
Appendix B

Basic Ideas from Topology

We are assuming that the reader is familiar with the basic concepts of topology,
and we review some definitions and results used for the reader’s convenience.
All of the concepts in this appendix are covered in standard textbooks on topol-
ogy, for example, Engelking (1989). We mention again that we write U ⊆◦ X if
U is an open subset of a topological space X .

B.1 Initial and Final Topologies

Let X be a set and ( f i )i∈I be a family of mappings f i : X → Yi to topological
spaces Yi . The coarsest topology on X making each f i continuous is called the
initial topology on X with respect to the mappings ( f i )i∈I . Dually, if {gi : Yi →
X }i∈I is a family of mappings from topological spaces to X there is a finest
topology making all gi continuous. This topology is called the final topology
with respect to the gi .

B.1 Remark Note that the sets
⋂

i∈F f −1
i (Ui ), where F ⊆ I is finite and

Ui ⊆◦ Yi form a basis of the initial topology (even if we restrict our choice of
Ui to a basis of the topology of Yi ).

B.2 Lemma The initial topology on X with respect to a family ( f i )i∈I is
the unique topology which satisfies g : Z → X is continuous if and only if
f i ◦ g : Z → Yi is continuous for every i ∈ I.

Proof Assume first that X carries the initial topology I. Then clearly if g

is continuous f i ◦ g is continuous for every i ∈ I. Conversely, since S �
{ f −1

i (Vi ) | Vi ⊆◦ Yi } is a subbase for I by Remark B.1, we see that f i ◦ g

continuous implies that g−1(W ) is open in Z for each W ∈ S. Thus g is con-
tinuous. We conclude that I has the claimed property.
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B.1 Initial and Final Topologies 207

Now let T be another topology which satisfies the above property. Then the
identity maps id : (X,I) → (X,T ) and id : (X,T ) → (X,I) are continuous,
whence both topologies coincide. �

B.3 Example If X is a subset of a topological space Y , the induced, or sub-
space, topology is the initial topology with respect to the inclusion ι : X → Y ,
x �→ x.

B.4 Example We always endow the cartesian product X �
∏

i∈I Xi of
a family (Xi )i∈I of topological spaces with the product topology, which is
the initial topology with respect to the family (pri )i∈I of projections
pr j ((xi )I ) � x j .

Exercises

B.1.1 Let X be a topological space endowed with the final topology with
respect to a family of mappings f i : Xi → X . Show that g : X → Y is
continuous if and only if g ◦ f i is continuous for all i ∈ I.

B.1.2 Let (Ei )i∈I be locally convex spaces and E � {(xi )i∈I ∈
∏

i∈I Ei |
almost all xi = 0}. Endow E with the final topology with respect to
the family of inclusions ι j : E j → E, x �→ (xi )i∈I , with x j = x and
xi = 0 if i � j. Show that:

(a) The resulting topology is the box topology, that is, the topology
generated by the base of sets E∩∏

i∈I Ui , where for every i ∈ I,
Ui runs through a topological base of Ei .

(b) If I is a countable set and f i : Ei → F is a continuous linear
map to a locally convex space F, then there exists a unique con-
tinuous linear map f : E → F with f ◦ ι j = f j . This proves, in
particular, that the box topology turns E into the direct locally
convex sum of the spaces Ei .
Hint: For continuity of f consider the preimage of a 0-neigh-
bourhood V in F. Construct inductively a sequence (Vn )n∈N of
0-neighbourhoods with Vn + Vn ⊆ Vn+1.

(c) Let I be uncountable and Ei = R for all i ∈ I. Show that the
summation map s : {(xi )i ∈ RI | xi = 0 for almost all i} → R,
(xi ) �→

∑
i∈I xi is discontinuous in the box topology. Thus the

box topology is properly coarser than the direct sum topology in
this case.
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208 Basic Ideas from Topology

B.2 The Compact Open Topology

Let X,Y be (Hausdorff) topological spaces and C(X,Y ) the set of all continu-
ous mappings from X to Y . We define a topology on C(X,Y ) by declaring a
subbase consisting of the following sets:

�K,U� � { f ∈ C(X,Y ) | f (K ) ⊆ U }, K ⊆ X compact, U ⊆◦ Y.

