and D2.

§4. A new look at Dugundji’s theorem.

4.1. Dugundji’s theorem. Intuitively, Dugundji’s theorem put an end to the attempts
to characterize modal logic by a truth-functional and finite-valued semantics, by stating
the non-reducibility of the notion of possibility to an intermediate value between 0 and
1. Although the scope of the original formulation of Dugundji’s theorem covers logics
from S1 to S5, this result can also be extended to K modulo slight modifications, as
recently shown by Coniglio and Peron [8]. Let us first introduce the notions of matrix
semantics and that of Dugundji’s formula.

Definition 7 (Matrix, valuation, model). A matrix M on the language F consists of
a triple 〈M,O, D〉, where M is a non-empty set of truth-values, O is a set of operations
on M interpreting the connectives of the language, and D ⊆M is a non-empty set of
designated truth-values. A matrix M is said to be finite just in case the set M is finite,
otherwise it is infinite.

A valuation on a matrix M is a homomorphism (w.r.t. the operations in O) v : F →
M . A formula A is true, relative to v, if and only if v(A) ∈ D. If A is true under any
valuation v, then we say that M verifies A; in symbols, M � A. Accordingly, a matrix M
is a model for the logic K if, for any formula A, whenever HK proves ⇒ A, A is verified
in M. A matrix M characterizes the logic K if the following biconditional holds: HK
proves the sequent ⇒ A if, and only if, M � A.

Definition 8 (Dugundji’s formulas3). For all n ∈ N, the formula Dn is defined as
follows:

Dn ::=
∨

(�(pi → pi) → �(pj → pi)),

where 1 � i , j � n + 1, and i 
= j.
Example 4.1. Formulas D1 and D2 are shown in Figure 4.

Theorem 4.1 (Dugundji’s theorem for K). The modal logic K cannot be characterized
by a finite matrix.

Proof. We propose a sketch of the proof as it has been provided in [8]. The whole
argument takes shape by combining the two following results.

3 What we call here “Dugundji’s formulas” is actually the hierarchy of formulas introduced
by Coniglio and Peron in order to generalize further Dugundji’s theorem. In his 1940 paper
Dugundji identified a different sequence of formulas, inspired by the ones introduced by
Gödel in 1932 to establish an analogous result for intuitionistic propositional logic (the birth
of intermediate logics being a byproduct) [12].
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(i) For any n-valued matrix M, if M characterizes K, then M verifies the formula
Dn. As a matter of fact, since there are exactly n + 1 propositional variables
occurring inDn, for every valuation v there will be i, j such that v(pi) = v(pj).
Thence, upon considering that �(pi → pi) → �(pi → pi) is a theorem of HK,
it is immediate that v(Dn) ∈ D.

(ii) There exists a matrix with infinite elements M∞ which is a model for K and no
Dn is verified by M∞. By definition, if ⇒ A is provable in HK, then v(A) ∈ D,
for all v on M∞. That is, by contraposition, one has that the formula Dn is
not provable in HK, for every n ∈ N. Hence, K cannot be characterized by a
matrix with a finite number of elements. �

4.2. Dugundji’s theorem as a corollary of underivability. We turn now to a different
proof of Dugundji’s theorem which gives expression to an underivability result relative
to K. In particular, the proof is obtained through a purely syntactic argument which

exploits the analyticity of HK, namely the fact that for each of the HK logical rules,
the formulas in the premise(s) are always the subformula of some subformulas in the
conclusion. This result allows us to streamline item (ii) in the proof of Theorem 4.1
by avoiding any reference to the infinite matrix model M∞. In short, for every n ∈ N,
Dn is not derivable in HK.4

To reveal this, the following lemma is required.

Lemma 4.2. For any formula A, if HK proves G |A→ A,Γ ⇒ Δ, then HK also proves
G |Γ ⇒ Δ.

Proof. Immediate by admissibility of the cut-rule in HK and so in HK. �

Theorem 4.3. For every n ∈ N, HK does not prove ⇒ Dn or, equivalently, HK proves
�⇒ Dn.

Proof. Let us assume, by contradiction, the derivability of the sequent ⇒ Dn in HK.
By invertibility of the logical rules, the hypersequent:

(p1 → p1)n, ... , (pn+1 → pn+1)n ⇒ p2 → p1 | ··· | (p1 → p1)n, ... , (pn+1 → pn+1)n

⇒ pn+1 → pn
would be also derivable. By Lemma 4.2, one can finally get the derivability of the
hypersequent:

⇒ p2 → p1 | ··· | ⇒ pn+1 → pn.
By repeatedly analyzing this hypersequent by means of the (⇒→)-rule one would
obtain the provability of an instance of the ax-rule. �
Remark 4. Theorem 4.3 relies on the fact that cut is admissible in HK, which is the
deductive upper bound of the chain of extended systems HKq . This implies that the
addition of arbitrary identities in the left-hand side of the sequent sign does not affect
the derivability relation. However, this is not true of bounded systems, since bounded
consequence relations are not transitive.

4 Of course, the underivability of Dugundji’s formulas can indeed be shown also by means
of a more standard sequent calculus or of a suitable tableaux system for K. However, such
systems do not allow for a fractional reading of the theorem.
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Theorem 4.3 provides the ground for an alternative proof of Dugundji’s theorem,
whereby an infinite matrix is not required.

Theorem 4.4 (Dugundji’s theorem for K : fractional version). The modal logic K cannot
be characterized by a finite matrix.

