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Abstract

We provide a characterization of realisable set covariograms, bringing a rigorous yet
abstract solution to the S2 problem in materials science. Our method is based on the
covariogram functional for random measurable sets (RAMS) and on a result about the
representation of positive operators on a noncompact space. RAMS are an alternative
to the classical random closed sets in stochastic geometry and geostatistics, and they
provide a weaker framework that allows the manipulation of more irregular functionals,
such as the perimeter. We therefore use the illustration provided by the S2 problem to
advocate the use of RAMS for solving theoretical problems of a geometric nature. Along
the way, we extend the theory of random measurable sets, and in particular the local
approximation of the perimeter by local covariograms.
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1. Framework and main results

1.1. Introduction

An old and difficult problem in materials science is the S2 problem, often posed in the
following terms. Given a real function S2 : Rd → [0, 1], is there a stationary random set
X ⊂ Rd whose standard two-point correlation function is S2, i.e. such that

P{x, y ∈ X} = S2(x − y), x, y ∈ Rd? (1)

TheS2 problem is a realizability problem concerned with the existence of a (translation invariant)
probability measure satisfying some prescribed marginal conditions.

This question is the stationary version of the problem of characterizing functions S(x, y)
satisfying

S(x, y) = P{x, y ∈ X} = E 1X(x) 1X(y).

The right-hand term is the second order moment of the random indicator field x �→ 1X(x),
which justifies the term of realizability problems, concerned with the existence of a positive
measure satisfying some prescribed moment conditions.

We can view the S2 problem as a truncated version of the general moment problem that deals
with the existence of a process for which all moments are prescribed. The main difficulty in
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considering only the moments up to some finite order is that this sequence of moments does not
uniquely determine the possible solution. The appearance of second order realizability problems
for random sets goes back to the 1950s; see, for example, [24] in the field of telecommunications.
There are applications in materials science and geostatistics, and marginal problems in general
are present under different occurrences in fields as various as quantum mechanics, computer
science, or game theory; see [10] and the references therein.

Reconstruction of heterogeneous materials from a knowledge of limited microstructural
information (a set of lower-order correlation functions) is a crucial issue in many applications.
Finding a constructive solution to the realizability problem described above should allow us to
test whether an estimated covariance indeed corresponds to a random structure, and propose
an adapted reconstruction procedure. Studying this problem can serve many other purposes,
especially in spatial modeling, where one needs to know the necessary admissibility conditions
to propose new covariance models. A series of works by Torquato and his coauthors in the
field of materials science gathers known necessary conditions and illustrates them for many 2D
and 3D theoretical models, along with reconstruction procedures; see [15] and the survey [31,
Section 2.2] and the references therein. This question was developed in parallel in the field of
geostatistics, where some authors do not tackle this issue directly, but address the realizability
problem within some particular classes of models, e.g. Gaussian, mosaic, or Boolean models;
see [5], [8], [20], [21].

A related question concerns the specific covariogram of a stationary random set X, defined
for all nonempty bounded open sets U ⊂ Rd by

γ s
X(y) = ELd{X ∩ (y +X) ∩ U}

Ld(U)
= ELd{X ∩ (y +X) ∩ (0, 1)d},

where Ld denotes the Lebesgue measure on Rd . The associated realizability problem, which
consists of determining whether there exists a stationary random set X whose specific covari-
ogram is a given function, is the (specific) covariogram realizability problem. Note that from a
straightforward Fubini argument it follows that for any stationary random closed set (RACS)X,

γ s
X(y) =

∫
(0,1)d

P{x ∈ X, x − y ∈ X} dx = S2(−y) = S2(y), (2)

and, thus, the S2 realizability problem and the specific covariogram problem are fundamentally
the same.

Our main result provides an abstract and fully rigorous characterization of this problem for
random measurable sets (RAMS) having locally finite mean perimeter. Furthermore, in the
restrictive one-dimensional case (d = 1), results can be passed on to the classical framework
of RACS. It will become clear in this paper why the covariogram approach in the framework
of RAMS is more adapted to a rigorous mathematical study. RAMS are an alternative to the
classical RACS in stochastic geometry and geostatistics as they provide a weaker framework
allowing us to manipulate more irregular functionals, such as the perimeter. We therefore use
the illustration provided by the S2 problem to advocate the use of RAMS for solving theoretical
problems of a geometric nature. Along the way, we extend the theory of RAMS, and, in
particular, the local approximation of the perimeter by local covariograms. We remark that the
framework of RAMS is related to that of ‘random sets of finite perimeter’ proposed recently by
Rataj [27]. However, it is less restrictive since RAMS do not necessarily have a finite perimeter.
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Our main result uses a fundamental relation between the Lipschitz property of the covari-
ogram function of a random set, and the finiteness of its mean variational perimeter, unveiled in
[11]. As in [19, Theorem 3.1] concerning point processes, we prove that the realizability of a
given function S2 : Rd → R can be characterized by two independent conditions: a positivity
condition, and a regularity condition, namely the Lipschitz property of S2. The positivity
condition deals with the positivity of a linear operator extending S2 on an appropriate space,
and is of combinatorial nature. The proof of this main result relies on a theorem dealing with
positive operators on a noncompact space recently derived in [19] to treat realizability problems
for point processes. This general method therefore proves its versatility here by being applied
to the framework of random sets in a very similar manner.

Checking whether S2 satisfies the positivity condition is completely distinct from the con-
cerns of this paper. It is a difficult problem that has a long history. It is more or less implicit
in many articles, and was, to the best of the authors’ knowledge, first addressed directly by
Shepp [29], later on by Matheron [23], and more recently in [18] and [26]. It is equivalent
to the study of the correlation polytope in the discrete geometry literature; see, for example,
the works of Deza and Laurent [7]. Still, a deep mathematical understanding of the problem
remains out of reach.

The plan of the paper is as follows. In the remainder of Section 1 we provide a quick
overview of the mathematical objects involved here, namely RAMS, positivity, perimeter, and
realizability problems, and we also state the main result of this paper, namely the specific
covariogram realizability problem for stationary RAMS with finite specific perimeter. In
Section 2, we develop the theory of RAMS, define different notions of perimeter, and explore
the relations with RACS, while Section 3 is devoted to the local covariogram functional and its
use for perimeter approximation. In Section 4, we provide the precise statement and the proof of
the main result. We also show that our main result extends to the framework of one-dimensional
stationary RACS.

1.2. RAMS and the variational perimeter

Details about RAMS are presented in Section 2, and here we provide the essential notation
for stating the results. Call M the class of Lebesgue measurable sets of Rd . A RAMS X
is a random variable taking values in M endowed with the Borel σ -algebra induced by the
local convergence in measure, which corresponds to the L1

loc(R
d)-topology for the indicator

functions; see Section 2.1 for details. We remark that under this topology, one is bound
to identify two sets A and B lying within the same Lebesgue class (that is, such that their
symmetric difference A�B is Lebesgue-negligible), and we indeed perform this identification
on M. Furthermore, say that a RAMS is stationary if its law is invariant under translations
of Rd .

One geometric notion that can be extended to RAMS is that of perimeter. For a deterministic
measurable set A, the perimeter of A in an open set U ⊂ Rd is defined as the variation of the
indicator function 1A in U , that is,

Per(A;U) = sup

{∫
U

1A(x) div ϕ(x) dx : ϕ ∈ C1
c (U,R

d), ‖ϕ(x)‖2 ≤ 1 for all x

}
, (3)

where C1
c (U,R

d) denotes the set of continuously differentiable functions ϕ : U → Rd with
compact support and ‖ · ‖2 is the Euclidean norm [2]; see Section 2.2 for a discussion and some
properties of variational perimeters. IfX is a RAMS, then, for all open setsU ⊂ Rd , Per(X;U)
is a well-defined random variable because the map A �→ Per(A;U) is lower semi-continuous
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for the local convergence in measure in Rd [2, Proposition 3.38]. Besides, ifX is stationary then
U �→ E{Per(X;U)} extends into a translation-invariant measure, and, thus, proportional to the
Lebesgue measure. We call the specific perimeter or (specific variation [12]) ofX the constant of
proportionality that will be denoted by Pers(X) and is given by Pers(X) = EPer{X; (0, 1)d}.
We refer to [12] for the computation of the specific perimeter of some classical random set
models (Boolean models and Gaussian level sets).

1.3. Covariogram realizability problems

For a deterministic set A, we call the local covariogram of A the map

δy;W(A) = Ld(A ∩ (y + A) ∩W), (y,W) ∈ Rd × W , (4)

where W denotes the set of observation windows defined by

W = {W ⊂ Rd bounded open set such that Ld(∂W) = 0}.
Given a RAMS X, we denote by γX(y;W) = Eδy;W {X} the (mean) local covariogram of
X. If X is stationary then the map W �→ γX(y;W) is translation invariant and extends into a
measure proportional to the Lebesgue measure. Hence, we call it the specific covariogram of
X and denote it by the map y �→ γ s

X(y), such that γX(y;W) = Eδy;W {X} = γ s
X(y)L

d(W).
Note that, we simply have γ s

X(y) = γX(y, (0, 1)d).
In this paper we are interested in the specific covariogram realizability problem. Given a

function S2 : Rd → R, does there exist a stationary RAMS X ∈ M such that S2(y) = γ s
X(y)

for all y ∈ Rd?
The specific covariogram candidate S2 has to verify some necessary structural condition to

be realisable.

Definition 1. (Covariogram admissible functions.) A function γ : Rd × W → R is said to
be M-local covariogram admissible, or just admissible, if for all 5-tuples (q ≥ 1, (ai) ∈
Rq, (yi) ∈ (Rd)q, (Wi) ∈ Wq, c ∈ R),

[
for all A ∈ M, c +

q∑
i=1

aiδyi ;Wi (A) ≥ 0

]
�⇒ c +

q∑
i=1

aiγ (yi;Wi) ≥ 0.

A function S2 : Rd → R is said to be M-specific covariogram admissible, or just admissible,
if the function (y;W) �→ S2(y)L

d(W) is M-local covariogram admissible.

It is an immediate consequence of the positivity and linearity of the mathematical expec-
tation that a realisable S2 function is necessarily admissible. Checking whether a given S2
is admissible, a problem of combinatorial nature, is difficult. It will not be addressed here,
but as emphasized in (2), it is directly related to the positivity problem for two-point covering
functions, which has been studied in numerous works; see [7], [18], [23], [26], [29], and the
references therein. We remark that being admissible is a strong constraint on S2 that conveys
the usual properties of covariogram functions, and in particular S2(y) ≥ 0 for all y ∈ Rd (since
for all y ∈ Rd , W ∈ W and A ∈ M, δy;W(A) ≥ 0).