The resulting topology is called the compact open topology and we write
C(X,Y )c.o. for the set of continuous mappings with this topology.1

B.5 Remark As singletons are compact, we see that the inclusion map

C(X,Y )c.o. → Y X �
∏

x∈X
Y

is continuous if we equip the right-hand side with the product topology. Thus
C(X,Y )c.o. will again be Hausdorff and the evaluations evx : C(X,Y )c.o.→
Y,evx ( f ) � f (x) are continuous for every x ∈ X .

We will now show that if the target is a locally convex space the compact
open topology coincides with the topology of compact convergence.

B.6 Let (E, {pi }i∈I ) be a locally convex space and K ⊆ X be a compact
subset of a topological space. Then we define a seminorm on C(X,E)c.o. via

‖ f ‖pi,K ( f ) � sup
x∈K

pi ( f (x)).

Note that these seminorms are separating, since for γ ∈ C(X,E) with γ � 0
we find x ∈ X with γ(x) � 0 and thus ‖γ‖pi, {x } � 0 for some i ∈ I. The
locally convex topology generated by all seminorms (‖·‖pi,K )i∈I, K ⊆X compact

is called topology of compact convergence.

B.7 Lemma Let X be a topological space and E a locally convex space.
Then the compact open topology coincides with the topology of compact con-
vergence on C(X,E). As a consequence, C(X,E)c.o. is again a locally convex
space if E is locally convex.

Proof First note that for every seminorm ‖·‖K,p for K ⊆ X compact and p a
continuous seminorm on E, we have

{ f ∈ C(X,E) | ‖ f ‖K,p < r } = �K, {x ∈ E | p(x) < r }� . (B.1)

To see that the topology of compact convergence is finer than the compact open
topology, it suffices to prove that all sets �K,U� with K ⊆ X compact and

1 If you prefer a video walkthrough covering (parts of) the material in this appendix, then take a
look at www.youtube.com/watch?v=vGs-C9eEdJ0.
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B.2 The Compact Open Topology 209

U ⊆◦ E are open in that topology. Now let γ ∈ �K,U�. Then γ(K ) ⊆ U ⊆◦ E
is compact and by Lemma A.2(g) there is an open 0-neighbourhood W ⊆◦ E
such that γ(K ) + W ⊆ U . We choose a seminorm p and r > 0 such that
V � {x ∈ E | p(x) < r } ⊆ W . Then γ + �K,V � is an open neighbourhood
of γ in the topology of compact convergence by (B.1). Moreover, γ + �K,V �
is contained in �K,U� since γ(x) + η(x) ∈ γ(K ) + V ⊆ U for all η ∈ �K,V �
and x ∈ K . This shows that �K,U� is a γ-neighbourhood in the topology of
compact convergence, hence open.

Conversely, let γ ∈ C(X,E). Thanks to Lemma A.2(e) and (B.1), we see that
the sets γ + �K, {y ∈ E | p(y) < r }� form a basis of open γ-neighbourhoods in
the topology of compact convergence. Thus it suffices to prove that these sets
are open in the compact-open topology. For this choose 0 ∈ V ⊆◦ E such that
V − V ⊆ {y ∈ E | p(y) < r }. As γ |K is continuous, we find for every x ∈ K
an x-neighbourhood Kx ⊆◦ K with γ(K x ) ⊆ γ(x) +V . Using compactness, we
choose a finite set F ⊆ K with K =

⋃
x∈F Kx . We will now show that

Ωγ �
⋂

x∈F
�K x , γ(x) + V � ⊆ γ + �K, {y ∈ E | p(y) < r }� .

