On Arithmetic M eans of Sequences Generated by a Periodic Function

Giovanni Fiorito

Abstract. In this paper we prove the convergence of arithmetic means of sequences generated by a periodic function $\varphi(\mathrm{x})$, moreover if $\varphi(\mathrm{x})$ satisfies a suitable symmetry condition, we prove that their limit is $\varphi(0)$. Applications of previous results are given to study other means of sequences and the behaviour of a class of recursive series.

Introduction

Let $\Phi_{2 T}$ be the class of real functions defined in R and periodic of period $2 T$. For every $\varphi(\mathrm{X}) \in \Phi_{2 T}$ we consider the sequence $\left\{\mathrm{u}_{n}\right\}$ given by

$$
\mathrm{u}_{\mathrm{n}}=\varphi(\mathrm{n}) \quad \forall \mathrm{n} \in \mathrm{~N} ;
$$

We denote by $\left\{\mathcal{A}_{n, \varphi}\right\},\left\{\mathcal{G}_{n, \varphi}\right\}$ and $\left\{\mathcal{M}_{n, \varphi}^{p}\right\}$, respectively, the sequence of arithmetic means, the sequence of geometric means and the sequence of power means of order $p\left(p \in R^{+}\right)$of $\left\{u_{n}\right\}$.

Using a known fact we prove that the sequences $\left\{\mathcal{A}_{n, \varphi}\right\},\left\{\mathcal{S}_{n, \varphi}\right\}$ and $\left\{\mathcal{N}_{n, \varphi}^{p}\right\}$ are convergent; moreover, if $\varphi(x)$ satisfies a suitable symmetry condition, the limit of these sequences is $\varphi(0)$. From these theorems we deduce, then, the convergence or the divergence of the class of recursive series \sum_{λ}^{φ} that we have considered in [3] and in [4]; finally we give some examples to complete the theory.

We introduce, now, other notations. If x is a real number we denote, as usual, by $[x]$ the greatest integer less than or equal to x; we denote by $\left\{\tau_{n}\right\}$ the sequence defined by setting

$$
\tau_{\mathrm{n}}=\mathrm{n}-\left[\frac{\mathrm{n}}{2 \mathrm{~T}}\right] 2 \mathrm{~T} \quad \forall \mathrm{n} \in \mathrm{~N}
$$

If $T \in Q^{+}$, we set $2 T=\frac{u}{v}$ and suppose that u is prime to v.

1 Arithmetic Means and Applications

Theorem 1 Let $\varphi(\mathrm{x}) \in \Phi_{2 T}$, and, if $\mathrm{T} \in \mathrm{R}^{+}-\mathrm{Q}$, let $\varphi(\mathrm{x})$ be bounded and Riemannintegrable in [0, 2T]. Then ${ }^{1}$

$$
\lim _{n \rightarrow \infty} \mathcal{A}_{n, \varphi}= \begin{cases}\frac{1}{2 T} \int_{0}^{2 T} \varphi(x) \mathrm{dx} & \text { if } \mathrm{T} \in \mathrm{R}^{+}-\mathrm{Q} \\ \frac{\varphi(1)+\varphi(2)+\cdots+\varphi(\mathrm{u})}{\mathrm{u}} & \text { if } \mathrm{T} \in \mathrm{Q}^{+} .\end{cases}
$$

[^0]Proof We suppose at first that $T \in R^{+}-Q$. In this case, the sequence $\left\{\frac{\tau_{n}}{2 T}\right\}$ is uniformly distributed in [0, 1] and therefore for a known fact (see for example, [1, p. 473] and [7, p. 3, Corollary 1.1]) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f\left(\frac{\tau_{1}}{2 T}\right)+f\left(\frac{\tau_{2}}{2 T}\right)+\cdots+f\left(\frac{\tau_{n}}{2 T}\right)}{n}=\int_{0}^{1} f(x) d x \tag{1}
\end{equation*}
$$

where $f(x)=\varphi(2 T x)$ is Riemann-integrable in $[0,1]$.
On the other hand we have also

$$
\begin{align*}
\mathcal{A}_{\mathrm{n}, \varphi} & =\frac{\varphi(1)+\varphi(2)+\cdots+\varphi(\mathrm{n})}{\mathrm{n}}=\frac{\varphi\left(\tau_{1}\right)+\varphi\left(\tau_{2}\right)+\cdots+\varphi\left(\tau_{n}\right)}{\mathrm{n}} \\
& =\frac{\mathrm{f}\left(\frac{\tau_{1}}{2 T}\right)+\mathrm{f}\left(\frac{\tau_{2}}{2 T}\right)+\cdots+\mathrm{f}\left(\frac{\tau_{n}}{2 T}\right)}{\mathrm{n}} \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} f(x) d x=\int_{0}^{1} \varphi(2 T x) d x=\frac{1}{2 T} \int_{0}^{2 T} \varphi(x) d x \tag{3}
\end{equation*}
$$

