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Abstract. We investigate dynamical systems consisting of a locally compact Hausdorff
space equipped with a partially defined local homeomorphism. Important examples of such
systems include self-covering maps, one-sided shifts of finite type and, more generally, the
boundary-path spaces of directed and topological graphs. We characterize the topological
conjugacy of these systems in terms of isomorphisms of their associated groupoids and
C*-algebras. This significantly generalizes recent work of Matsumoto and of the second-
and third-named authors.
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1. Introduction
The tradition of constructing operator algebras from dynamical systems originated with
the seminal work of Murray and von Neumann on the group von Neumann algebra
construction [MvN]. This approach has not only produced a plethora of interesting
examples of operator algebras, but has also led to interesting results pertaining to
topological dynamics. Prime examples of such results are those of Giordano, Putnam, and
Skau [GPS95, Theorems 2.1 and 2.2] that use C*-crossed products to show that Cantor
minimal systems can be classified up to (strong) orbit equivalence by K-theory.
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C*-algebras constructed from dynamical systems have mainly been obtained as
C*-crossed products of actions of locally compact groups on topological spaces. However,
in the last forty years or so, C*-algebras constructed from non-invertible actions on
topological spaces have also attracted considerable attention. This approach inspired
Krieger’s dimension group [K80a, K80b], which has had a tremendous impact on the
study of symbolic dynamical systems. A particularly interesting class of these kinds
of C*-algebras is the class of C*-algebras arising from a dynamical system consisting
of a local homeomorphism acting on a locally compact Hausdorff space [D95, Re00].
These C*-algebras come equipped with a family of symmetries induced by functions
on the space, and by using a topological groupoid approach, we show how to recover the
conjugacy class of the underlying system from the C*-algebra and its family of symmetries.

A system consisting of a locally compact Hausdorff space X together with a local
homeomorphism σX between open subsets of X is called a Deaconu–Renault system (see,
for example, [ABS, CRST, D95, Re00]). Examples of Deaconu–Renault systems include
self-covering maps [D95, EV06], one-sided shifts of finite type [Ki98, LM95, Wi73], the
boundary-path space of a directed graph together with the shift map [BCW17, We14],
and, more generally, the boundary-path space of a topological graph together with the shift
map [KL17], the one-sided edge shift space of an ultragraph together with the restriction
of the shift map to points with non-zero length [GR19], the full one-sided shift over an
infinite alphabet together with the restriction of the shift map to points with non-zero
length [OMW14], the cover of a one-sided shift space constructed in [BC20b], and,
more generally, the canonical local homeomorphism extension of a locally injective map
constructed in [Th11].

A C*-algebra is naturally associated to a Deaconu–Renault system via a groupoid
construction (see, for example, [CRST, D95, Re00]), and the class of such C*-algebras
includes crossed products by actions of Z on locally compact Hausdorff spaces,
Cuntz–Krieger algebras [CK80], graph C*-algebras [Ra05], and, via Katsura’s topological
graphs [Ka04], all Kirchberg algebras (i.e. all purely infinite, simple, nuclear, separable
C*-algebras) satisfying the universal coefficient theorem (see [Ka08]), C*-algebras
associated with one-sided shift spaces [BC20b], and C*-algebras of locally injective
surjective maps [Th11].

It is natural to ask how much information from a dynamical system can be recovered
by C*-algebraic data associated with it. It is known that an action of a locally compact
group on a topological space can be recovered up to conjugacy from its C*-crossed
product together with the corresponding dual action (see [KOQ18, Proposition 4.3]), and
similar results have been obtained in more specialized settings; see, for example, [GPS95,
Theorem 2.4], [BT98, Theorem 3.6], [Li18, Theorem 1.2], and [CRST, Corollary 7.5 and
Theorem 9.1].

In recent years, a similar approach has been used to encode dynamical relations between
irreducible shifts of finite type into Cuntz–Krieger algebras. Matsumoto has been a
driving force in this endeavour with his characterizations of continuous orbit equivalence
[Ma10] and one-sided eventual conjugacy [Ma17], among others. Together with Matui,
Matsumoto characterized flow equivalence as a diagonal-preserving ∗-isomorphism of
stabilized Cuntz–Krieger algebras using groupoids [MM14] (see also [CEOR]), and this
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led the third-named author and Rout to prove similar characterizations for two-sided
conjugacy of shifts of finite type [CR17]. Complementing the work of two of the authors
[BC20a], Matsumoto recently proved that a one-sided conjugacy of irreducible shifts of
finite type can be encoded into Cuntz–Krieger algebras using gauge actions [Ma21a].
Matsumoto’s methods immediately inspired us and helped shape the present work. Since
then, Matsumoto has released three other works on related topics [Ma20, Ma21b, Ma21c].

In this paper we provide a characterization of conjugacy of a pair of Deaconu–Renault
systems in terms of isomorphisms of their groupoids and their C*-algebras. Our results are
summarized in Theorem 3.1. Since we work in the general framework of Deaconu–Renault
systems, our work complements (and applies) the groupoid reconstruction theory of
[CRST], which is based on the pioneering work of Renault [Re80, Re08] and Kumjian
[Ku86]. We prove in Proposition 3.12 that a ∗-isomorphism of the C*-algebras of
Deaconu–Renault groupoids that intertwines a sufficiently rich collection of automor-
phisms induces a conjugacy between the underlying systems. It is noteworthy that we
do not require the ∗-isomorphism to be diagonal-preserving. By restricting to the case
of one-sided shifts of finite type, we therefore not only recover, but also strengthen
Matsumoto’s [Ma21a, Theorem 1] characterization of one-sided conjugacy (see Corollary
3.3). The proof requires a technical result (Lemma 3.10) which relates actions of the
C*-algebra to cocycles on the groupoid, and we believe that this may be of independent
interest.

In future work [ABCE], we shall approach the conjugacy of directed graphs from an
algorithmic and combinatorial point of view related to [ER].

This paper is organized as follows. In §2 we introduce the necessary notation and
preliminaries and establish some basic facts about Deaconu–Renault systems, conjugacy
of Deaconu–Renault systems, and Deaconu–Renault groupoids and their C*-algebras.
We also provide several examples of Deaconu–Renault systems and Deaconu–Renault
groupoids and their C*-algebras and relate them to previous work. In §3 we prove our main
results relating conjugacy of Deaconu–Renault systems to the associated groupoids and
C*-algebras. Our results are summarized in Theorem 3.1, which follows from Propositions
3.4, 3.8, and 3.12.

2. Preliminaries
Here we introduce the basic concepts and notation used throughout the paper. We denote
the real numbers by R, the integers by Z, the non-negative integers by N, and the positive
integers by N+. We denote the cardinality of a set A by |A|. Given a locally compact
Hausdorff space X, we write Cb(X) for the set of continuous bounded functions from X to
the complex numbers, we write C0(X) for the subset of Cb(X) consisting of functions that
vanish at infinity, and we write Cc(X) for the subset of C0(X) consisting of functions that
have compact support. The spaces C0(X) and Cb(X) are abelian C*-algebras, and Cb(X) is
(isomorphic to) the multiplier algebra of C0(X) (see, for instance, [Mur, Example 3.1.3]).

2.1. Deaconu–Renault systems. A Deaconu–Renault system is a pair (X, σX) consisting
of a locally compact Hausdorff space X and a partially defined local homeomorphism
σX : dom(σX) → ran(σX), where both dom(σX) and ran(σX) are open subsets of X. Let
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σ 0
X := idX, and inductively define dom(σ kX) := σ−1

X (dom(σ k−1
X )) for k ∈ N. Then, for

every k ∈ N, the map σkX : dom(σ kX) → ran(σ kX) defined by σkX(x) := σk−1
X (σX(x)) is a

local homeomorphism onto an open subset of X. Whenever we write σkX(x) it is to be
understood that x ∈ dom(σ kX). The orbit of a point x ∈ X is the subset

orbX(x) :=
⋃
k,l∈N

σ−l
X (σ kX(x)),

and a pair of points x, y ∈ X are in the same orbit if and only if σkX(x) = σ lX(y) for some
k, l ∈ N. A point x ∈ X is periodic with period p ∈ N+ if x = σ

p

X(x), it is eventually
periodic if σnX(x) is periodic for some n ∈ N, and it is aperiodic if it is not eventually
periodic. We say that a Deaconu–Renault system (X, σX) is topologically free if the set
{x ∈ X : x is not periodic} is dense in X, and that the system is second-countable if X is
second-countable.

