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ON THE INTERPOLATION OF BIVARIATE POLYNOMIALS
RELATED TO THE DIFFIE-HELLMAN MAPPING

ElKE KlLTZ AND ARNE WlNTERHOF

We obtain lower bounds on degree and weight of bivariate polynomials representing
the Diffie-Hellman mapping for finite fields and the Diffie-Hellman mapping for elliptic
curves over finite fields. This complements and improves several earlier results. We
also consider some closely related bivariate mappings called P-Diffie-Hellman map-
pings introduced by the first author. We show that the existence of a low degree
polynomial representing a P-Diffie-Hellman mapping would lead to an efficient algo-
rithm for solving the Diffie-Hellman problem. Motivated by this result we prove lower
bounds on weight and degree of such interpolation polynomials, as well.

1. INTRODUCTION

Let q be a prime power, F, the finite field of order q, and 7 a nonzero element of F,
of order d \ q - 1. For breaking the Diffie-Hellman key exchange (see for example [11])
it would be sufficient to have an easy polynomial / € F,LY, Y] satisfying / (7x ,7y) = 7I!/

for all pairs (x, y) € S of a large subset 5 C { 0 , 1 , . . . , d - I} 2 .

In Section 3 we prove lower bounds on degree and weight, that is, the number of
nonzero coefficients, of such / . The new lower bounds on the degree improve and extend
the result of [15] and complement results of [9]. The method in [9] is designed for d = q-l
and loses its power for d < q — 1 in contrast to the method of this paper. Lower bounds
on the weight have only been known for the univariate Diffie-Hellman mapping,

foil*) = I1 ' ,

yet (see [3, 10, 13, 14]).-

In Section 4 we extend our results to the case of the more general P-Diffie-Hellman
mappings introduced in [5],

P - d h ( 7 I , 7 y ) = 7 i ' ( l ' ! ' ) ,

for a bivariate polynomial P of small degree D > 2 with respect to d. (See also [6] for the
univariate analogue.) If D is small then these investigations are motivated by an efficient
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306 E. Kiltz and A. Winterhof [2]

algorithm, also given in Section 4, that solves the Diffie-Hellman problem if some values
of P-dh are known.

Initially, the DifHe-Hellman mapping was suggested for use in practice for the mul-
tiplicative group of a finite field. Subexponential algorithms for solving the discrete
logarithm problem and thus evaluating the Diffie-Hellman mapping in finite fields are
known (see for example [11]) which motivates considering other groups. An alternative
used in practice is the group of points on an elliptic curve over a finite field suggested
independently by Koblitz [7] and Miller [12]. Section 5 deals with the Diffie-Hellman
problem for elliptic curves. In particular, we improve an earlier result of [8].

2. PRELIMINARIES

We start with a useful relation between the number of zeros and the degree of a mul-
tivariate polynomial which extends the well-known relation for univariate polynomials.

LEMMA 1 . Let D be an integral domain, n € N, 5 C ID), and f G B[XU ..., Xn] a
polynomial of total degree D with at least N zeros. If f is not the zero polynomial, then
we have

N

A proof of Lemma 1 can be found in [4, Lemma 6.44.].

The following result may be of independent interest. -

LEMMA 2 . Let 7 e F , be an element of order d, Q the group generated by 7, n
a positive integer, and f € ¥q[Xi,..., Xn] a nonzero polynomial of local degree at most

d — Lin each variable with at least N zeros in Qn. Then for the weight w(/) of f we have

PROOF: We prove the equivalent claim

by induction on n. The case n = 1 follows by [8, Lemma 1]. For the convenience of the

reader we include the short proof.

Put w =w( / ) , let M ^ d - N be the number o f O ^ x ^ d - 1 with f(-f) / 0 and

T the number of pairs (y,i), 0 < y < d - 1, 0 ^ i s? w - 1 with f{jy+i) ^ 0. Since

ji _ ^x+d w e n a v e j - _ WM Using properties of Vandermonde matrices we can verify

that for every 0 < y < d — 1 there exists a n O ^ i ^ w — 1 with f{yy+t) # 0 and thus

w{d- N)^wM = T ^ d.
For the induction step we write / as a polynomial in Xn with coefficients in
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with 0 ^ j i < j2 < • • • < jk ^ d - 1 and f{ ^ 0. Then by induction hypothesis each /;
has at most rf""1 ( l - l /w( / i ) ) zeros in Gn~l and / i , . . . , / * and / have at most

cf

common zeros in Qn. Furthermore, for each a G Qn~l with fi(a) ^ 0 for some 1 ^ i < k,
the univariate polynomial f(a,X) has at most

zeros, so that the total number of zeros of / in Qn is bounded by

and the result follows. D

The following lemma is motivated by Newton's interpolation formula and can be
proven by simple induction (see [6, Lemma 1]).