In general, the admissibility of S2 is not sufficient for S2 to be realisable. Consider the linear
operator �,

�

(
c +

q∑
i=1

aiδyi ;Wi
)

= c +
q∑
i=1

aiS2(yi)L
d(Wi) (5)

https://doi.org/10.1239/aap/1444308874 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308874


Random measurable sets SGSA • 615

on the subspace of functionals on M generated by the constant functions and the covariogram
evaluations A �→ δy;W(A), y ∈ Rd , W ∈ W . The realizability of S2 corresponds to the
existence of a probability measureμ on M representing�, i.e. such that�(g) = ∫

M g dμ for g
in the aforementioned subspace. In a noncompact space such as M, the positivity of�, i.e. the
admissibility of S2, is not sufficient to represent it by a probability measure, as the σ -additivity
is also needed.

It was shown in [19] that in such noncompact frameworks, the realizability problem would
be better accompanied by an additional regularity condition formulated in terms of a function
called a regularity modulus; see Section 4 for details. The perimeter function fulfills this role
here, mostly because it can be approximated by linear combinations of covariograms, and has
compact level sets. The well-posed realizability problem with regularity condition we consider
here deals with the existence of a stationary RAMS X ∈ M such that

S2(y) = γ s
X(y), y ∈ Rd , Pers(X) = EPer{X; (0, 1)d} < ∞.

The main result of this paper is the following theorem.

Theorem 1. Let S2 : Rd �→ R be a function. Then S2 is the specific covariogram of a stationary
RAMS X ∈ M such that Pers(X) < ∞ if and only if S2 is admissible and Lipschitz at 0 along
the d canonical directions.

This result is analogous to the one obtained in [19] for point processes, since the realizability
condition is shown to be a positivity condition plus a regularity condition, namely the Lipschitz
property ofS2. As already discussed, a realisable functionS2 is necessarily admissible. Besides,
extending results from [11], we show that a stationary RAMS X has a finite specific perimeter
if and only if its specific covariogram γ s

X is Lipschitz, and we obtain an explicit relation
between the Lipschitz constant of S2 and the specific perimeter; see Proposition 7. Hence,
the direct implication of Theorem 1 is somewhat straightforward. The real difficulty consists
in proving the converse implication. To do so we adapt the techniques of [19] to our context
which involves several technicalities regarding the approximation of the perimeter by linear
combinations of local covariogram functionals. We first establish the counterpart of Theorem 1
for the realizability of local covariogram function γ : Rd × W → R (see Theorem 3) and
we then extend this result to the case of the specific covariogram of stationary RAMS; see
Theorem 5.

In addition, we study the links between RAMS and the more usual framework of RACS,
which in fine enables us to obtain a result analogous to Theorem 1 for RACS of the real line
(see Theorem 7); such a result was out of reach with previously developed methods.

2. RAMS

2.1. Definition of RAMS

RAMS are defined as random variables taking value in the set M of Lebesgue (classes of)
sets of Rd endowed with the Borel σ -algebra B(M) induced by the natural topology, the so-
called local convergence in measure. We recall that a sequence of measurable sets (An)n∈N

locally converges in measure to a measurable set A if for all bounded open sets U ⊂ Rd , the
sequence Ld((An�A) ∩ U) tends to 0, where � denotes the symmetric difference. The local
convergence in measure simply corresponds to the convergence of the indicator functions 1An
towards 1A in the space of locally integrable functions L1

loc(R
d), and, consequently, M is a

complete metrizable space. This is a consequence of the facts that L1
loc(R

d) is a complete
metrizable space and that the set of indicator functions is closed in L1

loc(R
d).
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Definition 2. (RAMS.) A RAMS X is a measurable map X : ω �→ X(ω) from (
,A) to
(M,B(M)), where B(M) denotes the Borel σ -algebra induced by the local convergence in
measure.

Note that if X is a RAMS then ω �→ 1X(ω) is a random locally integrable function. This
concept of random measurable (class of) set(s) is not standard, and, to the best of the authors’
knowledge, it was first introduced in [30] for random subsets of the real interval [0, 1], as
mentioned in [25].

In the remaining part of this section, we will discuss the link between RAMS and other
classical random objects, namely random Radon measures, measurable subsets of
×Rd , and
RACS.

2.1.1. Random Radon measures associated with RAMS. Following the usual construction of
random objects, a random Radon measure is defined as a measurable function from a probability
space (
,A,P) to the space M+ of positive Radon measures on Rd equipped with the smallest
σ -algebra for which the evaluation maps μ �→ μ(B), B ∈ B(Rd) relatively compact, are
measurable; see, e.g. [6], [16], [28]. Any RAMSX ⊂ Rd canonically defines a random Radon
measure that is the restriction to X of the Lebesgue measure, i.e. B �→ Ld(X ∩ B) for Borel
set B ∈ B(Rd). The measurability of this restriction results from the observation that, for all
B ∈ B(Rd), the map f �→ ∫

B
f (x) dx is measurable for the L1

loc-topology.

2.1.2. Existence of a measurable graph representative. For a RAMS X : 
 → M, one can
study the measurability properties of the graph Y = {(ω, x) : x ∈ X(ω)} ⊂ 
× Rd .

Definition 3. (Measurable graph representatives.) A subset Y ⊂ 
 × Rd is a measurable
graph representative of a RAMS X if

(i) Y is a measurable subset of
×Rd (i.e. Y belongs to the product σ -algebra A⊗B(Rd)),

(ii) for almost every (a.e.) ω ∈ 
, the ω-section Y (ω) = {x ∈ Rd : (ω, x) ∈ Y } is equivalent
in measure to X(ω), i.e. Ld(Y (ω)�X(ω)) = 0.

Proposition 1. Any measurable set Y ∈ A ⊗ B(Rd) canonically defines a RAMS by consid-
ering the Lebesgue class of its ω-sections:

ω �→ Y (ω) = {x ∈ Rd : (ω, x) ∈ Y }.
Conversely, any RAMS X admits measurable graph representatives Y ∈ A ⊗ B(Rd).

Proof. The first point is trivial. Let us prove the second point. Consider the random Radon
measure μ associated to X, i.e.

μ(ω,B) = Ld(X(ω) ∩ B) =
∫
B

1X(ω)(x) dx.

By construction, this random Radon measure is absolutely continuous with respect to the
Lebesgue measure. Then, according to the Radon–Nikodym theorem for random measures (see
Theorem 8 inAppendixA), there exists a jointly measurable mapg : (
×Rd ,A⊗B(Rd)) → R

such that for all ω ∈ 
,

μ(ω,B) =
∫
B

g(ω, x) dx, B ∈ B(Rd).
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Hence, for all ω ∈ 
, 1X(ω)(·) and g(ω, ·) are both Radon–Nikodym derivatives of μ(ω, ·)
and, thus, are equal almost everywhere. In particular, for a.e. x ∈ Rd , g(ω, x) ∈ {0, 1}.
Consequently, the function (ω, x) �→ 1{g(ω,x)=1} is also jointly measurable and is a Radon–
Nikodym derivative of μ(ω, ·) for all ω ∈ 
, and, thus, the set

Y = {(ω, x) ∈ 
× Rd : g(ω, x) = 1}
is a measurable graph representative of X.

2.1.3. RAMS and RACS. Recall that (
,A,P) denotes our probability space. Let F = F (Rd)
be the set of all closed subsets of Rd . Following [25, Definition 1.1] a RACS is defined as
follows.

Definition 4. (RACS.) A map Z : 
 → F is called a RACS if for every compact set K ⊂ Rd ,
{ω : Z(ω) ∩K �= ∅} ∈ A.

The framework of RACS is standard in stochastic geometry [22], [25]. Let us reproduce
a result of Himmelberg that allows us to link the different notions of random sets; see [25,
Theorem 2.3] or the original paper [13] for the complete theorem.

Theorem 2. (Himmelberg.) Let (
,A,P) be a probability space and Z : 
 → Z(ω) ∈ F
be a map taking values into the set of closed subsets of Rd . Consider the two following
assertions:

(i) {ω : Z ∩ F �= ∅} ∈ A for every closed set F ⊂ Rd ;

(ii) the graph of Z, i.e. the set {(ω, x) ∈ 
 × Rd : x ∈ Z(ω)}, belongs to the product
σ -algebra A ⊗ B(Rd).

Then the implication that (i) implies (ii) is always true, and if the probability space (
,A,P)
is complete, we have the equivalence (i) if and only if (ii).

In view of our definitions for random sets, Himmelberg’s theorem can be rephrased in the
following terms.

Proposition 2. (RACS and closed RAMS.) (i) Any RACS Z has a measurable graph Y =
{(ω, x) ∈ 
× Rd : x ∈ Z(ω)}, and, thus, also defines a unique RAMS.

(ii) Suppose that the probability space (
,A,P) is complete. Let Y ∈ A ⊗ B(Rd) be a
measurable set such that for all ω ∈ 
, its ω-section Y (ω) = {x ∈ Rd ] : (ω, x) ∈ Y } is a
closed subset of Rd . Then, the map ω �→ Y (ω) defines a RACS.

2.2. RAMS of finite perimeter

For a closed set F , the perimeter is generally defined by the (d − 1)-dimensional measure
of the topological boundary, i.e. Hd−1(∂F ). This definition is not relevant for a measurable
set A ⊂ Rd , in the sense that the value Hd−1(∂A) strongly depends on the representative
of A within its Lebesgue class. The proper notion of perimeter for measurable sets is the
variational perimeter that defines the perimeter as the variation of the indicator function of the
set. An important feature of the variational perimeter is that it is lower semi-continuous for the
convergence in measure, while the functional F �→ Hd−1(∂F ) is not lower semi-continuous
on the set of closed sets F endowed with the hit-or-miss topology. This is a key aspect for
this paper since it allows us to consider the variational perimeter as a regularity modulus for
realisability problems in following the framework of [19].
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2.2.1. Variational perimeters. Let U be an open subset of Rd . Recall that the (variational)
perimeter Per(A;U) of a measurable set A ∈ M in the open set U is defined by (3). Denote
by Sd−1 the unit sphere of Rd . Closely related to the perimeter, we also define the directional
variation in the direction u ∈ Sd−1 of A in U by (see [2, Section 3.11])

Vu(A;U) = sup

{∫
U

1A(x)〈∇ϕ(x), u〉 dx : ϕ ∈ C1
c (U,R), |ϕ(x)| ≤ 1 for all x

}
.