Similar systems were studied independently by Deaconu in [D95] and by Renault
in [Re00] (as singly generated dynamical systems). Here we follow the terminology of
[CRST, §8].

Definition 2.1. Let (X, σX) and (Y, σY) be Deaconu–Renault systems. We call a
homeomorphism h : X → Y a conjugacy if h(σX(x)) = σY(h(x)) and h−1(σY(y)) =
σX(h

−1(y)) for all x ∈ dom(σX) and y ∈ dom(σY). We say that the systems (X, σX) and
(Y, σY) are conjugate if there exists a conjugacy h : X → Y.

Example 2.2. Let E be a directed graph, let ∂E be the boundary-path space of E introduced
in [We14], and let σE : ∂E�1 → ∂E be the shift map described in [BCW17, §2.2]. Then
(∂E, σE) is a Deaconu–Renault system (see [BCW17, §2.2]). In [BCW17, §6.1], two
directed graphs E and F are defined to be conjugate precisely when the corresponding
Deaconu–Renault systems (∂E, σE) and (∂F , σF ) are conjugate; cf. Lemma 2.6.

Example 2.3. Let A be an infinite countable set, let (�A, σ) be the one-sided full shift
over A defined in [OMW14, Definitions 2.1 and 2.22], and let σ�A be the restriction of
σ to �A \ {�0}. It follows from [OMW14, Propositions 2.5 and 2.23] that (�A, σ�A) is a
Deaconu–Renault system.

If A and B are infinite countable sets and φ : �A → �B is a conjugacy as defined in
[OMW14, Definition 4.8], then it follows from [OMW14, Proposition 4.2 and Remark
4.9] that φ is also a conjugacy between the Deaconu–Renault systems (�A, σ�A) and
(�B, σ�B ).

Example 2.4. Let G be an ultragraph satisfying the condition (RFUM) introduced in
[GR19], let (XG , σG) be the one-sided edge shift of G constructed in [GR19], and let
σXG be the restriction of σG to XG \ p0, where p0 is the set of ultrapaths of length 0 (see
[GR19, §2.1]). It follows from [GR19, Propositions 3.7, 3.12, and 3.16] that (XG , σXG ) is
a Deaconu–Renault system.

If G1 and G2 are two ultragraphs satisfying condition (RFUM), then a map φ : XG1 →
XG2 is a conjugacy between the Deaconu–Renault systems (XG1 , σXG1

) and (XG2 , σXG2
) if

and only if it is a length-preserving conjugacy, as defined in [GR19, Definition 3.19].
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The following is an example of a homeomorphism h : X → Y between two
Deaconu–Renault systems (X, σX) and (Y, σY) that is not a conjugacy, even though
h(σX(x)) = σY(h(x)) for all x ∈ dom(σX).

Example 2.5. Consider the graph E consisting of a single vertex, and the graph F
consisting of a single loop. The boundary-path spaces ∂E and ∂F are both singletons, and
so there is a homeomorphism h : ∂E → ∂F that trivially satisfies h(σE(x)) = σF (h(x))

for all x ∈ dom(σE) (since dom(σE) = ∅). However, (∂E, σE) and (∂F , σF ) are not
conjugate systems, because dom(σF ) = ∂F , whereas dom(σE) = ∅.

It will be convenient later to have slight reformulations of the conjugacy condition at
our disposal. Note that the conditions in item (3) below are set equalities.

LEMMA 2.6. Let (X, σX) and (Y, σY) be Deaconu–Renault systems, and let h : X → Y be
a homeomorphism. The following statements are equivalent.
(1) h : X → Y is a conjugacy.
(2) h(dom(σX)) = dom(σY), and h ◦ σX = σY ◦ h on dom(σX).
(3) h(σ−1

X (x)) = σ−1
Y (h(x)) and h−1(σ−1

Y (y)) = σ−1
X (h−1(y)), for all x ∈ X and

y ∈ Y.
In particular, if the two systems have globally defined dynamics (i.e. if dom(σX) =

X and dom(σY) = Y), then the condition h ◦ σX = σY ◦ h is equivalent to h being a
conjugacy.

Proof. (1) ⇐⇒ (2): Assume first that h : X → Y is a conjugacy. If x ∈ dom(σX), then
h(σX(x)) = σY(h(x)), and so h(dom(σX)) ⊆ dom(σY). For the reverse inclusion, fix y ∈
dom(σY). Then σX(h

−1(y)) = h−1(σY(y)), and so y ∈ h(dom(σX)).
For the converse, we need to verify that h−1 ◦ σY = σX ◦ h−1 on dom(σY). Fix y ∈

dom(σY), and let x := h−1(y) ∈ dom(σX). Then h(σX(x)) = σY(h(x)) = σY(y), and so
h−1(σY(y)) = σX(x) = σX(h

−1(y)), as required.
(1) ⇐⇒ (3): Assume first that h is a conjugacy, and fix x ∈ X. Suppose that

σ−1
X (x) is non-empty, and fix z ∈ σ−1

X (x). Then σY(h(z)) = h(σX(z)) = h(x), and thus
h(z) ∈ σ−1

Y (h(x)). It follows that h(σ−1
X (x)) ⊆ σ−1

Y (h(x)). For the reverse inclusion,
fix w ∈ σ−1

Y (h(x)). Then σX(h
−1(w)) = h−1(σY(w)) = x, and so w ∈ h(σ−1

X (x)).
Therefore, σ−1

Y (h(x)) ⊆ h(σ−1
X (x)). Suppose instead that σ−1

X (x) is empty. We claim
that σ−1

Y (h(x)) is also empty. Suppose for contradiction that there exists w ∈ σ−1
Y (h(x)).

Then σX(h
−1(w)) = h−1(σY(w)) = x, and thus h−1(w) ∈ σ−1

X (x), which contradicts the
hypothesis that σ−1

X (x) = ∅. A similar argument shows that if h is a conjugacy, then
h−1(σ−1

Y (y)) = σ−1
X (h−1(y)) for all y ∈ Y.

For the converse, fix x ∈ dom(σX), and let w := h(σX(x)).Then

x ∈ σ−1
X (σX(x)) = σ−1

X (h−1(w)) = h−1(σ−1
Y (w))

by hypothesis, and so σY(h(x)) = w = h(σX(x)). A similar argument shows that
h−1(σY(y)) = σX(h

−1(y)) for all y ∈ dom(σY), and so h is a conjugacy.
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Remark 2.7. As Example 2.5 shows, there are some subtleties involved in the definition of
a conjugacy of arbitrary Deaconu–Renault systems: it is important that we have conditions
on both h and its inverse h−1. However, if the two systems have globally defined dynamics
(i.e. if dom(σX) = X and dom(σY) = Y), then Lemma 2.6 implies that the condition h ◦
σX = σY ◦ h is sufficient. In the case of directed graphs, the condition of having globally
defined dynamics is equivalent to there being no singular vertices.

We now introduce two maps

(σX)
∗ : C0(X) → Cb(dom(σX)) and (σX)∗ : Cc(dom(σX)) → Cc(X)

that we will use in Theorem 3.1 and Proposition 3.4 to characterize the conjugacy of
Deaconu–Renault systems.

Suppose that (X, σX) is a Deaconu–Renault system. We define the map (σX)
∗ : C0(X) →

Cb(dom(σX)) by

(σX)
∗(f )(x) := f (σX(x)),

for all f ∈ C0(X) and x ∈ dom(σX). The following example shows that the range of (σX)
∗

is in general larger than the collection of functions vanishing at infinity.

Example 2.8. Let E be the graph with two vertices v and w such that v emits infinitely
many edges {en : n ∈ N} to w. Then 1Z(w) ∈ C0(∂E), and 1Z(w) ◦ σE is defined and
non-zero (and bounded) on the entire non-compact set dom(σE) = {en : n ∈ N}.