Then, from (1), (2) and (3) the thesis follows easily.
If $T \in \mathrm{Q}^{+}, \forall \mathrm{n}>\mathrm{u}$, we have

$$
\begin{align*}
\mathcal{A}_{n, \varphi} & =\frac{\varphi(1)+\varphi(2)+\cdots+\varphi(u)+\cdots+\varphi(n)}{n} \\
& =\frac{\left[\frac{n}{u}\right](\varphi(1)+\varphi(2)+\cdots+\varphi(u))+\varphi\left(\left[\frac{n}{u}\right] u+1\right)+\cdots+\varphi(n)}{n} . \tag{4}
\end{align*}
$$

Then, from (4) the desired conclusion follows, and the proof is completed.

Remark 1 Theorem 1 cannot be extended supposing that the function $\varphi(x)$ is Lebesgueintegrable. Indeed let us suppose that $f(x) \in \Phi_{2 T}\left(T \in R^{+}-Q\right)$ and that $f(x)$ is bounded, Lebesgue-integrable in [0, 2T] and such that $\int_{0}^{2 T} f(x) d x>0$. Then let us consider the function $\varphi(\mathrm{x})$ obtained by extending by periodicity in R the function

$$
g(x)= \begin{cases}f(x) & \text { if } x \in[0,2 T]-E \\ 0 & \text { if } x \in E\end{cases}
$$

where E is the range of the sequence $\left\{\tau_{n}\right\}$. Therefore we have:

$$
\varphi(\mathrm{x}) \in \Phi_{2 \mathrm{~T}}, \quad \varphi(\mathrm{n})=\mathrm{g}\left(\tau_{\mathrm{n}}\right)=0 \quad \forall \mathrm{n} \in \mathrm{~N}, \quad \mathcal{A}_{\mathrm{n}, \varphi}=0 \quad \forall \mathrm{n} \in \mathrm{~N}
$$

and

$$
\int_{0}^{2 T} \varphi(x) d x=\int_{0}^{2 T} f(x) d x>0
$$

Corollary 1 Let $\varphi(x)$ satisfy the hypotheses of Theorem 1; moreover let $\varphi(x)$ satisfy the symmetry condition ${ }^{2} \varphi(\mathrm{x})+\varphi(2 \mathrm{~T}-\mathrm{x})=2 \varphi(\mathrm{~T}) \forall \mathrm{x} \in[0, \mathrm{~T}]$. Then, $\forall \mathrm{T} \in \mathrm{R}^{+}$the sequence $\left\{\mathcal{A}_{\mathrm{n}, \varphi}\right\}$ is convergent to $\varphi(0)$.

[^1]Proof We observe at first that from the symmetry condition it follows that $\forall k \in N$

$$
\varphi(\mathrm{kT})=\varphi(0)
$$

and

$$
\varphi(\mathrm{x})+\varphi(2 \mathrm{kT}-\mathrm{x})=2 \varphi(\mathrm{~T}) \quad \forall \mathrm{x} \in[0, \mathrm{kT}]
$$

Therefore if $T \in \mathrm{Q}^{+}$and u is even, taking into account that $u=2 T v$, we have

$$
\begin{aligned}
& \frac{\varphi(1)}{}+\varphi(2)+\cdots+\varphi(\mathrm{u}) \\
& \mathrm{u} \\
&=\frac{\varphi(1)+\cdots+\varphi(\mathrm{vT}-1)+\varphi(\mathrm{vT})+\varphi(\mathrm{vT}+1)+\cdots+\varphi(2 \mathrm{Tv}-1)+\varphi(2 \mathrm{Tv})}{\mathrm{u}} \\
&=\varphi(\mathrm{T})=\varphi(0) .
\end{aligned}
$$