For technical reasons, we also consider the anisotropic perimeter

A �→ PerB(A;U) =
d∑
j=1

Vej (A;U),

which adds up the directional variations along the d directions of the canonical basis B =
{e1, . . . , ed}. In geometric measure theory, the functional A �→ PerB(A;U) is described as
the anisotropic perimeter associated with the anisotropy function x �→ ‖x‖∞; see, e.g. [4] and
the references therein. Indeed, we can easily see that

PerB(A;U) = sup

{∫
U

1A(x) div ϕ(x) dx : ϕ ∈ C1
c (U,R

d), ‖ϕ(x)‖∞ ≤ 1 for all x

}
.

Hence, the only difference between the variational definition of the isotropic perimeter Per(A;
U) and the one of the anisotropic perimeter PerB(A;U) is that the test functions ϕ take values
in the �2-unit ball Bd for the former whereas they take values in the �∞-unit ball [−1, 1]d for
the latter. The set inclusions Bd ⊂ [−1, 1]d ⊂ √

dBd lead to the tight inequalities

Per(A;U) ≤ PerB(A;U) ≤ √
dPer(A;U).

Consequently, a setAhas a finite perimeter Per(A;U) inU if and only if it has a finite anisotropic
perimeter PerB(A;U). Let us mention that this equivalence is not true when considering only
one directional variation Vu(A;U). We say that a measurable set A ⊂ Rd has locally finite
perimeter if A has a finite perimeter Per(A;U) in all bounded open sets U ⊂ Rd .

To conclude, let us mention that ifX is a RAMS then Per(X;U), PerB(X;U), andVu(X;U),
u ∈ Sd−1 are well-defined random variables since the mapsA �→Per(A;U),A �→PerB(A;U),
and A �→ Vu(A;U) are lower semi-continuous for the convergence in measure [2]. Conse-
quently, we say that a RAMSX has almost sure (a.s.) finite (respectively locally finite) perimeter
in U if the random variable Per(X;U) is a.s. finite (respectively if, for all bounded open sets
V ⊂ U , Per(X;V ) is a.s. finite).

Remark 1. Rataj [27] recently proposed a framework for ‘random sets of finite perimeter’ that
models random sets as random variables in the space of indicator functions of sets of finite
perimeter endowed with the Borel σ -algebra induced by the strict convergence in the space
of functions of bounded variation [2, Section 3.1]. Since this convergence induced the L1-
convergence of indicator functions, any ‘random set of finite perimeter’X uniquely defines a
RAMSX having a.s. finite perimeter. One advantage of the RAMS framework is that it is more
general in the sense that it enables us to consider random sets that do not have finite perimeter;
see, e.g. Corollary 1.
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2.2.2. Closed representative of one-dimensional sets of finite perimeter. Although the general
geometric structure of sets of finite perimeter is well known (see [2, Section 3.5]), it necessitates
involved notions from geometric measure theory (rectifiable sets, reduced and essential bound-
aries, etc.). However, when restricted to the case of one-dimensional sets of finite perimeter,
all the complexity vanishes since subsets of R having finite perimeter all correspond to finite
unions of nonempty and disjoint closed intervals.

More precisely, according to [2, Proposition 3.52], if a nonnegligible measurable setA ⊂ R

has finite perimeter in an interval (a, b) ⊂ R̄, there exists an integer p and p pairwise disjoint
nonempty and closed intervals Ji = [a2i−1, a2i] ⊂ R̄, with a1 < a2 < · · · < a2p, such that

• A ∩ (a, b) is equivalent in measure to the union
⋃
i Ji ,

• the perimeter of A in (a, b) is the number of interval endpoints belonging to (a, b),

Per(A; (a, b)) = #{a1, a2, . . . , a2p} ∩ (a, b).
We remark that a set of the form A = ⋃

i[a2i−1, a2i] is closed, and that such a set satisfies the
identity Per(A; (a, b)) = H0(∂A ∩ (a, b)), where ∂A denotes the topological boundary of A
and H0 is the Hausdorff measure of dimension 0 on R (i.e. the counting measure), while in
the general case one only has Per(A; (a, b)) ≤ H0(∂A ∩ (a, b)) since A may contain isolated
points.

In the general case, sinceA ⊂ R may have locally finite perimeter, then there exists a unique
countable or finite family of closed and disjoint intervals Ji = [a2i−1, a2i], i ∈ I ⊂ Z, such that
A is equivalent in measure to

⋃
i∈I Ji , and for all bounded open intervals (a, b), Per(A; (a, b))

is the number of interval endpoints belonging to (a, b).
Using both this observation and Proposition 2, we obtain the following proposition.

Proposition 3. Suppose that the probability space (
,A,P) is complete. Let X be a RAMS
of R that has a.s. locally finite perimeter. Then, there exists a RACS Z ⊂ R such that for P-a.e.
ω ∈ 
 and for all a < b ∈ R,

L1(X(ω)�Z(ω)) = 0, Per(X(ω); (a, b)) = H0(∂Z(ω) ∩ (a, b)).

Proof. First, we remark that a measurable set of finite perimeter A ⊂ R equivalent in
measure to

⋃
i∈I [a2i−1, a2i] for some finite or countable index set I ⊂ Z has the Lebesgue

density

D(x,A) = lim
r→0+

L1(A ∩ (x − r, x + r))

2r

=

⎧⎪⎪⎨
⎪⎪⎩

1 if x is in some open interval (a2i−1, a2i ),
1
2 if x is an interval endpoint a2i−1 or a2i for some i ∈ I ,
0 if x /∈

⋃
i∈I

[a2i−1, a2i].

Let X be a RAMS of R that has a.s. locally finite perimeter. Let 
′ ∈ A be a subset of 

of probability 1 such that for all ω ∈ 
′, X has locally finite perimeter. For all ω ∈ 
′, the
Lebesgue class X(ω) admits a representative that is the union of an at most countable family
of nonempty and disjoint closed intervals. According to the above observation, for a fixed
ω ∈ 
′, the densityD(x,X(ω)) exists for all x ∈ R, and the good representative of X is given
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by {x ∈ R : D(x,X(ω)) > 0}. Let (rn)n∈N be a positive sequence decreasing to 0, and define
for all ω ∈ 
,

g(ω, x) = lim sup
n→+∞

L1(X(ω) ∩ (x − rn, x + rn))

2rn
.

According to the proof of Theorem 8 and Proposition 1,

Y = {(ω, x) ∈ 
× Rd : g(ω, x) > 0}
is a measurable set that is a measurable graph representative ofX. Besides, for a given ω ∈ 
′,
since D(x,X(ω)) exists for all x ∈ R,

D(x,X(ω)) = g(ω, x), x ∈ R.

Hence, for all ω ∈ 
′, the ω-section Y (ω) of Y is the union of an at most countable and locally
finite family of nonempty and disjoint closed intervals, and in particular a closed set. Thus, by
Proposition 2, the map ω �→ Y (ω) defines a RACS.

2.2.3. Non-closed RAMS in dimension d > 1. In contrast to the one-dimensional case, in
dimension d > 1 there exist measurable sets of finite perimeters that do not have closed
representative in their Lebesgue class. A set A obtained as the union of an infinite family of
open balls with small radii and with centers forming a dense subset of [0, 1]d is considered
in [2, Example 3.53]. It has finite perimeter, finite measure Ld(A) < 1, and is such that
Ld(A ∩ U) > 0 for any open subset U of [0, 1]d .

Such a set clearly has no closed representative, because if it had one, say F , then F would
charge every open subset of [0, 1]d , and therefore it would be dense in [0, 1]d . Since F is
closed, we would have F = [0, 1]d , which contradicts Ld(F ) = Ld(A) < 1.

3. Local covariogram and perimeter approximation

In this section we establish general properties of the local covariogram of a measurable set,
as well as the mean local covariogram of a RAMS. A particular emphasis is given to the relation
between the local perimeter of a set and the Lipschitz constant of its local covariogram in order
to adapt the results of [11] to the local covariogram functional.

3.1. Definition and continuity

The local covariogram of a measurable set A ∈ M is defined in (4). We remark that for all
y ∈ Rd , and W ∈ W ,

δy;W(A) = δy;W(A ∩ (W ∪ (−y +W))), A ∈ M, (6)

so that only the part of A included in the domainW ∪ (−y +W) has an influence on the value
of δy;W(A), hence, local covariograms are indeed local. Before enunciating specific results of
interest for our realisability problem, we prove that local covariograms are continuous for the
local convergence in measure.

Proposition 4. (Continuity of local covariograms.) (i) For all A ∈ M and W ∈ W , the map
y �→ δy;W(A) is uniformly continuous over Rd .

(ii) Let A ∈ M and y ∈ Rd . Then, for all U,W ∈ W ,

|δy;U(A)− δy;W(A)| ≤ Ld(U�W).
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In particular, the map W �→ δy;W(A) is continuous for the convergence in measure.

(iii) Let A, B ∈ M, and let W ∈ W . Then, for all y ∈ Rd ,

|δy;W(A)− δy;W(B)| ≤ 2Ld((A�B) ∩ (W ∪ (−y +W))).

In particular, the map A �→ δy;W(A) is continuous for the local convergence in measure.

Proof. (i) The convolution interpretation for local covariograms yields

δy;W(A) =
∫

Rd

1A∩W(x) 1−A(y − x) dx = 1A∩W ∗ 1−A(y).

Since 1A∩W ∈ L1(Rd) and 1−A ∈ L∞(Rd), the uniform continuity is ensured by the Lp-Lp
′
-

convolution theorem; see, e.g. [14, Proposition 3.2].

(ii) Using the general inequality |Ld(A1)− Ld(A2)| ≤ Ld(A1�A2), we obtain

|δy;U(A)− δy;W(A)| ≤ Ld((A ∩ (A+ y) ∩ U)�(A ∩ (A+ y) ∩W)) ≤ Ld(U�W).

(iii) If A and B have finite Lebesgue measure,

|δy;W(A)− δy;W(B)|
= | 1A∩W ∗ 1−A(y)− 1B∩W ∗ 1−B(y)|
≤ | 1A∩W ∗ 1−A(y)− 1A∩W ∗ 1−B(y)+ 1A∩W ∗ 1−B(y)− 1B∩W ∗ 1−B(y)|
≤ | 1A∩W ∗(1−A− 1−B)(y)| + |(1A∩W − 1B∩W) ∗ 1−B(y)|
≤ ‖ 1A∩W ‖∞‖ 1−A− 1−B ‖1 + ‖ 1A∩W − 1B∩W ‖1‖ 1−B ‖∞
≤ Ld(A�B)+ Ld((A ∩W)�(B ∩W))
≤ 2Ld(A�B).