Since σX is a local homeomorphism, there is a map (σX)∗ : Cc(dom(σX)) → Cc(X)
given by

(σX)∗(f )(x) :=
∑

z∈σ−1
X (x)

f (z),

for all f ∈ Cc(dom(σX)) and x ∈ X.

2.2. Deaconu–Renault groupoids. Every Deaconu–Renault system (X, σX) gives rise to
a Deaconu–Renault groupoid

GX :=
⋃
m,n∈N

{(x, m− n, y) ∈ dom(σmX )× {m− n} × dom(σnX) : σmX (x) = σnX(y)},

with composable pairs G(2)X := {((x, p, y), (w, q, z)) ∈ GX × GX : y = w} (cf. [CRST,
§8], [KL17, Definition 5.4], and [Re00, Definition 2.4]). Multiplication is defined on G(2)X
by (x, p, y)(y, q, z) := (x, p + q, z), and inversion is defined on GX by (x, p, y)−1 :=
(y, −p, x). The range and source maps of GX are r : (x, p, y) 
→ x and s : (x, p, y) 
→ y,
respectively. The unit space of GX is G(0)X = {(x, 0, x) ∈ GX : x ∈ X}, and we identify it
with X via the map (x, 0, x) 
→ x. Given m, n ∈ N and open subsets U and V of X, we
define

Z(U , m, n, V ) := {(x, m− n, y) ∈ GX : x ∈ U , y ∈ V , σmX (x) = σnX(y)}, (2.1)

and the collection of all such sets forms a basis for a topology on GX. Equivalently, the
topology is generated by sets of the form (2.1), where, in addition, σmX |U and σnX|V are
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homeomorphisms onto their images, and σmX (U) = σnX(V ). Under this topology, GX is an
amenable locally compact Hausdorff groupoid which is étale, in the sense that the range
and source maps are local homeomorphisms. A set B ⊆ GX is called a bisection of GX if
there is an open subset U of GX such that B ⊆ U , and r|U and s|U are homeomorphisms
onto open subsets of G(0)X . Every étale groupoid has a basis consisting of open bisections,
and by choosing U , V ⊆ X sufficiently small, the sets of the form (2.1) become open
bisections of GX. Moreover, GX is second-countable when X is second-countable, and
GX is ample (meaning it has a basis of compact open bisections) when X is totally
disconnected. Given Deaconu–Renault groupoids GX and GY and a map ψ : GX → GY,
we write ψ(0) : X → Y for the map induced by the restriction ψ |G(0)X

: G(0)X → G(0)Y .
The isotropy of a groupoid G is the subgroupoid Iso(G) := {γ ∈ G : r(γ ) = s(γ )}. If

G is a second-countable locally compact Hausdorff étale groupoid, then so is the interior
Iso(G)◦ of the isotropy of G. Since the unit space of an étale groupoid is open, we have
G(0) ⊆ Iso(G)◦ if G is étale.

We now prove a well-known result that we were unable to find in the literature.

LEMMA 2.9. If (X, σX) is a topologically free Deaconu–Renault system, then
Iso(GX)

◦ = X.

Proof. Suppose for contradiction that there exist x ∈ X and k, l ∈ N with k �= l and
σkX(x) = σ lX(x) such that (x, k − l, x) ∈ Iso(GX)

◦. Then there are non-empty open subsets
U , V ⊆ X such that σkX|U and σ lX|V are homeomorphisms onto their images, σkX(U) =
σ lX(V ), andZ(U , k, l, V ) ⊆ Iso(GX). We therefore have that σkX(x

′) = σ lX(x
′) for any x′ ∈

U . It follows that any element of the open subset σkX(U) is periodic with period |k − l|, but
this contradicts the assumption that (X, σX) is topologically free. Thus, Iso(GX)

◦ = X.

Given a group � and a function f : X → �, for each k ∈ N and x ∈ dom(σ kX), we write

f (k)(x) :=
k−1∑
i=0

f (σ iX(x)),

where it is understood that f (0) = 0. We use additive notation because in all of our
examples of interest � will be abelian, but of course a similar expression using multi-
plicative notation makes sense.

We call a continuous groupoid homomorphism from GX into a topological group � a
continuous cocycle. Any continuous map f : X → � gives rise to a continuous cocycle
cf : GX → � defined by

cf (x, m− n, y) := f (m)(x)− f (n)(y) =
m−1∑
i=0

f (σ iX(x))−
n−1∑
j=0

f (σ
j

X(y)), (2.2)

for (x, m− n, y) ∈ GX satisfying σmX (x) = σnX(y). When � = Z and f ≡ 1, we obtain the
canonical continuous cocycle cf : (x, p, y) 
→ p, which we denote by cX.

2.3. Deaconu–Renault C*-algebras. Given a locally compact Hausdorff étale groupoid
G, there are associated full and reduced groupoid C*-algebras C∗(G) and C∗

r (G) encoding
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the structure of G; see, for instance, [Re80, S20] for details. An argument similar to the
one used in [SW16, Lemma 3.5] shows that Deaconu–Renault groupoids are amenable, so
the two C*-algebras C∗(GX) and C∗

r (GX) are canonically ∗-isomorphic, and we shall not
distinguish between them: we let C∗(GX) denote the C*-algebra associated to GX. Since
GX is étale, the unit space G(0)X

∼= X is open in GX, and we view the diagonal subalgebra
C0(X) as a subalgebra of C∗(GX). Note that C0(X) need not be a C*-diagonal (in the sense
of Kumjian [Ku86]), nor a Cartan subalgebra (in the sense of Renault [Re08]).

The Pontryagin dual of a locally compact abelian group � is the locally compact group
�̂ consisting of continuous group homomorphisms from � to the circle group T, endowed
with the compact-open topology. A continuous cocycle c : GX → � induces an action
γ c : �̂ � C∗(GX) satisfying

γ cχ (ξ)(η) = χ(c(η)) ξ(η) (2.3)

for χ ∈ �̂, ξ ∈ Cc(G), and η ∈ G; cf. [Re80, Ch. 2, §5]. In particular, there is a weighted
action γX,f : �̂ � C∗(GX) associated to each f ∈ C(X, �), satisfying

γX,f
χ (ξ)(x, m− n, y) = χ(f (m)(x)− f (n)(y)) ξ(x, m− n, y) (2.4)

for χ ∈ �̂, ξ ∈ Cc(GX), and (x, m− n, y) ∈ GX satisfying σmX (x) = σnX(y). The canonical
gauge action γX : T � C∗(GX) is induced by the canonical continuous cocycle cX on GX.

Example 2.10. Let X be a locally compact Hausdorff space, and let σ : X → X be
a homeomorphism. Then (X, σ) is a Deaconu–Renault system. The Deaconu–Renault
groupoid GX of (X, σ) is isomorphic to the transformation groupoid X ×σ Z (see, for
instance, [Re80, Examples I.1.2(a)]), and C∗(GX) is isomorphic to the crossed product
C0(X)�σ Z by an isomorphism that restricts to the identity map on C0(X) and intertwines
the canonical gauge action ofC∗(GX) and the dual action ofC0(X)�σ Z (see, for instance,
[S20, Example 9.2.6]).

Example 2.11. If X is a locally compact Hausdorff space and σ : X → X is a covering map
(i.e. σ is continuous and surjective, and for each x ∈ X, there is an open neighbourhood
V of x such that T −1(V ) is a disjoint union of open sets (Ui)i∈I such that σ |Ui is a
homeomorphism onto V for each i ∈ I ), then (X, σ) is a Deaconu–Renault system. The
Deaconu–Renault groupoid GX of (X, σ) is the groupoid � considered in [D95]. If X
is compact and each x ∈ X has exactly p preimages under σ , then according to [EV06,
Theorem 9.1], the C*-algebra C∗(GX) is isomorphic to the crossed product C(X)�α,L N,
where α is the ∗-homomorphism from C(X) to C(X) given by α(f ) := f ◦ σ , and L is
the transfer operator from C(X) to C(X) given by L(f )(x) := (1/p)

∑
y∈σ−1(x) f (y). The

proof of [EV06, Theorem 9.1] goes through with minor modifications if the assumption
that each x ∈ X has exactly p preimages under σ is dropped and the definition of L(f )(x)
is changed to (1/|σ−1(x)|)∑

y∈σ−1(x) f (y).