If η ∈ Ωγ , then we find for every y ∈ K a x ∈ F with y ∈ Kx . Thus (γ−η)(y) ∈
γ(x) +V − (γ(x) +V ) ⊆ V −V ⊆ U and thus γ − η ∈ �K, {y ∈ E | p(y) < r }�.
Now Ωγ is open in the compact-open topology and contains γ by choice of the
Kx . Thus both topologies coincide. �

B.8 Lemma Let A,X,Y, Z be topological spaces and h : A → X, f : Y → Z
be continuous maps. Then the pushforward and the pullback map

f∗ : C(X,Y )c.o. → C(X, Z )c.o., g �→ f ◦ g,
h∗ : C(X,Y )c.o. → C(A,Y )c.o., g �→ g ◦ h

are continuous.

Proof We begin with the pushforward f∗ and show that f −1
∗ (�K,U�) is open

for every K ⊆ X compact and U ⊆◦ Y . For γ ∈ C(X,Y ) we see that

f∗(γ) = f ◦ γ ∈ �K,U� ⇔ f (γ(K )) ⊆ U ⇔ γ(K ) ⊆ f −1(U)

⇔ γ ∈ �K, f −1(U)� .

Thus f −1
∗ (�K,U�) = �K, f −1(U)� ⊆◦ C(X,Y )c.o. by continuity of f .

Now for the continuity of the pullback h∗, pick L ⊆ A compact and V ⊆◦ X .
Then for γ ∈ C(X,Y ), we have h∗(γ) = γ◦h ∈ �L,V � if and only if γ(h(L)) ⊆
V . In other words, if and only if γ ∈ �h(L),V �. By continuity of h, h(L) is
compact and thus ( f ∗)−1(�L,V �) = �h(L),V � ⊆◦ C(X,Y )c.o. and the pullback
is continuous. �
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210 Basic Ideas from Topology

B.9 Lemma If X,Y, Z are topological spaces and prY : Y × Z → Y and
prZ : Y × Z → Z the canonical projections, then the map

Θ : C(X,Y × Z )c.o. → C(X,Y )c.o. × C(X, Z )c.o., γ �→ (
(prY )∗(γ), (prZ )∗(γ)

)

is a homeomorphism, whence C(X,Y × Z )c.o. � C(X,Y )c.o. × C(X, Z )c.o..

Proof By Lemma B.8 the map Θ is continuous. Clearly Θ is a bijection and
thus we only need to show that it takes open sets in a subbase to open sets to
see that Θ is a homeomorphism. Now open rectangles U × V , U ⊆◦ Y , V ⊆◦ Z
form a subbase of the product topology, whence Exercise B.2.2 shows that the
sets �K,U × V �, with K ⊆ X compact, form a subbase of the topology on
C(X,Y × Z )c.o.. Now Θ(�K,U ×V �) = �K,U� × �K,V � is open in C(X,Y )c.o.×
C(X, Z )c.o., and so Θ is open. �

B.10 Lemma Let X,Y be topological spaces. If X is locally compact, the
evaluation map

ev : C(X,Y )c.o. × X → Y, ( f , x) �→ f (x)

is continuous.

Proof For U ⊆◦ Y we will show that ev−1(U) is open in C(X,Y )c.o. × X . To
this end, let (γ, x) ∈ ev−1(U), that is, γ(x) ∈ U . By continuity of γ and local
compactness of X there is a compact x-neighbourhood K such that γ(K ) ⊆ U .
Thus �K,U� ×K is a (γ, x)-neighbourhood such that ev(�K,U� ×K ) ⊆ U . We
see that ev−1(U) is open and the evaluation is continuous. �

B.11 Proposition Let X,Y, Z be topological spaces such that Y is locally
compact. Then the composition map

Comp: C(X,Y )c.o. × C(Y, Z )c.o. → C(X, Z )c.o., ( f ,g) �→ g ◦ f

is continuous.