The announced general inequality is obtained from (6) which ensures that we can replace A
and B by A ∩ (W ∪ (−y + W)) and B ∩ (W ∪ (−y + W)) without changing the values of
δy;W(A) and δy;W(B).

3.2. Local covariogram and anisotropic perimeter

As for the case of covariogram [11], difference quotients at 0 of local covariograms are
related to the directional variations of the setA. This is clarified by the following results, where
Vu(f ;U) denotes the directional variation of f ∈ L1(U) in U in the direction u ∈ Sd−1, i.e.

Vu(f ;U) = sup

{∫
U

f (x)〈∇ϕ(x), u〉 dx : ϕ ∈ C1
c (U,R), |ϕ(x)| ≤ 1 for all x

}
.

Recall that by definition, for a set A ∈ M, Vu(A;U) stands for Vu(1A;U)), and that A � B

denotes the Minkowski difference of two measurable sets A and B. The following proposition
states a well-known result from the theory of functions of bounded variation that is fully proved
in [12].

Proposition 5. LetU be an open subset of Rd andu ∈ Sd−1. Then, for all functionsf ∈ L1(U)

and ε ∈ R, ∫
U�[0,εu]

|f (x + εu)− f (x)|
|ε| dx ≤ Vu(f ;U),
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where [0, εu] denotes the segment {tεu : t ∈ [0, 1]}, and

lim
ε→0

∫
U�[0,εu]

|f (x + εu)− f (x)|
|ε| dx = Vu(f ;U).

The next two propositions show that when f is the indicator function of a setA, the integral∫
U�[0,εu]

|f (x + εu)− f (x)|
|ε| dx

can be expressed as a linear combination of local covariograms δy;W(A). Since this linear
combination will be central in the following results, we introduce the notation

σu;W(A) = 1

‖u‖ (δ0;W�[−u,0](A)− δu;W�[−u,0](A)+ δ0;W�[0,u](A)− δ−u;W�[0,u](A))

for any A ∈ M, u �= 0, and W ∈ W . We remark that for W ∈ W , y ∈ Rd , A ∈ M(Rd),

δ0;W(A)− δy;W(A) = Ld(A∩W)− Ld(A∩ (y +A)∩W) = Ld((A \ (y +A))∩W). (7)

Proposition 6. (Local covariogram and anisotropic perimeter.) For all A ∈ M, W ∈ W ,
ε ∈ R, and u ∈ Sd−1,

0 ≤ σεu;W(A) ≤ Vu(A;W), lim
ε→0

σεu;W(A) = Vu(A;W). (8)

When summing along the d directions of the canonical basis B = {e1, e2, . . . , ed}, we obtain
similar results for the anisotropic perimeter, i.e. for all A ∈ M and ε ∈ R,

0 ≤
d∑
j=1

σεej ;W(A) ≤ PerB(A;W), lim
ε→0

d∑
j=1

σεej ;W(A) = PerB(A;W).

Proof. These inequalities are immediate from Proposition 5, and the equality∫
W�[0,εu]

| 1A(x + εu)− 1A(x)| dx = |ε|σεu;W(A)

holds for all A ∈ M,W ∈ W , u ∈ Sd−1, and ε ∈ R. Indeed,∫
W�[0,εu]

| 1A(x + εu)− 1A(x)| dx =
∫
W�[0,εu]

| 1−εu+A(x)− 1A(x)| dx

= Ld(((−εu+ A)�A) ∩ (W � [0, εu]))
= Ld(((−εu+ A) \ A) ∩ (W � [0, εu]))

+ Ld((A \ (−εu+ A)) ∩ (W � [0, εu])).
Applying the translation by vector, εu yields

Ld(((−εu+ A) \ A) ∩ (W � [0, εu])) = Ld((A \ (εu+ A)) ∩ (εu+ (W � [0, εu]))).
We remark that εu+ (W � [0, εu]) = W � [−εu, 0] and, thus, using (7),∫

W�[0,εu]
| 1A(x + εu)− 1A(x)| dx

= Ld((A \ (εu+ A)) ∩ (W � [−εu, 0]))+ Ld((A \ (−εu+ A)) ∩ (W � [0, εu]))
= δ0;W�[−εu,0](A)− δεu;W�[−εu,0](A)+ δ0;W�[0,εu](A)− δ−εu;W�[0,εu](A).
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We turn to the counterpart of Proposition 6 for mean local covariograms of RAMS. For a
RAMS X, γX denotes the (mean) local covariogram of the RAMS X defined by γX(y;W) =
Eδy;W {X}, y ∈ Rd , W ∈ W , and define similarly σX(u;W) = Eσu;W {X}.
Corollary 1. Let X be a RAMS. Then, for all W ∈ W and u ∈ Sd−1,

σX(εu;W) ≤ EVu{X;W }, EVu{X;W } = lim
ε→0

σX(εu;W).
Proof. This is straightforward from (8). If EVu{X;W } < ∞, apply the Lebesgue theorem

with the a.s. convergence and domination given by (8), while if EVu{X;W } = ∞, apply Fatou’s
lemma.

We turn to similar results for stationary RAMS. First, recall that if X is a stationary RAMS,
the specific covariogram of X is defined by γ s

X(y) = γX(y; (0, 1)d) ∈ [0, 1]. By analogy
with the specific perimeter Pers(X) = EPer{X; (0, 1)d}, the specific anisotropic perimeter of
X is defined by Pers

B(X) = EPerB{X; (0, 1)d} ∈ [0,+∞] and for all u ∈ Sd−1, the specific
variation of X in direction u is given by V s

u(X) = EVu{X; (0, 1)d}.
For a function F : Rd → R, define the Lipschitz constant in the j th direction at y ∈ Rd by

Lipj (F, y) = sup
t∈R

|F(y + tej )− F(y)|
|t | ,

and denote Lipj (F ) = supy∈Rd Lipj (F, y). Note that a function F is Lipschitz in the usual
sense if and only each constant Lipj (F ) is finite for j = 1, . . . , d.

Proposition 7. Let X be a stationary RAMS and let γ s
X be its specific covariogram. Then γ s

X

is even and, for all y, z ∈ Rd ,

|γ s
X(y)− γ s

X(z)| ≤ γ s
X(0)− γ s

X(y − z).

In particular, γ s
X is Lipschitz over Rd if and only if γ s

X is Lipschitz at 0. Besides, for all
j ∈ {1, . . . , d},

γ s
X(0)− γ s

X(εej )

|ε| ≤ 1

2
V s
ej
(X), ε �= 0,

and

Lipj (γ
s
X) = Lipj (γ

s
X, 0) = lim

ε→0

γ s
X(0)− γ s

X(εej )

|ε| = 1

2
V s
ej
(X).

The proof of the proposition is an adaptation of similar results for covariogram functions [11].
We first state a lemma regarding local covariogram of deterministic sets.

Lemma 1. For all y, z ∈ Rd , W ∈ W , and A ∈ M,

δy;W(A)− δz;W(A) ≤ δ0;−y+W(A)− δz−y;−y+W(A). (9)

Proof. We have

δy;W(A)− δz;W(A) = Ld(A ∩ (y + A) ∩W)− Ld(A ∩ (z+ A) ∩W)
≤ Ld((A ∩ (y + A) ∩W) \ (A ∩ (z+ A) ∩W))
≤ Ld(((y + A) ∩W) \ ((z+ A) ∩W))
≤ Ld((y + A) ∩W)− Ld((y + A) ∩ (z+ A) ∩W)
≤ Ld(A ∩ (−y +W))− Ld(A ∩ (z− y + A) ∩ (−y +W))

≤ δ0;−y+W(A)− δz−y;−y+W(A).
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Proof of Proposition 7. Let us first check that γ s
X is even. For all y ∈ Rd ,

γ s
X(−y) = E{Ld(X ∩ (−y +X) ∩ (0, 1)d}

= E{Ld((y +X) ∩X ∩ (y + (0, 1)d)}
= γ s

X(y).

Let us turn to the inequality. As a direct consequence of (9),

γX(y;W)− γX(z;W) ≤ γX(0; −y +W)− γX(z− y; −y +W).

But, since γX(y;W) = γ s
X(y)L

d(W), γ s
X(y)− γ s

X(z) ≤ γ s
X(0)− γ s

X(z− y), and interchang-
ing y and z yields |γ s

X(y)− γ s
X(z)| ≤ γ s

X(0)− γ s
X(y − z). This inequality yields

Lipj (γ
s
X) = sup

y∈Rd , ε∈R

|γ s
X(y + εej )− γ s

X(y)|
|ε| = sup

ε∈R

γ s
X(0)− γ s

X(εej )

|ε| = Lipj (γ
s
X, 0).

Since γ s
X is even, for all ε �= 0,

ϕs
x

|ε| = 1

2

ϕs
x + ψ s

x

|ε|
= 1

2
sup
c>0

ϕs
x + ψ s

x

|ε|
cd − |ε|c
cd

= 1

2
sup
c>0

ϕs
xL

d((0, c)d � [−εej , 0])+ ψ s
xL

d((0, c)d � [0, εej ])
|ε|Ld((0, c)d)

= 1

2
sup
c>0

σX(εej ; (0, c)d) 1

Ld((0, c)d)

≤ 1

2
sup
c>0

EVej {X; (0, c)d} 1

Ld((0, c)d)

= 1

2
V s
ej
(X),

where the inequality follows from (8). In this equation we make the substitution ϕs
x = γ s

X(0)−
γ s
X(εej ) and ψ s

x = γ s
X(0)− γ s

X(−εej ). It follows that

Lipj (γ
s
X, 0) = sup

ε∈R

γ s
X(0)− γ s

X(εej )

|ε| ≤ 1

2
V s
ej
(X).

Besides, for all ε �= 0 and c > 0,

1

2
σX(εej ; (0, c)d) 1

Ld((0, c)d)
≤ γ s

X(0)− γ s
X(εej )

|ε| ≤ 1

2
V s
ej
(X),

and according to Corollary 1, the left-hand term tends to 1
2V

s
ej
(X) when ε → 0. Hence,

lim
ε→0

γ s
X(0)− γ s

X(εej )

|ε| = 1

2
V s
ej
(X) = sup

ε∈R

γ s
X(0)− γ s

X(εej )

|ε| .
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3.3. Anisotropic perimeter approximation for pixelized sets

The proofs of our main results rely on several approximations involving pixelized sets and
discretized covariograms. In the previous section we proved that the directional variations as
well as the anisotropic perimeter can be computed from limits of difference quotients at 0 of the
local covariogram. Here, we show that for pixelized sets, the anisotropic perimeter PerB(A;W)
can be expressed as a finite difference at 0 of the local covariogram functionals.