Example 2.12. Let E be a directed graph. The Deaconu–Renault groupoid G∂E of the
Deaconu–Renault system (∂E, σE) is the graph groupoid GE described, among other
places, in [BCW17, §2.3], and C∗(G∂E) is isomorphic to the graph C*-algebra C∗(E)
of E by an isomorphism that maps C0(∂E) onto the diagonal C*-subalgebra D(E) of
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C∗(E) and intertwines the canonical gauge action γ ∂E : T � C∗(G∂G) and the gauge
action γ E : T � C∗(E) (see, for instance, [BCW17, Proposition 2.2]).

In [CR17, §3] the third-named author and Rout consider generalized gauge actions.
A function k : E1 → R extends to a function k : E∗ → R by setting k|E0 ≡ 0 and
k(e1 · · · en) := k(e1)+ · · · + k(en) for e1 · · · en ∈ E∗ \ E0. There is a continuous
cocycle ck : GE → R given by ck(μx, |μ| − |ν|, νx) := k(μ)− k(ν), and this cocycle
induces a generalized gauge action γ E,k : R � C∗(GE), as defined in equation (2.3). If
f : ∂E → R is the continuous map given by f |Z(e) ≡ k(e) for all e ∈ E1, then the induced
cocycle cf defined in equation (2.2) agrees with ck on GE , and thus our weighted actions
include all generalized gauge actions.

Example 2.13. Let E be a topological graph, let ∂E be the boundary-path space of E
defined in [KL17, Definition 3.1], and let σ : ∂E\E0

sg → ∂E be the one-sided shift map
mentioned in [KL17, Lemma 6.1]. It follows from [KL17, Proposition 3.6 and Lemma
6.1] and [Ye07, Theorem 3.16 and Proposition 4.4] that (∂E, σ) is a Deaconu–Renault
system. The Deaconu–Renault groupoid G∂E of (∂E, σ) is the groupoid �(∂E, σ)
defined in [KL17, Definition 6.6]. It follows from [KL17, Theorem 6.7] that C∗(G(∂E,σ))

is isomorphic to the C*-algebra OE introduced in [Ka04]. One can check that the
isomorphism given in [KL17, Theorem 6.7] intertwines the canonical gauge actions of
C∗(G∂E) and OE .

Example 2.14. Let (X, σX) be a one-sided shift of finite type (see, for instance, [LM95,
§13.8]). It follows from [IT74, Theorem 1] that (X, σX) is a Deaconu–Renault system. The
Deaconu–Renault groupoid GX of (X, σX) is identical to the groupoid GX described in
[CEOR, §2.6].

If A is an n× n {0, 1}-matrix and (XA, σXA) is the one-sided topological Markov
shift defined by A (see, for instance, [Ki98, pp. 3]), then the Deaconu–Renault groupoid
GXA of (XA, σXA) is the groupoid GA described in [MM14, §2.2], and C∗(GXA) is
isomorphic to the Cuntz–Krieger algebra OA [CK80] with generators s1, . . . , sn, via an
isomorphism that maps C(XA) onto the C*-subalgebra DA generated by the projections
sis

∗
i , and intertwines the canonical gauge action γXA : T � C∗(GXA) and the gauge action

λ : T � OA (see, for instance, [MM14, §2.3]). Moreover, the isomorphism between
C∗(GXA) and OA can be constructed such that it has the property that if g ∈ C(XA, Z),
then it intertwines the weighted gauge action γXA,g : T � C∗(GXA) and the action
ρA,g : T � OA considered in [Ma21a].

The map (σA)∗ : C(XA) → C(XA) coincides with the map φA : DA → DA given by
φA(x) := ∑n

i=1 sixs
∗
i for x ∈ DA. This map φA appeared in Cuntz and Krieger’s original

paper as an invariant of one-sided conjugacy; cf. [CK80, Proposition 2.17]. On the other
hand, the map (σA)∗ : C(XA) → C(XA) coincides with the adjacency operator λA on DA,
given by λA(x) := ∑n

i=1 s
∗
i xsi for x ∈ DA. Proposition 3.4 shows that these maps can be

used to characterize conjugacy.

Example 2.15. Let (X, σX) be a one-sided shift space, and let (X̃, σX̃) be the cover of
(X, σX) constructed in [BC20b, §2.1]. It follows from [BC20b, Lemma 2.3] that (X̃, σX̃)

is a Deaconu–Renault system. If two one-sided shift spaces (X, σX) and (Y, σY) are
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conjugate, then the corresponding Deaconu–Renault systems (X̃, σX̃) and (Ỹ, σỸ) are
conjugate (see [BC20b, Lemma 4.1]). However, there are examples of non-conjugate
one-sided shift spaces (X, σX) and (Y, σY) for which (X̃, σX̃) and (Ỹ, σỸ) are conjugate
(e.g. consider a one-sided strictly sofic shift (X, σX) and the one-sided edge shift (Y, σY)

of its left Krieger cover; cf. [Ki98, Exercise 6.1.9]).
The Deaconu–Renault groupoid GX̃ of (X̃, σX̃) is the groupoid GX described in [BC20b,

§2.2]. It is shown in [C04] that there is an isomorphism from C∗(GX̃) to the C*-algebra
OX studied in [C08] that maps C0(X̃) onto the C*-subalgebra DX and intertwines the
canonical gauge actions of C∗(GX̃) and OX.

Example 2.16. Let X be a compact metrizable space, let φ : X → X be a continu-
ous locally injective surjection, and let (D̂, ψ) be the canonical extension of (X, φ)
constructed in [Th11, §4]. It follows from [Th11, Proposition 4.1] that (D̂, ψ) is a
Deaconu–Renault system. If two continuous locally injective surjective maps φ : X →
X and φ′ : X′ → X′ between compact metrizable spaces are conjugate, then the cor-
responding Deaconu–Renault systems (D̂, ψ) and (D̂′, ψ ′) are conjugate (see [Th11,
§4]), but there are, as in Example 2.14, examples of non-conjugate maps φ : X → X and
φ′ : X′ → X′ for which (D̂, ψ) and (D̂′, ψ ′) are conjugate.

The Deaconu–Renault groupoid GD̂ of (D̂, ψ) is the groupoid �ψ studied in [Th11].
It therefore follows from [Th11, Theorem 5.4] that there is an isomorphism from
C∗(GD̂) to the C*-algebra C∗

r (�φ) constructed in [Th10] that maps C(D̂) onto the
C*-subalgebra D�φ .

3. Characterizing conjugacy via groupoids and C*-algebras
In this section, we investigate the conditions that must be imposed on isomorphisms of
Deaconu–Renault groupoids or their C*-algebras in order to ensure that the underlying
Deaconu–Renault systems are conjugate. Our results are summarized in the following
theorem.

THEOREM 3.1. Let (X, σX) and (Y, σY) be second-countable Deaconu–Renault systems.
The following statements are equivalent.
(1) The systems (X, σX) and (Y, σY) are conjugate.
(2) There exists a ∗-isomorphism ϕ : C0(X) → C0(Y) satisfying the following three

equivalent conditions:
(i) there is a conjugacy h : X → Y satisfying ϕ(f ) = f ◦ h−1 for f ∈ C0(X);

(ii) ϕ((σX)
∗(f )g) = (σY)

∗(ϕ(f ))ϕ(g) for all f , g ∈ C0(X);
(iii) ϕ(Cc(dom(σX))) = Cc(dom(σY)), and ϕ ◦ (σX)∗ = (σY)∗ ◦ ϕ|Cc(dom(σX)).

(3) There exists a groupoid isomorphism ψ : GX → GY satisfying the following three
equivalent conditions:

(i) there is a conjugacy h : X → Y such that ψ(x, p, y) = (h(x), p, h(y)) for
(x, p, y) ∈ GX;

(ii) cg◦ψ(0) = cg ◦ ψ for all g ∈ C(Y, R);
(iii) there is a homeomorphism h : X → Y that satisfies cg◦h = cg ◦ ψ for all g ∈

C(Y, R).
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(4) There is a ∗-isomorphism ϕ : C∗(GX) → C∗(GY) satisfying the following two
equivalent conditions:
(i) ϕ(C0(X)) = C0(Y), and there is a conjugacy h : X → Y such that ϕ(f ) = f ◦

h−1 for f ∈ C0(X) and ϕ ◦ γX,g◦h
t = γ

Y,g
t ◦ ϕ for all t ∈ R and g ∈ C(Y, R);

(ii) there is a homeomorphism h : X → Y (which is not necessarily a conjugacy)
such that ϕ ◦ γX,g◦h

t = γ
Y,g
t ◦ ϕ for all t ∈ R and g ∈ C(Y, R).