LEMMA 3 . Let D be a commutative ring with identity 1, P G ED[X] a nonzero
polynomial of degree D with leading coefficient w, and B an integer with 0 ^ B ^ D.
Then

D-B

is a polynomial of degree at most B with leading term (wD\)/(Bl)XB.

This result can be easily extended to bivariate polynomials.

LEMMA 4 . Let D be a commutative ring with 1, P G D[X, Y] a nonzero polyno-

mial of degree D with a (not necessarily unique) leading term wXDlYD2, Dx + D2 = D,

and Bi,B2 integers with 0 ^ Bt ^ A - Tien the polynomial Q(X, Y) defined by

t=o j=o

has degree at most Bi + B2 and a leading term (wDi\D2
[.)/{Bi\B2\)X

BlYB2. This leading

term is unique whenever the leading term of P is unique.

PROOF: Note that P *-t F is a linear mapping. We regard P as univariate polyno-

mial in X over D[K] or in Y over D[X], respectively, and apply Lemma 3 twice to each

monomial of P. u
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3. L O W E R BOUNDS FOR THE DIFFIE-HELLMAN MAPPING

In this section we improve the result of [15] and complement the results of [9].

THEOREM 1. Let q be a prime power, y a nonzero element of¥q of order d, and
N an integer. Let S be a subset of{N+l,..., N+H}2 with \S\ - H2-s and 1 ̂  H ̂  d.
Let f € Wq[X, Y] be a polynomial satisfying

f(-f,ly)=lxy forall{x,y)eS.

Then we have the following lower bounds on total degree and weight of f:

deg(/) ^ H - | - 2

and if the local degrees of f satisfy degx(f) ^ d — 2 and degy( / ) ^ d — 1 then

(t\ >

P R O O F : At least H2-2s-H pairs {x, y) € 5 satisfy (x, y +1) eS. For these pairs
we have

and the polynomial
F(X,Y):=Xf(X,Y)-f(X,jY)

has at least H2 - 2s — H zeros. Since

deg(F) = deg(/) + 1 and w(F) ̂  2w(/)

the assertions follow by Lemma 1 and Lemma 2. D

Theorem 1 gives non-trivial bounds on the degree only if \S\ > H2/2. We can also
prove nontrivial lower bounds for some very sparse sets S of a special type.

THEOREM 2 . Let q be a prime power, 7 a nonzero element of Fq of order d. Let

U, V be subsets of { 0 , . . . , d - 1} with at ieast two elements. Let f € ¥q[X, Y] be a
polynomial satisfying

/ (71 ,7*) = -fv for all (x, y)eUxV.

Then we have the following lower bounds on total degree and weight of f:

deg(f) 2\U\-6

and ifdegx(f) ^ d — 1 — 8 then

d

where
S = min min(|u — v\,d — \u — v\) ^ — .

"»^fu
v '•rr
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PROOF: There exists an element v eV such that v + S mod d € V. For any i € W
we have

and the nonzero polynomial

has at least \U\ zeros. We have

deg(/) 55 degx{f) > deg(Fu) -S^\U\-6 and 2w(/) ^

and the assertions follow by Lemma 1 and Lemma 2 with n = 1. D

Theorem 2 improves and extends the result of [15], where V has to be a subset of

{N + 1 , . . . , N + H} of cardinality if - s and the lower bound is deg(/) ^ minf |l/ | , \(H

-s)/(s + 1 ) ] ) — 1. Theorem 1 and [9] deal with more general sampling sets 5 but
Theorem 1 applies also to d < q — 1 and provides a lower bound on the weight.

4. P -DIFFIE-HELLMAN MAPPINGS

In this section we consider the P-Diffie-Hellman mapping given by

P-dh(7 I ,7») =rr
pl*>v)

for a polynomial of small local degrees, say, at most logd. We give lower bounds on
degree and weight of interpolation polynomials. Furthermore, we motivate our studies
by showing that whenever we have a polynomial that interpolates the P - d h mapping,
then we can compute the Diffie-Hellman mapping itself. Hence, the study of P - d h
becomes important.

We restrict ourselves to the case that d is an odd prime. The general case can
be handled similarly but we would need some restrictions on the local degrees and the
reduction algorithm would lose some efficiency. However, the general case can be reduced
to the prime case to some extent by considering the subgroup of largest prime order.