For n ∈ N∗ = N \ {0}, we consider the pixels Cnk = (1/n)k + [0, n−1]d , k ∈ Zd , that are
the cells of the lattice n−1Zd . Denote by Mn the algebra of Rd induced by the sets Cnk , k ∈ Zd ,
and denote Wn = W ∩ Mn. For any W ∈ Wn, also denote Mn(W) = {A ∈ Mn : A ⊂ W }
the sets of pixelized sets contained inside W . We remark that for any set A ∈ Mn, there is a
unique subset IA of Zd such that A is equivalent in measure to

⋃
k∈IA C

n
k .

Proposition 8. Let B = (e1, e2, . . . , ed) be the canonical basis of Rd and let n ∈ N∗. For all
A ∈ Mn, W ∈ Wn, and j ∈ {1, . . . , d},

Vej (A;W) = σn−1ej ;W(A).

Hence, for all A ∈ Mn and W ∈ Wn, PerB(A;W) = ∑d
j=1 σn−1ej ;W(A).

Proof. Let 0 < ε ≤ n−1. Consider the quantity

δεej ;W�[−εej ,0](A) = Ld(A ∩ (εej + A) ∩ (W � [−εej , 0]))
= Ld

(( ⋃
k∈IA

Cnk

)
∩

(⋃
l∈IA

(εej + Cnl )

)
∩ (W � [−εej , 0])

)
.

The two unions are over sets with pairwise negligible intersection, whence

δεej ;W�[−εej ,0](A) =
∑
k,l∈IA

Ld(Cnk ∩ (Cnl + εej ) ∩ (W � [−εej , 0])).

Since 0 < ε ≤ n−1, for k, l ∈ IA,

Ld(Cnk ∩ (Cnl + εej ) ∩ (W � [−εej , 0]))

=

⎧⎪⎨
⎪⎩
n−(d−1)(n−1 − ε) if l = k ∈ IW ,
εn−(d−1) if l = k − ej and k, l ∈ IW ,
0 otherwise.

These assertions are straightforward, we simply have to be cautious in the case l = k− ej , k ∈
IW , l /∈ IW , contribution of which is 0. Summing up those contributions and doing similar com-
putations for the quantities δ0;W�[−εej ,0](A), δ−εej ;W�[0,εej ](A), and δ0;W�[0,εej ](A) yields,
for some real numbers α, β independent of ε, for all ε ∈ (0, n−1],

σεej ;W(A) = α

ε
+ β.

Proposition 6 then implies that α = 0, β = Vej (A;W), which yields the desired conclusion
with ε = n−1.

4. Realisability result

In this section we make explicit some considerations related to our realisability result and
provide its proof.
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4.1. Realisability problem and regularity modulus

Recall that the local covariogram of a RAMS X is γX(y;W) = Eδy;W {X}. We introduce
a regularized realisability problem for a local covariogram. Put Un = (−n, n)d . Define the
weighted anisotropic perimeter by

PerβB(A) =
∑
n≥1

βnPerB(A;Un),

where the sequence (βn) is set to βn = 2−n(2n)−d so that
∑
n≥1 βnL

d(Un) = 1. For a given
function γ : Rd × W → R, define

σγ (u;W) = 1

‖u‖[γ (0;W � [−u, 0])− γ (u;W � [−u, 0])
+ γ (0;W � [0, u])− γ (−u;W � [0, u])].

Define for all windows W ∈ W the constant Lj (γ,W) ∈ [0,+∞] by

Lj (γ,W) = sup
ε∈R

σγ (εej ;W), j ∈ {1, . . . , d}. (10)

The constant Lj (γ,W) is related to the Lipschitz property of γ in its spatial variable. The
motivation for considering this particular constant comes from Corollary 1, which shows that
if γX is the local covariogram of a RAMS X, then

EVej {X;W } = sup
ε∈R

σγX(εej ;W).

Theorem 3. Let γ : Rd × W → R be a function and r ≥ 0. Then γ is realisable by a RAMS
X such that

EPerβB{X} ≤ r

if and only if γ is admissible (see Definition 1) and

∑
n≥1

βn

( d∑
j=1

Lj (γ, Un)

)
≤ r, (11)

where for all j ∈ {1, . . . , d} and n ≥ 1, the constant Lj (γ, Un) is defined by (10).

The stationary counterpart of the above theorem is stated and proved in Section 4.2. Let us
specialize a general definition from [19, Definition 2.5] to our framework.

Definition 5. (Regularity moduli.) Let G be a vector space of measurable real functions on M.
A G-regularity modulus on M is a lower semi-continuous function χ : M �→ [0,+∞] such
that, for all g ∈ G, the level set

Hg = {A ∈ M : χ(A) ≤ g(A)} ⊂ M

is relatively compact for the convergence in measure.

We provide the following result, which is a straightforward consequence of [19, Proposi-
tion 2.2 and Theorem 2.6] for bounded continuous functions; see in particular the discussion
after the proof of Theorem 2.6.
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Theorem 4. (Lachièze-Rey–Molchanov [19].) Let G be a vector space of real continuous
bounded functions on M that comprises constant functions. Let χ be a G-regularity modulus,
and � be a linear function on G such that �(1) = 1. Then, for any given r ≥ 0, there exists a
RAMS X ∈ M such that

Eg{X} = �(g), g ∈ G, Eχ{X} ≤ r (12)

if and only if
sup
g∈G

inf
A∈M

χ(A)− g(A)+�(g) ≤ r. (13)

In our setting, call G the vector space generated by the constant functionals and the local
covariogram functionals A �→ δy;W(A), y ∈ Rd , W ∈ W .

Proposition 9. It holds that PerβB is a G-regularity modulus (and, therefore, a G∗-regularity
modulus for any subspace G∗ ⊂ G).

Proof. By definition of a regularity modulus, we have to show that the PerβB -level sets are
relatively compact. Consider a sequence (An) such that PerβB(An) ≤ c for all n ∈ N. Then,
for all n,m ∈ N, PerB(An;Um) ≤ c/βm < ∞, and, thus, (An) is a sequence of sets of locally
finite perimeter whose perimeter in any open bounded set U ⊂ Rd is uniformly bounded.
According to [2, Theorem 3.39], there exists a subsequence of (An) that locally converges in
measure in Rd .

For g ∈ G, denote by dom(g) the smallest open set such that for every measurable set A,
g(A) = g(A ∩ dom(g)). If g has the form

g =
q∑
i=1

aiδyi ;Wi ,

we have dom(g) ⊂ ∪i (Wi ∪ (−yi +Wi)), there is not equality because such a decomposition
is not unique.

We turn to the proof of Theorem 3. It involves several technical lemmas that are stated
within the proof when needed. Their demonstrations are delayed to the end of the section.

Proof of Theorem 3. (i) Necessity. IfX is a RAMS then the admissibility of γX is the conse-
quence of the positivity of the mathematical expectation; see the discussion below Definition 1.
According to Proposition 6, for all n ≥ 1, with probability 1,

σεej ;Un(X) ≤ Vej (X;Un).
After taking the expectation, the supremum of the left-hand member over ε > 0 is Lj (γ,W).
Summing over j yields

∑d
j=1 Lj (γ, Un) ≤ PerB(X;Un), and multiplying by βn and summing

over n yields (11).

(ii) Sufficiency. Call Gn ⊂ G the set of functionals g = c + ∑q
i=1 aiδyi ;Wi such that for

all i, yi ∈ n−1Zd , and Wi ∈ Wn, i.e. the closures of the Wi are pixelized sets. Denote by
G∗ = ⋃

n≥1 Gn. We remark that each Gn is a vector space and that G∗ ⊂ G is a vector space
as well: indeed, if g1 ∈ Gn and g2 ∈ Gm then g1 + g2 ∈ Gmn. To apply Theorem 4 to G∗, we
need to show that

sup
n≥1

sup
g∈Gn

inf
A∈M

PerβB(A)− g(A)+�(g) ≤ r,
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where � is defined by

�

(
c +

q∑
i=1

aiδyi ;Wi
)

= c +
q∑
i=1

γ (yi,Wi).

We first remark that � is a positive operator because γ is admissible; see Definition 1. Let
g ∈ Gn. Define mg = infA∈M PerβB(A) − g(A) + �(g). Let p ∈ N large enough such that
dom(g) ⊂ (−p, p)d . For all c > 0 denote Mc

n = Mn((−c, c)d). We have

mg ≤ inf
A∈M

p
n

PerβB(A)− g(A)+�(g)

because M
p
n ⊂ M. The proof is based on an approximation of the perimeter by a discretized

functional with compact domain, summarized by the following lemma.

Lemma 2. For n, p ≥ 1, put Upn = (−p − 1/n, p + 1/n)d . There exists gn,p ∈ Gn with
dom(gn,p) ⊂ U

p
n such that

gn,p(A) = PerβB(A) for all A ∈ M
p
n .

Its explicit expression is

gn,p(A) =
p∑

m=1

βm

d∑
j=1

σn−1ej ;Un(A)+
( +∞∑
m=p+1

βm

) d∑
j=1

σn−1ej ;Up(A).

Furthermore, for all A ∈ Mn,

|gn,p(A)− gn,p(A ∩ (−p, p)d)| ≤ En,p,

where En,p = 8dn2−p(p + 1)−d((p + 1/n)d − pd).

Therefore, gn,p = PerβB on M
p
n , and

mg ≤ inf
A∈M

p
n

gn,p(A)− g(A)+�(g) ≤ inf
A∈M

p+1/n
n

gn,p(A)− g(A)+�(g)+ En,p,

because g(A) = g(A ∩ dom(g)) = g(A ∩ (−p, p)d) = g(A ∩ (−p − 1/n, p + 1/n)d), and
|gn,p(A)− gn,p(A ∩ (−p, p)d)| ≤ En,p, where the error term En,p is computed in Lemma 2.
We need the following lemma, also proved afterwards.

Lemma 3. Any functional g ∈ Gn reaches its infimum on an element of Mn(dom(g)).

We have dom(gn,p − g) ⊂ U
p
n , whence by Lemma 3, gn,p − g reaches its infimum over M

on M
p+1/n
n , and

inf
A∈M

p+1/n
n

gn,p(A)− g(A) = inf
A∈M

gn,p(A)− g(A) = inf
A∈M

(gn,p − g)(A) ≤ �(gn,p − g),

where the last inequality is a consequence of the positivity of �. Therefore,

mg ≤ �(gn,p − g)+�(g)+ En,p = �(gn,p)+ En,p. (14)
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Let us bound �(gn,p). Recall that by definition �(δy;W) = γ (y;W). The definition of the
constants Lj (γ,W) and the expression of gn,p yield

�(gn,p) ≤
p∑

m=1

βm

( d∑
j=1

Lj (γ, Um)

)
+

( +∞∑
m=p+1

βm

)( d∑
j=1

Lj (γ, U
p
n )

)
.