Remark 3.2. Theorem 3.1 follows from Propositions 3.4, 3.8, and 3.12, which we prove
below (Proposition 3.4 gives us that the three conditions in Theorem 3.1(2) are equivalent,
and that (1) and (2) are equivalent; Proposition 3.8 gives us that the three conditions in
Theorem 3.1(3) are equivalent, and that (1) and (3) are equivalent; and Proposition 3.12
gives us that the two conditions in Theorem 3.1(4) are equivalent, and that (1) and (4) are
equivalent).

It follows from Propositions 3.8 and 3.12 that in (3) and (4) in Theorem 3.1 we can
replace R by any group that is separating for X and Y, in the sense of Definition 3.5. In
particular, if X and Y are totally disconnected, then we can replace R by Z. We therefore
obtain the following corollary, which is a generalization and a strengthening of [Ma21a,
Theorem 1].

COROLLARY 3.3. Let E and F be countable directed graphs. If there exist a homeomorph-
ism h : ∂E → ∂F and a ∗-isomorphism ϕ : C∗(E) → C∗(F ) satisfying

ϕ ◦ γ E,g◦h
z = γ

F ,g
z ◦ ϕ

for all z ∈ T and g ∈ C(∂F , Z), then the boundary-path spaces (∂E, σE) and (∂F , σF )
are conjugate. Conversely, if h : ∂E → ∂F is a conjugacy, then there is a ∗-isomorphism
ϕ : C∗(E) → C∗(F ) satisfying ϕ(D(E)) = D(F ), ϕ(f ) = f ◦ h−1 for f ∈ D(E), and

ϕ ◦ γ E,g◦h
z = γ

F ,g
z ◦ ϕ

for all z ∈ T and g ∈ C(∂F , Z).

We now prove Proposition 3.4, from which it follows that the three conditions (i),
(ii) and (iii) in Theorem 3.1(2) are equivalent, and that (1) and (2) in Theorem 3.1 are
equivalent.

PROPOSITION 3.4. Let (X, σX) and (Y, σY) be Deaconu–Renault systems, and let
h : X → Y be a homeomorphism. The map ϕ : f 
→ f ◦ h−1 is a ∗-isomorphism from
C0(X) to C0(Y), and the following statements are equivalent.
(1) h : X → Y is a conjugacy.
(2) For all f , g ∈ C0(X),

ϕ((σX)
∗(f )g) = (σY)

∗(ϕ(f ))ϕ(g). (3.1)

(3) ϕ(Cc(dom(σX))) = Cc(dom(σY)) and

ϕ ◦ (σX)∗ = (σY)∗ ◦ ϕ|Cc(dom(σX)). (3.2)
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Proof. A routine argument shows that the map ϕ : f 
→ f ◦ h−1 is a ∗-isomorphism from
C0(X) to C0(Y).

(1) �⇒ (2) and (3): Assume first that h : X → Y is a conjugacy. It follows from Lemma
2.6 that h(dom(σX)) = dom(σY), and hence ϕ(Cc(dom(σX))) = Cc(dom(σY)).

Fix f , g ∈ C0(X). Since h is a conjugacy, we have

f (σX(h
−1(y))) g(h−1(y)) = f (h−1(σY(y))) g(h

−1(y))

for all y ∈ dom(σY), and equation (3.1) follows. By Lemma 2.6, we have σ−1
X (h−1(y)) =

h−1(σ−1
Y (y)) for all y ∈ Y, and hence

ϕ((σX)∗(f ))(y) =
∑

z∈σ−1
X (h−1(y))

f (z) =
∑

w∈σ−1
Y (y)

f (h−1(w)) = (σY)∗(ϕ(f ))(y),

and so equation (3.2) holds.
(2) �⇒ (1): Suppose that equation (3.1) holds. Fix y ∈ dom(σY). We claim that

σX(h
−1(y)) = h−1(σY(y)). To see this, first choose g ∈ C0(X) such that g(h−1(y)) = 1.

Then, for all f ∈ C0(X), we have

f (σX(h
−1(y))) = ϕ((σX)

∗(f )g) = (σY)
∗(ϕ(f ))ϕ(g) = f (h−1(σY(y))),

and so σX(h
−1(y)) = h−1(σY(y)), as claimed. Since the assumption of equation (3.1) is

equivalent to the assumption that

ϕ−1((σY)
∗(f ′)g′) = (σX)

∗(ϕ−1(f ′))ϕ−1(g′)

for all f ′, g′ ∈ C0(Y), a similar argument shows that σY(h(x)) = h(σX(x)) for all x ∈
dom(σX). Therefore, h is a conjugacy.

(3) �⇒ (1): Suppose that ϕ(Cc(dom(σX))) = Cc(dom(σY)) and that equation (3.2)
holds. We will use the implication (3) �⇒ (1) of Lemma 2.6 to show that h is a conjugacy.
Fix y ∈ Y. By equation (3.2), we have

∑
z∈σ−1

X (h−1(y))

f (z) =
∑

w∈σ−1
Y (y)

f (h−1(w)) =
∑

t∈h−1(σ−1
Y (y))

f (t) (3.3)

for all f ∈ Cc(dom(σX)). Suppose for contradiction that h−1(σ−1
Y (y)) �= σ−1

X (h−1(y)).
Then there exists x ∈ σ−1

X (h−1(y)) such that x /∈ h−1(σ−1
Y (y)). Since X is a locally

compact Hausdorff space, it is regular, and thus since h−1(σ−1
Y (y)) is closed, there is

an open neighbourhood U ⊆ X of x such that U ∩ h−1(σ−1
Y (y)) = ∅. By Urysohn’s

lemma, there exists a function f ∈ Cc(X, [0, 1]) such that f (x) = 1 and f (z) = 0 for all
z ∈ h−1(σ−1

Y (y)). But this contradicts equation (3.3), and so we must have h−1(σ−1
Y (y)) =

σ−1
X (h−1(y)). Since the assumption of equation (3.2) is equivalent to the assumption that

ϕ−1 ◦ (σY)∗ = (σX)∗ ◦ ϕ−1|Cc(dom(σY)),

a similar argument shows that h(σ−1
X (x)) = σ−1

Y (h(x)) for all x ∈ X. Therefore, Lemma
2.6 implies that h is a conjugacy.
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We now introduce the notion of a separating group, which we use in Propositions 3.8
and 3.12.

Definition 3.5. Let X be a locally compact Hausdorff space, and let � be a locally compact
group with identity element id� . We say that � is separating for X if, for any finite set
F ⊆ X and x ∈ X\F , there exists f ∈ C(X, �) such that f (x) has infinite order in � and
f |F ≡ id� .

Example 3.6. Urysohn’s lemma for locally compact Hausdorff spaces ensures that R is
separating for any locally compact Hausdorff space X. If X is totally disconnected, then Z

is separating for X.

LEMMA 3.7. Let (X, σX) be a Deaconu–Renault system and suppose that � is a locally
compact group that is separating for X. If k, l ∈ N and

k∑
i=0

f (ai) =
l∑

j=0

f (bj ) (3.4)

for some (not necessarily distinct) elements a0, . . . , ak , b0, . . . , bl ∈ X and all f ∈
C(X, �), then k = l and {a0, . . . , ak} = {b0, . . . , bk}. Moreover, if x, x′ ∈ X satisfy
σkX(x) = σ lX(x

′) and f (k)(x) = f (l)(x′) for all f ∈ C(X, �), then k = l and x = x′.