4.1. REDUCTION In this section we present results emphasising the importance of ana-
lyzing the interpolation polynomials of P - d h . More precisely, we show that a polynomial
/ that coincides with P - d h on some fixed and known points £ can be used as an oracle
to efficiently compute / (7 x ,7 y ) = lxy-

THEOREM 3 . Let 7 £ F , be a nonzero element of Wq of prime order d, N an

integer, and S a subset of {N + 1,... ,N + H}2 with \S\ = H2 - s and 1 ^ H < d.

Let P € Zd[-X", Y] a polynomial of total degree D ^ 2 with a unique leading term. Let

f £ Fq[X, Y] be a polynomial satisfying
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Then there exist a subset 1Z C S of cardinality at least H2 — sD2/4 — (D - 2)H and a
deterministic algorithm A that on input (7*, 7") with (x, y) € H, outputs the element
1xy with

0(D2\og(d)log2(q))

bit operations and D2/A evaluations of f.

P R O O F : Let wXDlYDl, D - Dx+D2, be the (unique) leading term of P. We define
the set "R as

Tl:= {{x,y)eS: (x + i,y + j) e S,l 4 i ^ D x - 1,1 ^ j ^ D 2 - 1 } .

Then
\ll\ > H2 - DxD2s - (£> - 2)H > H2 - sD2/4 - {D - 2)H.

Now we may describe the algorithm's behaviour on input (7*,7") for. (2:,y) € ft. It
evaluates / in (72:7\7!'7;)> 0 ^ i ^ Di - 1, 0 ^. j ^. D2 - 1. Now we describe how to
compute the value j x y . By Lemma 4 with B\ = B2 = 1 we get

i=0 j=0

with some constants cit c2, and c3 and c := Di\D2\w ^ 0. The value C, can be computed
by A with O(D\ + D2) additions in Zd for determining recursively all binomial coefficients
modulo d, O(DiD2) powers, inversions, and multiplications in ¥q, that is,

0(D2log(d)log2(g))

bit operations (see [1, Chapters 5 and 6]). Next the algorithm A eliminates the linear
term by computing

£ : = c - ( 7 r
Finally, it determines the unique root of

that is, 7:ry = fc~', where c"1 denotes the inverse of c modulo d, in O(log(d) Iog2(g)) bit
operations (see [1, Theorem 7.3.1]). D

The case that the leading term of P is not unique can be reduced to the case of
the above theorem to some extent. For a general polynomial P of degree D ^ 2 with
local degrees at most d — 1 Lemma 4 leads to a nonzero polynomial Q of the form
Q(X, Y) = aX2 + bXY + cY2 after the elimination of the linear term. If b ^ 0 then
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we deal with (Q{X,Y) - Q(-X,Y)) = 2bXY. If b = 0 and a ? 0 then we consider
Q(X + Y,Y) = aX2 + 2aXY + (a + c)Y2 and if a = b = 0 (and thus c # 0) with
Q(A", X + Y) — cX2 + 2cXY + cY2. However, in the general case the sampling set 5 has
to be more symmetric.

4.2. INTERPOLATION

THEOREM 4 . Let q be a prime power, 7 a nonzero element of¥q of prime order
d, and N an integer. Let S be a subset of{N + l,...,N + H}2 with \S\ = H2 - s and
1 ^ H ^ d. Let P € Zd[X, Y] be a polynomial of degree D ^ 2. Let f G ¥q[X, Y] be a
polynomial with local degrees at most d — 1 satisfying

f(-f, -f) = y ^ " ) for all (x, y) 6 5 .

Tien we have t ie following lower bounds on total degree and weight of f:

d2
 N l /2"- '

W( "" " (2(d2 -H2 + (D + 2)2s/4 •

PROOF: Let wXDl Y°2, D = D\ + D2, be a leading term of P. We may assume that

D ^ d - 1. Let 71 be the set of elements (x,y) G 5 satisfying

which has at least

H2 - (Di + 1)(D2 + l)s - DH > H2 - ( y + l ) s - DH

elements. Lemma 4 with B\ = B2 = 0 yields

with a nonzero constant Qo- Analogously to the proof of Theorem 1 we can construct a

non-zero polynomial F with the property

r \J 17 ) — 7 7 — ui V*i yj fc 'v-i

where

D — i—j even
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and

t
i=0 i=o

D-i-j odd

This polynomial satisfies
= 2D-1deg(/) ,

and has at least \H\ zeros. Now the result follows by Lemma 1 and Lemma 2. D

Based on Lemma 3 the idea of Theorem 2 can also be used to design a reduction algo-
rithm and to prove interpolation results. However, the sampling set has to be somewhat
artificial.