Lemma 4. For all admissible functions γ , Lj (γ ;W) ≤ Lj (γ,W
′) for any j ∈ {1, . . . , d} and

W,W ′ ∈ W such that W ⊂ W ′.

By Lemma 4, since γ is admissible, and for all m > p, Upn ⊂ Um,

( +∞∑
m=p+1

βm

)( d∑
j=1

Lj (γ, U
p
n )

)
=

+∞∑
m=p+1

βm

( d∑
j=1

Lj (γ, U
p
n )

)

≤
+∞∑

m=p+1

βm

( d∑
j=1

Lj (γ, Um)

)
.

Hence,

�(gn,p) ≤
+∞∑
m=1

βm

( d∑
j=1

Lj (γ, Um)

)
≤ r.

Returning to (14) yields
mg ≤ r + En,p.

Since for all n ≥ 1, En,p tends to 0 as p tends to +∞, we have mg ≤ r . Since n ≥ 1 and
g ∈ Gn were arbitrarily chosen, we conclude that

sup
g∈G∗

inf
A∈M

PerβB(A)− g(A)+�(g) ≤ r.

Hence, we can apply Theorem 4 to ensure that there exists a RAMS X solution of the prob-
lem (12). This RAMS X satisfies EPerβB{X} ≤ r and, for y in the set Qd of vectors with
rational coordinates,

W ∈ W ∩
⋃
n∈N∗

Mn, γX(y;W) = γ (y;W).

It only remains to show that this equality between γX and γ extends to all couples (y;W) ∈
Rd × W using the continuity of both γX and γ .

First, regarding the W -variable, since γX and γ are both admissible, and by Proposition 4
|δy;U(A) − δy;W(A)| ≤ Ld(U�W) for all U,W ∈ W , both γX and γ are continuous with
respect to the convergence in measure. Besides, the set of pixelized sets W ∩ ⋃

n∈N∗ Mn is
dense in W for the convergence in measure. Indeed, given W ∈ W , it is easily shown by
dominated convergence that the sequence Wn = ⋃

k∈Zd
{Cnk : Cnk ⊂ W } converges in measure

towards W , since due to the hypothesis Ld(∂W) = 0, for almost all x ∈ Rd either x ∈ W or
x ∈ Rd \ W̄ , where W̄ denotes the closure of W .

Regarding the y-variable, y �→ γX(y;W) = Eδy;W {X} is continuous since y �→ δy;W(X)
is a.s. continuous and bounded by Ld(W). To conclude the proof, we show that y �→ γ (y;W)
is also continuous over Rd , which is the purpose of the following lemma.
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Lemma 5. Let γ be an admissible function. Let y ∈ Rd , W ∈ W , and r > 0. For all
z ∈ Rd and ρ > 0, denote by C(z, ρ) the hypercube of center z and half size length ρ, i.e.
C(z, ρ) = {z′ ∈ Rd : ‖z′ − z‖∞ ≤ ρ}.

Then, for all z, z′ ∈ C(y, r),

|γ (z;W)− γ (z′;W)| ≤
d∑
j=1

Lj (γ,W ⊕ C(−y, 3r))|z′j − zj |.

In particular, if γ satisfies (11), then for allW ∈ W , the map y �→ γ (y;W) is locally Lipschitz.

We turn to the proofs of the lemmas.

Proof of Lemma 2. We first remark that for all sets A of finite perimeter such that A ⊂
(−p, p)d for some integer p ≥ 1 and for all m > p, since A ∩ (Um \ (−p, p)d) = ∅,

PerB(A;Um) = PerB

(
A;

(
−p − 1

n
, p + 1

n

)d)
= PerB(A;Upn ).

Consequently,

PerβB(A) =
∑
m≥1

βmPerB(A;Um) =
p∑

m=1

βmPerB(A;Um)+
( +∞∑
m=p+1

βm

)
PerB(A;Upn ).

According to Proposition 8, for all pixelized setsA ∈ M
p
n , all the perimeters PerB(A;Um), 1 ≤

m ≤ p, and PerB(A;Upn ), can be expressed as some linear combination of local covariograms,
hence,

PerβB(A) =
p∑

m=1

βm

d∑
j=1

σn−1ej ;Um(A)+
( +∞∑
m=p+1

βm

) d∑
j=1

σn−1ej ;Upn (A).

The linear combination on the right-hand side is an element of G that will be denoted by gn,p
in what follows. Note that dom(gn,p) ⊂ U

p
n = (−p−1/n, p+1/n)d . It remains to show that

the inequality |gn,p(A)−gn,p(A∩(−p, p)d)| ≤ En,p. Using Proposition 4, for allA,B ∈ M,
j ∈ {1, . . . , d}, and W ∈ {U1, . . . , Up,U

p
n },

|σn−1ej ;W(A)− σn−1ej ;W(B)| ≤ 8nLd((A�B) ∩W).
Hence, for all A ∈ Mn,

|gn,p(A)− gn,p(A ∩ (−p, p)d)| = |gn,p(A ∩ Upn )− gn,p(A ∩ (−p, p)d)|

≤
( +∞∑
m=p+1

βm

)
d8nLd((A ∩ Upn )�(A ∩ (−p, p)d)),

since for all m ∈ {1, . . . , p}, ((A ∩ Upn )�(A ∩ (−p, p)d)) ∩ Um = ∅. For all m ≥ p + 1,
βm = 2−m(2m)−d ≤ 2−m(2(p + 1))−d . Hence,

+∞∑
m=p+1

βm ≤ 2−d(p + 1)−d
+∞∑

m=p+1

2−m = 2−d−p(p + 1)−d .
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Besides, Ld((A ∩ Upn )�(A ∩ (−p, p)d)) ≤ Ld(U
p
n \ (−p, p)d) = 2d((p + 1/n)d − pd).

Finally,

|gn,p(A ∩ Upn )− gn,p(A ∩ (−p, p)d)| ≤ 8dn2−p(p + 1)−d
((
p + 1

n

)d
− pd

)
.

Proof of Lemma 3. PutW = dom(g) ∈ Wn. Then g(A) = g(A∩W) for anyA ∈ M. Now
that the problem is restricted to the bounded pixelized domain W , it remains to show that the
extrema of g on M(W) are reached by sets of Mn(W). Let us turn to the details.

Without loss of generality, assume that g has the form

g =
q∑
i=1

aiδyi ;Wi

for some yi ∈ n−1Zd ,Wi ∈ Wn, and ai ∈ R. Denote by In(W) the set of all indexes
k ∈ Zd such that the hypercube Cnk is included in W̄ , we then also have W̄ = ⋃

k∈In(W) C
n
k .

For A ∈ M(W), n ≥ 1, denote by Ank = A ∩ Cnk ,k ∈ In(W), the intersection of A with the
hypercube Cnk , and by Ãnk = −k + nAnk its rescaled translated version comprised in [0, 1]d .
Consider the probability space (
 = [0, 1)d ,A = B([0, 1)d),P = Ld), on which we define
the {0, 1}In(W)-valued random vector YA(w) = (1

Ãnk
(ω))k∈In(W),ω ∈ 
. The measures of

the pairwise intersections Ld(Ãnk ∩ Ãnl ) can thus be seen as the components of the covariance
matrix C(A) = (Ck,l(A))k,l∈In(W) of the random vector YA, i.e.

Ck,l(A) = E{YAk YAl } = E{1{ω∈Ãnk } 1{ω∈Ãnl }} = Ld(Ãnk ∩ Ãnl ), k, l ∈ In(W).
Let us prove that g(A) can be written as

g(A) =
∑

k,l∈In(W)
βk,lL

d(Ãnk ∩ Ãnl )

for some coefficients β = (βk,l)k,l∈In(W) depending solely on g. Putting ki = nyi ∈ Zd , we
have

g(A) =
q∑
i=1

aiδn−1ki ,Wi
(A)

=
q∑
i=1

aiL
d(A ∩ (n−1ki + A) ∩Wi)

=
q∑
i=1

ai
∑

k∈In(W)
1{Cnk⊂W̄i }

∫
Cnk

1{x∈A,x∈n−1ki+A} dx

=
q∑
i=1

ai
∑

k,l∈In(W)
1{l=k−ki } 1{Cnk⊂W̄i }

∫
Cnk

1{x∈A,x∈n−1(k−l)+A} dx

=
∑

k,l∈In(W)

q∑
i=1

ai 1{l=k−ki } 1{Cnk⊂W̄i }
∫
Cn0

1{x∈−n−1k+A,x∈−n−1l+A} dx

=
∑

k,l∈In(W)
n−d

( q∑
i=1

ai 1{l=k−ki } 1{Cnk⊂W̄i }
)

︸ ︷︷ ︸
=βk,l

Ld(Ãnk ∩ Ãnj ).
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Then, we can write
g(A) =

∑
k,l∈In(W)

βk,lCk,l(A) = 〈β,C(A)〉,

where 〈·, ·〉 stands for the classical scalar product between matrices. Denote by �n the set of
covariance matrices of all random vectors having values in {0, 1}In(W). Since for every set A
we can associate some covariance matrix C(A) such that g(A) = 〈β,C(A)〉, one can write

inf
A∈M(W)

g(A) ≥ inf
C∈�n

〈β,C〉.

The optimization problem on the right-hand side of this inequality is a linear programming
problem on the bounded convex set �n. Hence, we are ensured that there exists an optimal
solution C∗ of this problem which is an extreme point of �n. As shown in [18, Theorem 2.5],
the extreme points of �n are covariance matrices associated with deterministic random vectors;
see also [7], where �n is called the correlation polytope and studied more deeply. Therefore,
there exists a fixed vector z∗ ∈ {0, 1}In(W) such that C∗

k,l = z∗kz∗l minimizes 〈β,C〉. Given this
vector z∗ ∈ {0, 1}In(W), define the set A∗ as the union of the hypercubes

A∗ =
⋃

{k : z∗k=1}
Cnk ∩W.

Then we see that the covariance matrix C(A∗) associated with the deterministic setA∗ is equal
to C∗. Furthermore, it is clear that A∗ is measurable with respect to the σ -algebra generated
by the Cnk , meaning exactly A∗ ∈ Mn(W). Hence, we have shown that

inf
A∈M(K)

g(A) ≥ inf
C∈�n

〈β,C〉 = min
A∈Mn(W)

g(A).