Proof. Let A := {a0, . . . , ak} and B := {b0, . . . , bl}. For x ∈ X, we may choose f ∈
C(X, �) such that f (x) has infinite order and f |(A∪B)\{x} ≡ id� . By equation (3.4), we
then have that

|{i ∈ {0, . . . , k} : ai = x}| = |{j ∈ {0, . . . , l} : bj = x}|.
By applying this observation for all x ∈ X, we see that k = l and A = B.

For the second part, the hypothesis that f (k)(x) = f (l)(x′) for all f ∈ C(X, �) means
that

k−1∑
i=0

f (σ iX(x)) =
l−1∑
j=0

f (σ
j

X(x
′))

for all f ∈ C(X, �). It follows from the first part that k = l and that

{σ iX(x) : i = 0, . . . , k − 1} = {σ jX(x′) : j = 0, . . . , k − 1}.
This means that x = σ

p

X(x
′) and x′ = σ

q

X(x) for some p, q ∈ N. By choosing n ∈ N+ such
that k � n(p + q), the fact that σkX(x) = σkX(x

′) implies that

x = σ
n(p+q)
X (x) = σ

n(p+q)
X (x′) = x′,

as required.

We now prove Proposition 3.8, from which it follows that the three conditions (i),
(ii) and (iii) in Theorem 3.1(3) are equivalent, and that (1) and (3) in Theorem 3.1 are
equivalent.
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PROPOSITION 3.8. Let (X, σX) and (Y, σY) be Deaconu–Renault systems. A conjugacy
h : X → Y induces a groupoid isomorphism ψ : GX → GY satisfying

ψ(x, p, y) = (h(x), p, h(y))

for (x, p, y) ∈ GX. Moreover, if ψ : GX → GY is a groupoid isomorphism and � is a
locally compact group that is separating for Y, then the following three conditions are
equivalent.
(1) There is a conjugacy h : X → Y such that ψ(x, p, y) = (h(x), p, h(y)) for

(x, p, y) ∈ GX.
(2) cg◦ψ(0) = cg ◦ ψ for g ∈ C(Y, �).
(3) There is a homeomorphism h : X → Y that satisfies cg◦h = cg ◦ ψ for all g ∈

C(Y, �).

Proof. A routine argument shows that if h : X → Y is a conjugacy, then the map
ψ : GX → GY given by ψ(x, p, y) = (h(x), p, h(y)) is a groupoid isomorphism.

We now prove the implication (1) �⇒ (2). Suppose that condition (1) holds. Let � be
a locally compact group, and fix g ∈ C(Y, �). We claim that cg◦h = cg ◦ ψ . It suffices to
prove the relation for groupoid elements in Z(X, 1, 0, σX(X)) ⊆ GX, so fix x ∈ dom(σX).
Then

cg◦h(x, 1, σX(x)) = g(h(x)) = cg(h(x), 1, σY(h(x))) = cg(ψ(x, 1, σX(x))),

which proves the claim. The implication (2) �⇒ (3) is obvious.
It remains to prove (3) �⇒ (1). Suppose that ψ : GX → GY is a groupoid isomorphism

and that h : X → Y is a homeomorphism such that cg◦h = cg ◦ ψ for all g ∈ C(Y, �).
Consider the homeomorphism h̃ := ψ(0) and note that h and h̃ need not be equal. We will
show that h̃ is a conjugacy.

Since � is separating for Y, it contains an element of infinite order, and this element
generates a copy of Z in �. By choosing g ∈ C(Y, �) to be constantly equal to such an
element, we see that ψ intertwines the canonical cocycles. Therefore,

ψ(x, p, y) = (̃h(x), p, h̃(y))

for (x, p, y) ∈ GX, and it follows from [CRST, Theorem 8.10] that h̃ and h̃−1 are eventual
conjugacies (cf. [CRST, Definition 8.9]). In particular, h̃(dom(σX)) = dom(σY). For x ∈
dom(σX), we let k̃(x) be the minimal non-negative integer satisfying

(σ
k̃(x)+1
Y ◦ h̃)(x) = (σ

k̃(x)

Y ◦ h̃ ◦ σX)(x), (3.5)

noting that such an integer exists because h̃ is an eventual conjugacy. By Lemma 2.6 it
only remains to show that h̃(σX(x)) = σY (̃h(x)) for x ∈ dom(σX). This is equivalent to
showing that k̃(x) = 0 for x ∈ dom(σX).

https://doi.org/10.1017/etds.2022.50 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.50


2530 B. Armstrong et al

Fix x ∈ dom(σX), and suppose for contradiction that k̃(x) > 0. The hypothesis cg◦h =
cg ◦ ψ implies that

g(h(x)) = cg(ψ(x, 1, σX(x))) =
k̃(x)∑
i=0

g((σ iY ◦ h̃)(x))−
k̃(x)−1∑
j=0

g((σ
j

Y ◦ h̃ ◦ σX)(x)),

(3.6)

for any g ∈ C(Y, �). Since � is separating for Y, it follows from Lemma 3.7 that the sets

A := {(σ iY ◦ h̃)(x) : i = 0, . . . , k̃(x)},
and

B := {h(x), (σ jY ◦ h̃ ◦ σX)(x) : j = 0, . . . , k̃(x)− 1}
are equal. Therefore, there exists i ∈ {0, . . . , k̃(x)} such that

(σ iY ◦ h̃)(x) = (σ
k̃(x)−1
Y ◦ h̃ ◦ σX)(x). (3.7)

If i = k̃(x), then equation (3.7) contradicts the minimality of k̃(x), so we must have
i < k̃(x).

We will now show that k̃(x) = 0. Let us first consider the case when h̃(x) is aperiodic,
that is, there is no pair of distinct non-negative integers m and n such that (σmY ◦ h̃)(x) =
(σnY ◦ h̃)(x). If k̃(x) > 0, then

(σ
k̃(x)+1
Y ◦ h̃)(x) = (σ

k̃(x)

Y ◦ h̃ ◦ σX)(x) = (σ i+1
Y ◦ h̃)(x),

and this together with the assumption that h̃(x) is aperiodic implies that i = k̃(x), which
we have already seen cannot be the case. Therefore, k̃(x) = 0 when h̃(x) is aperiodic.

We now consider the case when h̃(x) is eventually periodic. In this case, there is a
non-negative integer n such that (σnY ◦ h̃)(x) is periodic, and we proceed by induction
on n. For n = 0 (i.e. h̃(x) is periodic), we choose i as in equation (3.7), and observe that
(σ iY ◦ h̃)(x) = (σ

k̃(x)−1
Y ◦ h̃ ◦ σX)(x) is periodic.

If p is a period of (σ iY ◦ h̃)(x) = (σ
k̃(x)−1
Y ◦ h̃ ◦ σX)(x), then the eventual conjugacy

condition equation (3.5) implies that

(σ
k̃(x)

Y ◦ h̃)(x) = (σ
k̃(x)+p
Y ◦ h̃)(x) = (σ

k̃(x)−1+p
Y ◦ h̃ ◦ σX)(x) = (σ

k̃(x)−1
Y ◦ h̃ ◦ σX)(x),

which again contradicts the minimality of k̃(x). Therefore, k̃(x) = 0 when h̃(x) is periodic.
Assume now that n ∈ N and that k̃(x′) = 0 whenever x′ ∈ dom(σX) and σnY (̃h(x

′)) is
periodic. Suppose that x ∈ dom(σX) with σn+1

Y (̃h(x)) periodic, and that n is the minimal
non-negative integer for which σn+1

Y (̃h(x)) is periodic. Assuming for contradiction that
k̃(x) > 0, we again choose i according to equation (3.7). Since i < k̃(x), we have
σ i+1
Y (̃h(x)) ∈ A = B. There are two cases to consider.