Proof Let K ⊆ X be compact and U ⊆◦ Z . Pick (γ,η) with Comp(γ,η) ∈
�K,U�. We have η(γ(K )) ⊆ U . By Exercise B.2.2 we can pick a compact
neighbourhood L of γ(K ) in η−1(U) and set W � L◦ (interior). Then �K,V � ×
�L,U� is a neigbourhood of (γ,η) which is contained in Comp−1(�K,U�) by
construction. Thus the composition is continuous. �

We will now consider continuous mappings on cartesian products. If f : X ×
Y → Z is continuous we can form for every x ∈ X a mapping f (x, ·) : Y → Z ,
y �→ f (x, y). Since f is continuous every partial map f (x, ·) is continuous. It
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B.2 The Compact Open Topology 211

turns out that the mapping which assigns to each x ∈ X the partial map f (x, ·)
is continuous as a mapping into the space of continuous functions.

B.12 Proposition Let X,Y, Z be topological spaces and f : X × Y → Z be
continuous. Then f ∨ : X → C(Y, Z )c.o., f ∨(x) � f (x, ·) is continuous.

Proof Consider �K,U� ⊆ C(Y, Z )c.o.. We then compute

( f ∨)−1(�K,U�) = {x ∈ X | f (x, y) ∈ U for all y ∈ K }
= {x ∈ X | f ({x} × K ) ⊆ U }
= {x ∈ X | {x} × K ⊆ f −1(U)}.

Now f −1(U) is an open neighbourhood of the compact set {x} × K in the
cartesian product X × Y . From Engelking (1989, Lemma 3.1.15) we deduce
that there are A ⊆◦ X and B ⊆◦ Y such that {x} × K ⊆ A × B ⊆ f −1(U). This
shows that ( f ∨)−1(�K,U�) is a neighbourhood for every x contained in it and
thus an open set. Since sets of the form �K,U� form a subbase of the compact
open topology, f ∨ is continuous. �

B.13 Proposition (Exponential law for the compact open topology) Let X,Y, Z
be topological spaces and Y be locally compact. Then a mapping f : X →
C(Y, Z )c.o. is continuous if and only if the map

f ∧ : X × Y → Z, (x, y) �→ f (x)(y)

is continuous.

Proof If f is continuous, then f ∧(x, y)= ev( f (x), y) is continuous by Lemma
B.10. Conversely, assume that f ∧ is continuous. Then a quick calculation
shows that f = ( f ∧)∨, whence f is continuous by Proposition B.12. �

It is worth noting that local compactness is a crucial ingredient to obtain
the exponential law. Indeed one can prove that under some requirement to the
topological spaces involved, the exponential law can only hold if the topo-
logical space Y is locally compact. See Engelking (1989, Exercise 3.4.A) for
details.

Exercises

B.2.1 Prove that if X carries the final topology with respect to a family
gi : Yi → X, i ∈ I, then f : X → Z is continuous if and only if f ◦ gi
is continuous for every i ∈ I.
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212 Basic Ideas from Topology

B.2.2 Let X,Y be topological spaces and S be a subbase for the topology on
Y . Show that the sets �K,V � with K ⊆ X compact and V ∈ S form a
subbase for the compact open topology on C(X,Y ).

B.2.3 Let X be a locally compact topological space and K ⊆ X compact
with K ⊆ U ⊆◦ X . Show that there is a compact set L ⊆ U whose
interior contains K .

B.2.4 Let K be a compact topological space and Ω ⊆◦ K × Y . Prove that the
set

Ω′ � { f ∈ C(K,Y ) | graph( f ) ⊆ Ω}

is open in C(K,Y )c.o.. Here graph( f ) = {(x, f (x)) | x ∈ K } ⊆ K ×Y .
Hint: If f ∈ Ω′, then for every x ∈ K there are open Ux ⊆◦ K,Vx ⊆◦ Y
with (x, f (x)) ∈ Ux × Vx ⊆◦ Ω.

B.2.5 Use Proposition B.13 to give an alternative proof of the continuity of
the composition map Comp from Proposition B.11.
Hint: What is Comp∧?
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