Since Mn(W) ⊂ M(W) the reverse inequality is immediate, and, thus,

inf
A∈M(W)

g(A) = min
A∈Mn(W)

g(A).

Proof of Lemma 4. First, we remark that if W and W ′ are two observation windows such
that W ⊂ W ′, then, for all y ∈ Rd and A ∈ M,

0 ≤ δ0;W(A)− δy;W(A) ≤ δ0;W ′(A)− δy;W ′(A).

Indeed,W ⊂ W ′ yields (A\(y+A))∩W ⊂ (A\(y+A))∩W ′, and, thus, taking the Lebesgue
measure and using (7) it follows that 0 ≤ δ0;W(A)− δy;W(A) ≤ δ0;W ′(A)− δy;W ′(A).

Let W and W ′ ∈ W such that W ⊂ W ′, j ∈ {1, . . . , d}, and we show that Lj (γ ;W) ≤
Lj (γ,W

′). Suppose thatLj (γ,W ′) is finite, otherwise there is nothing to show. SinceW ⊂ W ′
we also have W � [−εej , 0] ⊂ W ′ � [−εej , 0] and W � [0, εej ] ⊂ W ′ � [0, εej ]. Hence,
according to the preliminary remark, for all A ∈ M, ε ∈ R, σεej ;W(A) ≤ σεej ;W ′(A). Since γ
is admissible, this implies that for all ε ∈ R, σγ (εej ;W) ≤ σγ (εej ;W ′). Hence, by definition
of Lj (γ,W ′), σγ (εej ;W) ≤ Lj (γ,W

′), and, thus, Lj (γ ;W) ≤ Lj (γ,W
′).

Proof of Lemma 5. Recall that it has been shown in the proof of Proposition 7 (see (9)) that
for all y, z ∈ Rd , W ∈ W , and A ∈ M,

δy;W(A)− δz,W (A) ≤ δ0,−y+W(A)− δz−y,−y+W(A).
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Let γ be an admissible function and let y ∈ Rd ,W ∈ W and r > 0 be fixed. Let z, z′ ∈ C(y, r)
be such that z′ = z+ tej for some t ∈ R and j ∈ {1, . . . , d}. Since γ is admissible, the above
inequality ensures that

γ (z;W)− γ (z′;W) ≤ γ (0; −z+W)− γ (tej ; −z+W).

As a consequence of (7), since γ is admissible, the difference at 0 means that the map U �→
γ (0;U) − γ (tej ;U) is an increasing function of U . Hence, since W ⊂ (W ⊕ [−tej , 0]) �
[−tej , 0],

γ (z;W)− γ (z′;W)
≤ γ (0; −z+ (W ⊕ [−tej , 0])� [−tej , 0])− γ (tej ; −z+ (W ⊕ [−tej , 0])� [−tej , 0])

≤ |t |γ (0; −z+ (W ⊕ [−tej , 0])� [−tej , 0])− γ (tej ; −z+ (W ⊕ [−tej , 0])� [−tej , 0])
|t |

≤ |t | sup
ε∈R

γ (0; −z+ (W ⊕ [−tej , 0])� [−εej , 0])− γ (εej ; −z+ (W ⊕ [−tej , 0])� [−εej , 0])
|ε|

≤ |t |Lj (γ,−z+W ⊕ [−tej , 0]).

According to Lemma 4, W �→ Lj (γ ;W) is increasing. Since z ∈ C(y, r) and |t | = ‖z −
z′‖∞ ≤ ‖z−y‖∞ +‖y−z′‖∞ ≤ 2r , we have −z+W ⊕[−tej , 0] ⊂ W ⊕C(−y, 3r). Hence,
for all z, z′ ∈ C(y, r) be such that z′ = z+ tej ,

γ (z;W)− γ (z′;W) ≤ Lj (γ,W ⊕ C(−y, 3r))|t |.
Exchanging z and z′, we obtain |γ (z;W)− γ (z′;W)| ≤ Lj (γ,W ⊕C(−y, 3r))|t |. To finish,
consider a couple of points z, z′ ∈ C(y, r) that are not necessarily aligned along an axis.
Consider the finite sequence of vector u0 = z, u1, . . . , ud = z′ defined such that the j first
coordinates of uj are the ones of z′ while its d − j last coordinates are the ones of z, so that
u0 = z, ud = z′ and uj − uj−1 = (z′j − zj )ej . Clearly, each uj belongs to the hypercube
C(y, r), and, thus, applying the d inequalities obtained above, we obtain

|γ (z;W)− γ (z′;W)| =
∣∣∣∣
d∑
j=1

γ (uj ;W)− γ (uj−1;W)
∣∣∣∣

≤
d∑
j=1

∣∣∣∣γ (uj ;W)− γ (uj−1;W)
∣∣∣∣

≤
d∑
j=1

Lj (γ,W ⊕ C(−y, 3r))|z′j − zj |.

If γ satisfies (11) then, for all n ∈ N∗ and j ∈ {1, . . . , d}, the constantsLj (γ, Un) are all finite.
According to Lemma 4, this implies that the d constantsLj (γ,W⊕C(−y, 3r)), j ∈ {1, . . . , d},
are all finite for any fixed y ∈ Rd , W ∈ W , and r > 0, and, thus, the map y �→ γ (y;W) is
locally Lipschitz.

4.2. Stationary case

The following theorem is the main result of this paper. It is a refined version of Theorem 1
given in the introduction.
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Theorem 5. Let S2 : Rd → R be a function and r ≥ 0. Then there is a stationary RAMS X
such that

S2(y) = γ s
X(y), y ∈ Rd , Pers

B(X) ≤ r

if and only if S2 is admissible and

d∑
j=1

Lipj (S2, 0) ≤ r

2
.

We shall use a variant of [19, Theorem 2.10(ii)], where the monotonicity assumption is replaced
by a domination.

Theorem 6. Let G, χ ,� be as in Theorem 4, and assume that G is stable under the action of a
group of transformations � of Rd : for all θ ∈ �, g ∈ G, θg : A �→ g(θA) is a function of G.
Furthermore, assume that there is a sequence (gn)n≥1 of functions of G such that 0 ≤ gn ≤ χ

and
gn(A) −→ χ(A) as n → +∞, A ∈ M,

and that χ is sub-invariant: for every θ ∈ �, there is a constant Cθ > 0 such that

χ(θA) ≤ Cθχ(A), A ∈ M. (15)

Then, if � is invariant under the action of �, i.e.

�(θg) = �(g), g ∈ G, θ ∈ �,
for any given r ≥ 0, there exists a �-invariant RAMS X such that

Eg{X} = �(g), g ∈ G, Eχ{X} ≤ r

if and only if (13) holds.

Proof. The proof is the same as [19, Theorem 2.10(ii)], which itself is based on [17,
Proposition 4.1]. The proof consists of checking the hypotheses of the Markov–Kakutani
fixed point theorem. Let M be the family of random elements X that realise � on G, and
satisfy Eχ{θX} ≤ r for every θ ∈ Rd . The family M is easily seen to be convex with respect
to the addition of measures, it is compact by [19, Theorem 2.8], and invariant under the action
of � thanks to the �-invariance of �. It remains to prove that M is not empty. Since (13) is
in order, Theorem 4 yields the existence of a RAMS X realising � and such that Eχ{X} ≤ r .
For θ ∈ �, by the Lebesgue theorem, we obtain

Eχ{θX} = E lim
n
gn{θX} = lim

n
Egn{θX} = lim

n
Egn{X} = E lim

n
gn{X} = Eχ{X} ≤ r,

where we have used the fact that E supn gn{X} < ∞ and

E sup
n
gn{θX} ≤ Eχ{θX} ≤ CθEχ{X} < ∞.

It follows that M � X is nonempty, whence by the Markov–Kakutani theorem the mappings
X �→ θX, θ ∈ �, admit a common fixed point X (considered here as a probability measure),
which is therefore invariant under �.
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Proof of Theorem 5. (i) Necessity. Assume that S2 is the specific covariogram of a stationary
RAMS X with Pers

B(X) ≤ r . Then S2 is admissible, and by Proposition 7,

d∑
j=1

Lipj (S2, 0) =
d∑
j=1

1

2
V s
ej
(X) = 1

2
Pers

B(X) ≤ r

2
.

(ii) Sufficiency. Define γ (y;W) = Ld(W)S2(y). Then, for all W ∈ W and j ∈ {1, . . . , d},

Lj (γ,W) = sup
ε∈R

1

|ε| [L
d(W � [−εej , 0])(S2(0)− S2(εej ))

+ Ld(W � [0, εej ])(S2(0)− S2(−εej ))]
≤ 2Ld(W)Lipj (S2, 0).

Hence, since
∑d
j=1 Lipj (S2, 0) ≤ r/2,

∑
n≥1

βn

( d∑
j=1

Lj (γ, Un)

)
≤

∑
n≥1

βn2Ld(Un)

d∑
j=1

Lipj (S2) ≤ r.

Hence, according to Theorem 3, γ is the local covariogram of a RAMS X, and consequently,
according to Theorem 4, γ satisfies (13) with χ = PerβB and G the space of all functionals of
the form g = ∑q

i=1 aiδyi ;Wi . For t ∈ Rd , y ∈ Rd ,W ∈ W , and A ∈ M, we have

θt δy;W(A) = δy;W(θtA)
= Ld((t + A) ∩ (t + y + A) ∩W)
= Ld(A ∩ (A+ y) ∩ (−t +W))

= δy;−t+W(A),

whence the space G generated by constant functions and functions δy;W, y ∈ Rd ,W ∈ W is
invariant under the action of the group � = {θt : t ∈ Rd} of translations. The linear functional
defined by

�(δy;W) = Ld(W)γ s(y)

is invariant under the action of translations θt , t ∈ Rd . For t ∈ Rd , let �t�∞ = �‖t‖∞� be
the smallest integer larger than ‖t‖∞. Then, recalling that Un denotes the hypercube (−n, n)d ,
−t + Un ⊂ (−n− ‖t‖∞, n+ ‖t‖∞)d ⊂ Un+�t�∞ . Hence, for A ∈ M,

PerβB(t+A) =
+∞∑
n=1

βnPerB(t+A;Un) =
+∞∑
n=1

βnPerB(A; −t+Un) ≤
+∞∑
n=1

βnPerB(A;Un+�t�∞).