5. ELLIPTIC CURVES

Let E be an elliptic curve over the finite field F, defined by the WeierstraB equation

E :Y2 + h(X)Y = f{X)

with a linear polynomial

h{X) = a1X + a3, aua3e¥.g,

and a cubic polynomial

f(X) = X3 + a2X
2 + aAX + a6, a2> a4, a6 G F, ,

2

such that over the algebraic closure F , there are no solutions (x, y) € F , simultaneously
satisfying the equations

y2 + h{x)y = f(x), 2y + h{x)=0, and h'{x)y = f'{x).

We denote by O the point at infinity. Let P ^ O be a point of order I on E. The

Diffie-Hellman problem for the group Q generated by P is the following:

Given points nP and mP on E for some l ^ n , m ^ I — 1 find the point nmP

without knowing n and m. For given x the second coordinate y of a point (x, y) e ff^ on

E can be easily determined up to two possibilities, y and — y — h(x).

Hence, we may consider the bivariate mapping

F(xn,xm) - xnm, n , m e { l , . . . , ! - l } ,

where z* is the first coordinate of kP, k = 1,. ..,1—1, and z* = z/, whenever k = h mod /.

In this section we consider interpolation polynomials of the bivariate mapping F.

We restrict ourselves to the case that the order / is an odd prime, again.
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THEOREM 5 . Let E be an elliptic curve over Wg and P ^ O a point of prime order
I and xk the first coordinate ofkP, k = 1 , . . . , / - 1. Let S be a subset of {1,2,..., I — I} 2

of cardinality \S\ = (I - I ) 2 - s. If F G Wq[X,Y] satisfies

•Ffcn, xm) = xnm, (n, m) G S,

then we have

P R O O F : Since otherwise the result is trivial we may assume / ^ 7 and \S\ > (I

- l ) 2 /2 . Hence, there exists m £ {l,...,l - 1} with (n i ,m) , (n2,m), (n3,m) e S for
some ni , n2, n3 S { 1 , . . . , I — 1} with rii ^ n2 ^ n3 ^ n\. Since a;nm — xkm if and only if
n = ±A; mod / the polynomial Fm(X) = F(X,xm) has at least two different values and
we have degx(F) ^ deg(Fm) > 0.

Next we put hi = a\ + 4a2, 64 = 0103 + 204, be = a§ + 4a.g, b% = a\a§ +
— 0.10,30,4 + a,2a\ — a 2 ,

= 3X4 + b2X
3 + 3b4X

2 + 3b6X + bs,

0(X) = XTI>{X) - 4>(X).

Let Q — (x,y) ^ O be a point on E, then the first coordinate of 2Q is given by

6(x)

and ip and 6 have no common zero (see for example [2]).

At least (I — I)2 — 2s — I + 1 elements (n, m) £ S satisfy (n, 2m) G 5 corresponding
to at least ((Z - I ) 2 - 2s - / + l ) / 4 different pairs (xn, xm) G F2,. For these pairs we have

6{xm)

Finally, we consider the polynomial

where d — degy(.F). Since

(3, p^2,
deg((9) - 4 and deg(^) - < 2, p = 2, Ql # 0,

[ 0, p = 2 ,oi=0,

where p denotes the characteristic of F,, we have

deg(C/K7deg(F).
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For p = 2 we have degx(U) = 4degx(F) > 0 and U is not the zero polynomial. For
odd characteristic choose a, /?,7 € F , with ip{P) ̂  0, ^(7) = 0, and a a solution of
F(a, ft) — 7. Then we have

Hence, we may apply Lemma 1 to get the result. D

Now we combine the ideas of Theorems 1 and 5.

THEOREM 6 . Let E be an elliptic curve over F , and P / O a point of prime

order I and Xk the first coordinate of kP, k = 1 , . . . ,1 — 1. Let U and V be subsets of

{ 1 , 2 , . . . , / - 1} with \U\ ̂  3 a n d v + 1 € V for some D 6 V . If F e Wq[X, Y] sat isfies

F(xn, xm) = xnm, (n, m) e U x V,

then we have

deg(F) > M .

PROOF: We use the same notation as in the proof of the previous theorem and may
suppose that there exists m e V such that the nonzero polynomial

Um(X) = U(X,xm)

of degree at most 4degx(f/) has at least \U\/2 zeros. Lemma 1 with n = 1 completes
the proof. D

The results of this section extend and improve [8, Theorem 3], which is an analogue
of the result of [15] for elliptic curves.
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