For the first case, suppose that

σ i+1
Y (̃h(x)) = σ

j

Y (̃h(σX(x)))
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for some j ∈ {0, . . . , k(x)− 1}. From equation (3.7), we see that

(σ
j

Y ◦ h̃ ◦ σX)(x) = (σ i+1
Y ◦ h̃)(x) = (σ

k̃(x)

Y ◦ h̃ ◦ σX)(x)

is periodic. In particular, (σ k̃(x)−1
Y ◦ h̃ ◦ σX)(x) is periodic (because j � k̃(x)− 1). Since

i < k̃(x), we also see that (σ k̃(x)Y ◦ h̃)(x) is periodic with the same period as (σ k̃(x)−1
Y ◦ h̃ ◦

σX)(x). It now follows from equation (3.5) that if p is a common period of (σ k̃(x)Y ◦ h̃)(x)
and (σ k̃(x)−1

Y ◦ h̃ ◦ σX)(x), then

(σ
k̃(x)

Y ◦ h̃)(x) = (σ
k̃(x)+p
Y ◦ h̃)(x) = (σ

k̃(x)−1+p
Y ◦ h̃ ◦ σX)(x) = (σ

k̃(x)−1
Y ◦ h̃ ◦ σX)(x),

which contradicts the minimality of k̃(x).
For the second case, suppose that σ i+1

Y (̃h(x)) = h(x). Choose x′ ∈ X such that
h̃(x′) = h(x). If n � i, then σn−iY (̃h(x′)) = σn+1

Y (̃h(x)) is periodic, and if n < i, then
h̃(x′) = σ i+1

Y (̃h(x)) is periodic. In both cases it follows from the inductive hypothesis that
k̃(x′) = 0. The assumption that cg◦h = cg ◦ ψ then implies that g(h(x′)) = g(̃h(x′)) for all
g ∈ C(Y, �), and hence h(x′) = h̃(x′). Since h̃(x′) = h(x) and h is a homeomorphism,
we have x = x′. This means either that (σn−iY ◦ h̃)(x) is periodic (if n � i), or that h̃(x) is
periodic (if n < i), but this contradicts the assumption that n is the minimal non-negative
integer for which σn+1

Y (̃h(x)) is periodic. We conclude that k̃(x) = 0 for all x ∈ dom(σX),
and this implies that h̃ is a conjugacy.

For the proof of Proposition 3.12, we need the following two lemmas. Given an
automorphism γ of C∗(GX), we define

C∗(GX)
γ := {f ∈ C∗(GX) : γ (f ) = f }.

LEMMA 3.9. Let (X, σX) be a Deaconu–Renault system, and let � be a locally compact
abelian group that is separating for X. Then

C0(X) =
⋂

f∈C(X,�)

C∗(GX)
γX,f

.

Proof. Every function in C0(X) is fixed by all the weighted automorphisms, so one
containment is clear. For the reverse containment, take ξ ∈ Cc(GX) such that ξ is fixed by
γX,f for all f ∈ C(X, �). If (x, k − l, y) ∈ GX with σkX(x) = σ lX(y) and ξ(x, k − l, y) �=
0, then

ξ(x, k − l, y) = γX,f
χ (ξ)(x, k − l, y) = χ(f (k)(x)− f (l)(y)) ξ(x, k − l, y),

for all χ ∈ �̂. Since the characters of an abelian group separate points, it follows that
f (k)(x) = f (l)(y) for every f ∈ C(X, �). Since � is separating for X, it follows that k = l

and x = y, by Lemma 3.7. Thus ξ is only supported on the unit space of GX, and so
ξ ∈ C0(X), and the result follows.

The following technical lemma is actually the main bulk of the proof of Proposition
3.12 below. It uses the groupoid reconstruction theory of [CRST]. We state and prove
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Lemma 3.10 in a more general setting than we need here, as we believe it may be of
independent interest.

Recall that if c is a cocycle from G into a group G with identity element idG, then
c−1(idG) is a subgroupoid of G. We refer the reader to [CRST] for relevant details on
the coactions δc1 and δc2 . The reader is invited to let c1 and c2 be the canonical continuous
cocycles on GX and GY, respectively; in which case, the coaction condition (equation (3.8))
reduces to the condition that ϕ intertwines the canonical gauge actions.

Note that in the statement below, we are not assuming that h and h̃ are equal.

LEMMA 3.10. Let (X, σX) and (Y, σY) be second-countable Deaconu–Renault systems,
and let h̃ : X → Y be a homeomorphism. Let G be a discrete group with identity
element idG. Let c1 : GX → G and c2 : GY → G be continuous cocycles such that
Iso(c−1

1 (idG))◦ = X and Iso(c−1
2 (idG))◦ = Y. Suppose that ϕ : C∗(GX) → C∗(GY) is a

∗-isomorphism such that ϕ(C0(X)) = C0(Y) and ϕ(f ) = f ◦ h̃−1 for all f ∈ C0(X), and
that ϕ satisfies the coaction condition

δc2 ◦ ϕ = (ϕ ⊗ id) ◦ δc1 . (3.8)

Then there is a groupoid isomorphism ψ : GX → GY satisfying ψ(0) = h̃ and c1 = c2 ◦ ψ .
Moreover, this ψ has the property that cg◦h = cg ◦ ψ whenever � is a locally compact
abelian group, g ∈ C(Y, �), h : X → Y is a homeomorphism, and

ϕ ◦ γX,g◦h
χ = γY,g

χ ◦ ϕ (3.9)

for all χ ∈ �̂.

Proof. The first part of the lemma follows from [CRST, Theorem 6.2], but since we need
an explicit description of the groupoid isomorphism ψ : GX → GY in order to prove the
second half of the lemma, we begin by recalling the construction of ψ .

For this, let us first establish some notation. The open support of ξ ∈ Cc(GX) is the set

osupp(ξ) := {γ ∈ GX : ξ(γ ) �= 0}.
The extended Weyl groupoid HX := H(C∗(GX), C0(X), δc1) of the triple (C∗(GX), C0(X),
δc1) consists of equivalence classes [n, x] of pairs (n, x), where n is a normalizer of C0(X)
in C∗(GX) and x ∈ osupp(n); cf. [CRST, §4]. Let HY := H(C∗(GY), C0(Y), δc2) be the
extended Weyl groupoid of (C∗(GY), C0(Y), δc2). Let θX : GX → HX and θY : GY → HY
be the groupoid isomorphisms of [CRST, Proposition 6.5], and let ϕ∗ : HX → HY be the
groupoid isomorphism given by ϕ∗([n, x]) = [ϕ(n), h̃(x)] for [n, x] ∈ HX; cf. [CRST,
proof of Theorem 6.2]. The composition

ψ := θ−1
Y ◦ ϕ∗ ◦ θX : GX → GY

is then a groupoid isomorphism that satisfies ψ(0) = h̃ and c1 = c2 ◦ ψ ; cf. [CRST, proof
of Theorem 6.2].

We now observe that if [n, x] ∈ HY and θY(η) = [n, x], then n(η) �= 0. Indeed,
following the proof of the fact that θY is surjective in [CRST, proof of Proposition 6.5],
there exist η′ ∈ Iso(c2

−1(idG))◦ and γ ∈ GY with s(η′) = r(η′) = s(γ ) = x and n(γ ) �= 0
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such that θY(γ (η′)−1) = [n, x]. Our assumption that Iso(c2
−1(idG))◦ = Y implies that

η′ = x, and since θY is injective, it follows that γ = η, and, in particular, n(η) �= 0.
Now, let h : X → Y be a homeomorphism (which need not be the same as h̃), let �

be a locally compact abelian group, and fix g ∈ C(Y, �) such that ϕ ◦ γX,g◦h
χ = γ

Y,g
χ ◦ ϕ

for all χ ∈ �̂. We need to show that cg◦h = cg ◦ ψ . Since GX is generated by elements
belonging either to G(0)X or to the compact open set Z(X, 1, 0, σX(X)) = {(x, 1, σX(x)) :
x ∈ dom(σX)}, it suffices to verify that

(g ◦ h)(r(η)) = cg(ψ(η)), (3.10)

for η ∈ Z(X, 1, 0, σX(X)).
Choose n ∈ Cc(GX) with n(η) = 1 such that osupp(n) is a bisection contained in

Z(X, 1, 0, σX(X)) ∩ c1
−1(c1(η)). By the construction of ψ , we have

θY(ψ(η)) = ϕ∗(θX(η)) = [ϕ(n), h̃(s(η))],

and so the observation above implies that ϕ(n)(ψ(η)) �= 0. Moreover, since osupp(n) ⊆
Z(X, 1, 0, σX(X)), we have γX,g◦h

χ (n) = (χ ◦ g ◦ h)n with χ ◦ g ◦ h ∈ Cb(X). Here, we
view Cb(X) as a subalgebra of the multiplier algebra M(C∗(GX)).