Proof. Suppose there is an n-valued matrix M which characterizes K, i.e., M � A
iff the sequent ⇒ A is provable in HK. As in the proof of Theorem 4.1, M satisfies
Dugundji’s formula Dn. Therefore, by hypothesis K � Dn, but HK �⇒ Dn against
Theorem 4.3. �

4.3. A function for Dugundji’s formula. Finally, we define the functionϕ : N+ �→ Q∗

by putting ϕ(n) =
[[
Dn

]]
, i.e., ϕ yields a complete description of the fractional values

assigned with every formula Dn. A simple calculation reveals that the number of
disjuncts in any formula Dn is exactly n(n + 1). We can now prove the following:

Theorem 4.5. ϕ(n) = 1 –
1

2 2n2(n+1)
, for any n ∈ N+.

Proof. The proof amounts to showing that
[[
Dn

]]
= 1 –

1

2 2n2(n+1)
, for any

Dugundji’s formula Dn. In particular, for every n ∈ N, we apply rules ⇒ ∨,⇒→
and � to decompose the formula Dn into a hypersequent formed by a multiset of
sequents each one of them having the following general form:

(p1 → p1)n, ... , (pn+1 → pn+1)n, pj ⇒ pi ,

where i 
= j and 1 � i, j � n + 1. The number of components is n2 + n (we omit
the component containing only boxed formulas in the antecedent, which can be
removed without affecting the counting of the top-hypersequents). Since the number
of implications in the antecedent of every component is (n + 1) · n, the total number of
implications to be analyzed in the hypersequent will be (n + 1) · n · (n2 + n). Therefore,
the number of top-hypersequents is 2(n+1)2·n2

.
We now need to compute the number of non-axiomatic top-sequents. Given a

component:

(p1 → p1)n, ... , (pn+1 → pn+1)n, pj ⇒ pi ,

there are n(n – 1) implications whose analysis does not lead to any axiomatic top-
hypersequent, namely the implications pk → pk , where k 
= j, i . Therefore, we can
conclude that the hypersequent whose analysis will lead to complementary axioms has
every component of the form:

(pk1 → pk1 )n, ... , (pkn–1 → pkn–1 )n, pn+1
j ⇒ pn+1

i ,

where {k1, ... , kn–1} = {1, ... , n + 1} – {j, i}. Since the components are n2 + n, the
number of complementary top-hypersequents is 2(n–1)·n·(n2+n) = 2n

4–n2
.

As a consequence, we can state that for every n � 1:

[[
Dn

]]
=

#top(Dn) – #top0(Dn)
#top(Dn)

=
2(n+1)2·n2

– 2n
4–n2

2(n+1)2·n2 = 1 –
1

2 2n2(n+1)
.

�
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Example 4.2.

[[
D1

]]
= 1 –

1
2 4 = 0.9375 and

[[
D2

]]
= 1 –

1
2 24 = 0.999999940395355.

The next results offer yet another perspective on Dugundji’s theorem through
fractional semantics.

Proposition 4.6. For any m, n ∈ N+ such that n < m, we have 0 <
[[
Dn

]]
<

[[
Dm

]]
.

Proof. It suffices to observe that if n < m, then
(

1
4

)m3+m2

<
(

1
4

)n3+n2

and thus 1 –(
1
4

)n3+n2

< 1 –
(

1
4

)m3+m2

. �

Corollary 4.7. For every n ∈ N, HK does not prove ⇒ Dn.

Proof. Straightforwardly by Proposition 4.6. �

Proposition 4.6 marks an informational refinement with respect to standard
Kripkean semantics. In fact, the fractional approach allows for a fine-grained analysis
of K-invalidities. In particular, the sequence of rationals

[[
D0

]]
,
[[
D1

]]
, ... generated by

the fractional evaluation of Dugundji’s formulas proves rapidly approaching near to
its limit 1 without ever reaching it.

§5. Concluding remarks. In this paper, we syntactically framed the basic modal

logic K within the bilateral hypersequent calculus HK satisfying stability and

invertibility of the logical rules. We showed how to use HK in order to fractionally
interpret modal formulas: any modal formula A is evaluated in terms of the ratio
between axiomatic top-hypersequents and the totality of the top-hypersequents
figuring in any derivation of A. Such a result has been achieved by generalizing and,
then, adapting a methodology originally designed for classical propositional logic.
Moreover, we argued that fractional semantics also conveys a different way of thinking
about proof-theoretic semantics due to its commitment to the primacy of the notion of
(analytic) proof. Here, in particular, our semantic treatment of K should be understood
as a step toward a proof-theoretic semantics in modal settings (for other attempts in
this direction see [19, 23]).

In conclusion, we would like to hint at some themes for further research. First of all,
it could be interesting to extend the fractional approach so as to include other systems
of modal logic. Such an extension can be conducted along two different directions. On
the one hand, one could take into account non-normal modal logics weaker than K,
not characterized by Kripkean semantics, as well as stronger logics, such as S4, serving
as base of epistemic logics. On the other hand, it would be tempting to explore the
relation with other proof-theoretic frameworks. We are inclined to think, in fact, that
the fractional interpretation is invariant under other calculi (such as nested sequents,
labeled sequents, and prefixed tableaux), as long as these fulfill the three requirements

of bilateralism, invertibility and stability. Moreover, the properties of the system HK
(and its possible extensions) could be also investigated from a more traditional proof-
theoretic perspective by presenting a Gentzen-style cut-elimination algorithm.

Lastly, it is worth observing that fractional semantics can be also conceived as an
attempt to introduce a measure of invalidity, blurring the rigid partition between valid
and invalid formulas. In this respect, our treatment could be fruitfully related to the
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work in [15] in which some semantic criteria are introduced in order to measure the
inconsistency of modal formulas.
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comments which helped us to improve the overall quality of the paper.
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