Since βn = 2−n(2n)−d = 2�t�∞((n+ �t�∞)/n)dβn+�t�∞ ≤ 2�t�∞�t�d∞βn+�t�∞ , we have

PerβB(t+A) ≤ 2�t�∞�t�d∞
+∞∑
n=1

βn+�t�∞PerB(A;Un+�t�∞) ≤ 2�t�∞�t�d∞PerβB(A), A ∈ M,
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whence (15) is in order for χ = PerβB . To apply Theorem 6 it only remains to check that PerβB
can be pointwise approximated from below by functions from G. According to Proposition 6,
for A ∈ M, and U a bounded open set of Rd ,

PerB(A;U) = lim
n
gUn (A)

for some function gUn ∈ G mentioned in Proposition 6 that satisfy

0 ≤ gUn ≤ PerB(·;U).
Define

gn(A) =
n∑

m=1

βmg
Um
n (A).

Let A ∈ M with PerβB(A) < ∞. Since for every m ≥ 1, gUmn (A) → Per(A;Um) as n → ∞,
the Lebesgue theorem with 0 ≤ gn(A) ≤ PerβB(A) < ∞ ensures that gn(A) → PerβB(A) as
n → ∞.

IfA ∈ M is such that PerβB(A)= ∞, letM >0, andn0 be such that
∑n0
m=1βmPerB(A;Um)≥

M + 1. Let n1 ≥ n0 be such that for n ≥ n1, gUmn (A) ≥ PerB(A;Um) − 1 for 1 ≤ m ≤ n0.
Then, for n ≥ n1,

gn(A) ≥
n0∑
m=1

βmPerB(A;Um)−
∑
m≥1

βm ≥ M + 1 − 1 ≥ M.

It follows that gn(A) → ∞ = PerβB(A).
Hence, according to Theorem 6, there exists a stationary RAMSX realising γ , which implies

that γ s
X = S2. Then, according to Proposition 7,

Pers
B(X) =

d∑
j=1

V s
ej
(X) = 2

d∑
j=1

Lipj (S2, 0) ≤ r.

4.3. Covariogram realisability problem for RACS of R

The goal of this section is to establish a result similar to Theorem 5 for the specific
covariogram of one-dimensional stationary RACS.

First let us discuss the definition of local covariogram admissibility of functions in arbitrary
dimension d ≥ 1. By analogy with the definition of M-local covariogram admissible functions
(see Definition 1), when considering RACS of Rd , we say that a function γ : Rd × W → R is
F -local covariogram admissible if for all 5-tuples (q ≥ 1, (ai) ∈ Rq, (yi) ∈ (Rd)q, (Wi) ∈
Wq, c ∈ R),

[
for all F ∈ F , c +

q∑
i=1

aiδyi ;Wi (F ) ≥ 0

]
�⇒ c +

q∑
i=1

aiγ (yi;Wi) ≥ 0.

Besides, we say that S2 : R → R is F -specific covariogram admissible if (y,W) �→
S2(y)L

d(W) is F -local covariogram admissible. However, this distinction is superfluous
since these two notions of admissibility are strictly equivalent.
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Proposition 10. A function γ : Rd × W → R is F -local covariogram admissible if and only
if it is M-local covariogram admissible.

Proof. The proof of this equivalence relies on the continuity of local covariograms for the
convergence in measure and the density of compact sets due to the Lusin theorem. It consists
of showing that for all 5-tuples (q ≥ 1, (ai) ∈ Rq, (yi) ∈ (Rd)q, (Wi) ∈ Wq, c ∈ R),

[
for all F ∈ F , c +

q∑
i=1

aiδyi ;Wi (F ) ≥ 0

]
⇐⇒

[
for all A ∈ M, c +

q∑
i=1

aiδyi ;Wi (A) ≥ 0

]
.

Since F ⊂ M, the implication ⇐ is clear. To show the converse, let (q ≥ 1, (ai) ∈ Rq, (yi) ∈
(Rd)q, (Wi) ∈ Wq, c ∈ R) be such that for all F ∈ F , c + ∑q

i=1 aiδyi (F ) ≥ 0, and we
show that this inequality is valid for any A ∈ M. One can suppose that A is bounded since
according to (6), one can replace A by A∩ ⋃q

i=1Wi ∪ (−yi +Wi) without changing the value
of c+ ∑q

i=1 aiδyi ;Wi (A). Then, by the Lusin theorem (see, e.g. [9]), there exists a sequence of
compact sets Kn ⊂ A that converges in measure towards A, i.e. Ld(A�Kn) → 0. Since each
Kn is closed, for all n, c + ∑q

i=1 aiδyi (Kn) ≥ 0. Since the sequence (Kn)n∈N converges in
measure towards A, thanks to the fact that the local covariogram B �→ δy;W(B) is continuous
for the local convergence in measure (see Proposition 4) for all (yi;Wi), δyi ;Wi (Kn) tends to
δyi ;Wi (A), and, thus, letting n tend to +∞ the inequality c + ∑q

i=1 aiδyi ;Wi (A) ≥ 0 follows.

Now that this technical point has been clarified we are in position to formulate our result for
the realisability of specific covariogram of stationary RACS of R.

Theorem 7. Suppose that the probability space (
,A,P) is complete. Let S2 : R → R be a
given function and let r > 0. Then S2 is the covariogram of a stationary RACS Z ⊂ R such
that

E{H0(∂Z) ∩ (0, 1)} ≤ r

if and only if S2 is F -specific covariogram admissible and Lipschitz with Lipschitz constant
L ≤ r/2.

Proof. (i) Necessity. If there exists a stationary RACS Z ⊂ R such that E{H0(∂Z) ∩
(0, 1)} ≤ r then S2 is necessarily F -specific covariogram admissible and, according to Propo-
sition 7, S2 is Lipschitz with Lipschitz constant L = 1

2 E{Per(Z); (0, 1)}. But Per(Z; (0, 1)) ≤
H0(∂Z ∩ (0, 1)) yields L ≤ 1

2 E{H0(∂Z ∩ (0, 1))} ≤ r/2.

(ii) Sufficiency. Suppose that S2 is F -specific covariogram admissible and Lipschitz with
Lipschitz constantL ≤ r/2. Then, by Proposition 10, γ is M-specific covariogram admissible,
and, thus, by Theorem 5 there exists a RAMS X ⊂ R such that S2 is the specific covariogram
of X and E{Per(X); (0, 1)} ≤ r . By Proposition 3, there exists a RACS Z ⊂ R, equivalent in
measure to X, such that Per(X; (0, 1)) = H0(∂Z ∩ (0, 1)) a.s. Then the specific covariogram
of Z is also equal to S2 and E{H0(∂Z ∩ (0, 1))} = E{Per(X; (0, 1))} ≤ r .

Note that although the geometry of sets with finite perimeter on the line seems quite
simplistic, a direct proof of the realisability result above is far from trivial.

Appendix A. The Radon–Nikodym theorem for random measures

Theorem 8. Let U be an open subset of Rd . Let μ : 
 �→ M(U) be a random signed Radon
measure on U such that for all ω ∈ 
, the measure μ(ω, ·) is absolutely continuous with
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respect to the Lebesgue measure Ld . Then, there exists a jointly measurable map f on (
 ×
Rd ,A ⊗ B(U)) such that for all ω ∈ 
, f (ω, ·) is a Radon–Nikodym derivative of μ(ω, ·)
with respect to the Lebesgue measure Ld .

Proof. This proof follows the outline of [3, Exercise 6.10.72]. It is enough to consider the
case U = Rd , since for U ⊂ Rd we can always extend the random measure by 0 over Rd

and take the restriction of f to U afterwards. Denote by B(x, r) the open ball of center x and
radius r , and by κd the Lebesgue measure of the unit ball of Rd , so that for all x ∈ Rd and
r > 0, Ld(B(x, r)) = κdr

d . For any ω ∈ 
, according to the Besicovitch derivation theorem
(see, e.g. [2, Theorem 2.22]), the derivative of the measure μ(ω, ·) with respect to Ld , i.e.

lim
r→0+

μ(ω,B(x, r))

κdrd
, x ∈ Rd ,

exists for Ld -almost all x ∈ Rd , is in L1(Rd), and is a Radon–Nikodym derivative of the
measure μ(ω, ·). Let (rn)n∈N be a positive sequence decreasing to 0. For all ω ∈ 
, x ∈ Rd ,
and n ∈ N, define

fn(ω, x) = μ(ω,B(x, rn))

κdrdn
.

As a consequence of the Besicovitch derivation theorem, for all ω ∈ 
, the function

f (x, ω) = lim sup
n→+∞

fn(ω, x) 1{lim supn→+∞ fn(ω,x)=lim infn→+∞ fn(ω,x)}

is a Radon–Nikodym derivative of μ(ω, ·) with respect to the Lebesgue measure Ld . Let us
show that this function f is jointly measurable, i.e. A⊗B(U)-measurable. Given the definition
of f , and since the lim sup and lim inf of a countable sequence of measurable functions is a
measurable function, it is enough to show that the functions fn are jointly measurable. Let
n ∈ N. For all x ∈ Rd , by definition of a random Radon measure, the map

ω �→ fn(ω, x) = μ(ω,B(x, rn))

κdrdn

is A-measurable. Let us show that for all ω ∈ 
, the map

x �→ fn(ω, x) = μ(ω,B(x, rn))

κdrdn

is continuous over Rd . Indeed, let x ∈ Rd and (xk)k∈N a sequence of points that tends to x.
Then, for all y ∈ Rd \ ∂B(x, rn), 1{y∈B(xk,rn)} tends to 1{y∈B(x,rn)}. Since the sphere ∂B(x, rn)
is Lebesgue negligible, by absolute continuity, ∂B(x, rn) is also μ(ω, ·)-negligible. Hence,
1{y∈B(xk,rn)} tends to 1{y∈B(x,rn)} for μ(ω, ·)-almost all y ∈ Rd . Besides, since the sequence
(xk) tends to x, it is bounded, and, thus, there exists R > 0 such that xk ∈ B(0, R) for all
k ∈ N. Then, for all k ∈ N,∣∣∣∣1{y∈B(xk,rn)}

κdrdn

∣∣∣∣ ≤ 1{y∈B(0,R+rn)}
κdrdn

∈ L1(μ(ω, ·)).

Hence, by dominated convergence,

lim
k→+∞

μ(ω,B(xk, rn))

κdrdn
= μ(ω,B(x, rn))

κdrdn
,
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that is fn(ω, ·) is continuous at x. In conclusion, ω �→ fn(ω, x) is measurable and x �→
fn(ω, x) is continuous, i.e. fn is a Carathéodory function. Since Rd is a separable metric
space, we can conclude that fn is jointly measurable [1, Section 4.10].
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