There is a ∗-isomorphism of multiplier algebras ϕ̃ : M(C∗(GX)) → M(C∗(GY)) which
extends ϕ, and since the diagonal subalgebras contain approximate units of the ambient
C*-algebras, we have ϕ̃(Cb(X)) = Cb(Y)with ϕ̃(f ) = f ◦ (βh̃)−1, where βh̃ : βX → βY
is the unique extension of h̃ to the Stone–Čech compactifications; cf., for example, [Ped,
Propositions 3.12.10 and 3.12.12]. It now follows that

ϕ(γX,g◦h
χ (n))(ψ(η)) = (ϕ̃(χ ◦ g ◦ h)ϕ(n))(ψ(η))

= χ((g ◦ h ◦ h̃−1 ◦ ψ(0))(r(η)))ϕ(n)(ψ(η))
= χ((g ◦ h)(r(η)))ϕ(n)(ψ(η)).

Applying this observation together with equation (3.9), we see that

χ(cg(ψ(η)))ϕ(n)(ψ(η)) = γY,g
χ (ϕ(n))(ψ(η))

= ϕ(γX,g◦h
χ (n))(ψ(η))

= χ((g ◦ h)(r(η)))ϕ(n)(ψ(η))
for all χ ∈ �̂. Since ϕ(n)(ψ(η)) �= 0, it follows that

χ((g ◦ h)(r(η))) = χ(cg(ψ(η)))

for all χ ∈ �̂. Since the characters of an abelian group separate points, equation (3.10)
follows.

Before we get to Proposition 3.12, we point out that if (X, σX) and (Y, σY) are
second-countable topologically free Deaconu–Renault systems, then the coaction condi-
tion equation (3.8) in Lemma 3.10 is superfluous. Although we do not need this fact in this
paper, we believe it is worth recording in a corollary.
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COROLLARY 3.11. Suppose that (X, σX) and (Y, σY) are second-countable and topo-
logically free Deaconu–Renault systems. If ϕ : C∗(GX) → C∗(GY) is a ∗-isomorphism
satisfying ϕ(C0(X)) = C0(Y), then there is a groupoid isomorphism ψ : GX → GY such
that ϕ(f ) = f ◦ (ψ(0))−1, for f ∈ C0(X). If, moreover, � is a locally compact abelian
group, g ∈ C(Y, �), h : X → Y is a homeomorphism, and ϕ ◦ γX,g◦h

χ = γ
Y,g
χ ◦ ϕ for all

χ ∈ �̂, then cg◦h = cg ◦ ψ .

Proof. By Lemma 2.9, we have Iso(GX)
◦ = X and Iso(GY)

◦ = Y, and so the result follows
immediately from Lemma 3.10 by letting G be the trivial group and taking c1 : GX → G

and c2 : GY → G to be the trivial cocycles.

Finally, we prove Proposition 3.12, from which it follows that the two conditions (i) and
(ii) in Theorem 3.1(4) are equivalent, and that (1) and (4) in Theorem 3.1 are equivalent.

PROPOSITION 3.12. Let (X, σX) and (Y, σY) be second-countable Deaconu–Renault
systems.
(i) If h : X → Y is a conjugacy, then there is a ∗-isomorphism ϕ : C∗(GX) →

C∗(GY) satisfying ϕ(C0(X)) = C0(Y), ϕ(f ) = f ◦ h−1 for all f ∈ C0(X), and
ϕ ◦ γX,g◦h

χ = γ
Y,g
χ ◦ ϕ whenever� is a locally compact abelian group, g ∈ C(Y, �),

and χ ∈ �̂.
(ii) Conversely, suppose that ϕ : C∗(GX) → C∗(GY) is a ∗-isomorphism, h : X → Y is a

homeomorphism (which is not necessarily a conjugacy), and � is a locally compact
abelian group that is separating for X and Y such that ϕ ◦ γX,g◦h

χ = γ
Y,g
χ ◦ ϕ for

all χ ∈ �̂ and g ∈ C(Y, �). Then ϕ(C0(X)) = C0(Y), and there exists a conjugacy
h̃ : X → Y such that ϕ(f ) = f ◦ h̃−1 for all f ∈ C0(X) and ϕ ◦ γX,g◦h̃

χ = γ
Y,g
χ ◦ ϕ

for all χ ∈ �̂ and g ∈ C(Y, �).

Proof. For (i), suppose that h : X → Y is a conjugacy. By Proposition 3.8, there is a
groupoid isomorphism ψ : GX → GY satisfying

ψ(x, p, y) = (h(x), p, h(y)),

for (x, p, y) ∈ GX. This isomorphism induces a ∗-isomorphism ϕ : C∗(GX) → C∗(GY)

satisfying ϕ(ξ) = ξ ◦ ψ−1 for ξ ∈ Cc(GX) and ϕ(C0(X)) = C0(Y) with ϕ(f ) = f ◦ h−1

for f ∈ C0(X). Suppose that � is a locally compact abelian group and g ∈ C(Y, �). It
follows from Proposition 3.8 that cg◦h = cg ◦ ψ . (Note that the proof of the relevant part of
Proposition 3.8 does not require � to be separating for Y.) This implies that ϕ ◦ γX,g◦h

χ =
γ

Y,g
χ ◦ ϕ for all χ ∈ �̂.

For (ii), suppose that ϕ : C∗(GX) → C∗(GY) is a ∗-isomorphism, h : X → Y is a
homeomorphism, and � is a locally compact abelian group that is separating for X and
Y such that ϕ ◦ γX,g◦h

χ = γ
Y,g
χ ◦ ϕ for all χ ∈ �̂ and g ∈ C(Y, �). Since � is separating

for both X and Y, it follows from Lemma 3.9 that ϕ(C0(X)) = C0(Y). Let h̃ : X → Y
be the induced homeomorphism satisfying ϕ(f ) = f ◦ h̃−1 for f ∈ C0(X) from Gelfand
duality.

Since � is separating for X and Y, it contains an element ζ of infinite order. Choose
g ∈ C(Y, �) to be constantly equal to ζ . Then γY,g

χ = γY
χ(ζ ) and γX,g◦h

χ = γX
χ(ζ ) for χ ∈ �̂.
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Since ϕ ◦ γX,g◦h
χ = γ

Y,g
χ ◦ ϕ for all χ ∈ �̂, it follows that if we let G = Z, c1 = cX, and

c2 = cY, then (3.8) in Lemma 3.10 holds. An application of Lemma 3.10 thus gives us
a groupoid isomorphism ψ : GX → GY with ψ(0) = h̃ such that cg◦h = cg ◦ ψ for all g ∈
C(Y, �). It now follows from Proposition 3.8 that h̃ = ψ(0) is a conjugacy, and that cg◦h̃ =
cg ◦ ψ for all g ∈ C(Y, �).

Fix g ∈ C(Y, �). Then cg◦h̃ = cg ◦ ψ = cg◦h. It follows that γX,g◦h̃ = γX,g◦h, and thus

ϕ ◦ γX,g◦h̃
χ = ϕ ◦ γX,g◦h

χ = γY,g
χ ◦ ϕ

for all χ ∈ �̂.

Remark 3.13. In [ERS20], Ruiz, Sims, and the fourth-named author show that a pair of
amplified graphs (i.e. graphs in which every vertex emits either infinitely many or no edges
to any other vertex) are graph-isomorphic if and only if there is a ∗-isomorphism of their
graph C*-algebras that intertwines the canonical gauge actions. It follows from this and
Proposition 3.12 that the boundary-path spaces of two amplified graphs are conjugate if and
only if there is a ∗-isomorphism of their graph C*-algebras that intertwines the canonical
gauge actions. This is an interesting result which we cannot expect to hold for larger classes
of graphs. In fact, it is known that if the boundary-path spaces of two directed graphs
are eventually conjugate, then there is a ∗-isomorphism of their graph C*-algebras that
intertwines the canonical gauge actions (see [CR17, Theorem 4.1]), and [BC20a, Example
3.6] provides an example of two (finite) directed graphs (with no sinks and no sources) with
boundary-path spaces that are eventually conjugate, but not conjugate.
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