If $\mathrm{T} \in \mathrm{Q}^{+}$and u is odd, we have

$$
\begin{aligned}
& \frac{\varphi(1)}{}+\varphi(2)+\cdots+\varphi(\mathrm{u}) \\
& \mathrm{u} \\
&=\frac{\varphi(1)+\cdots+\varphi\left(\frac{2 \mathrm{vT}-1}{2}\right)+\varphi\left(\frac{2 \mathrm{vT}+1}{2}\right)+\cdots+\varphi(2 \mathrm{Tv}-1)+\varphi(2 \mathrm{Tv})}{\mathrm{u}} \\
&=\varphi(\mathrm{T})=\varphi(0)
\end{aligned}
$$

Finally, if $T \in R^{+}-Q$, we have easily

$$
\int_{0}^{2 T} \varphi(\mathrm{x}) \mathrm{dx}=2 \mathrm{~T} \varphi(\mathrm{~T})=2 \mathrm{~T} \varphi(0)
$$

and this completes the proof.
Corollary 2 Let $\varphi(\mathrm{x}) \geq 0 \forall \mathrm{x} \in \mathrm{R}$ and let $[\varphi(\mathrm{x})]^{\mathrm{p}}\left(\mathrm{p} \in \mathrm{R}^{+}\right)$verify the hypotheses of Corollary 1. Then the sequence $\left\{\mathcal{N}_{n, \varphi}^{\mathrm{p}}\right\}$ converges to $\varphi(0)$.

Proof Since

$$
\mathcal{M}_{\mathrm{n}, \varphi}^{\mathrm{p}}=\left(\frac{(\varphi(1))^{\mathrm{p}}+(\varphi(2))^{\mathrm{p}}+\cdots+(\varphi(\mathrm{n}))^{\mathrm{p}}}{\mathrm{n}}\right)^{\frac{1}{\mathrm{p}}}
$$

it is sufficient to notice that the sequence $\left\{\mathcal{A}_{n, \varphi^{p}}\right\}$ converges to $(\varphi(0))^{p}$.
Corollary 3 Let $\varphi(\mathrm{x}) \in \Phi_{2 T}$, $\inf \varphi(\mathrm{x})>0$ and, if $\mathrm{T} \in \mathrm{R}^{+}-\mathrm{Q}$, let $\varphi(\mathrm{x})$ be bounded and Riemann-integrable in [$0,2 \mathrm{~T}$]. Then

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathcal{G}_{\mathrm{n}, \varphi}= \begin{cases}\mathrm{e}^{\frac{1}{2 T} \int_{0}^{2 \mathrm{~T}} \log \varphi(\mathrm{x}) \mathrm{dx}} & \text { if } \mathrm{T} \in \mathrm{R}^{+}-\mathrm{Q} \\ \sqrt[u]{\varphi(1) \cdot \varphi(2) \cdots \varphi(\mathrm{u})} & \text { if } \mathrm{T} \in \mathrm{Q}^{+}\end{cases}
$$

Proof It is sufficient to observethat the function $\log \varphi(\mathrm{x})$ satisfies the hypotheses of Theorem 1 , and then the sequence $\left\{\mathcal{A}_{n, \log \varphi}\right\}$ converges. From this, indeed, and from the relation

$$
\sqrt[n]{\varphi(1) \varphi(2) \cdots \varphi(n)}=\mathrm{e}^{\frac{1}{n} \sum_{i=1}^{\mathrm{n}} \log \varphi(\mathrm{i})} \quad \forall \mathrm{n} \in \mathrm{~N}
$$

the desired conclusion follows immediately.
Corollary 4 Let $\varphi(\mathrm{x})$ verify the hypotheses of Corollary 3 ; moreover let $\varphi(\mathrm{x})$ verify the symmetry condition

$$
\varphi(\mathrm{x}) \varphi(2 \mathrm{~T}-\mathrm{x})=(\varphi(\mathrm{T}))^{2} \quad \forall \mathrm{x} \in[0, \mathrm{~T}] .
$$

Then the sequence $\left\{\mathcal{G}_{n, \varphi}\right\}$ converges to $\varphi(0)$.
Proof It is sufficient to observe that the function $\log \varphi(x)$ satisfies the hypotheses of Corollary 1 and therefore the sequence $\left\{\mathcal{A}_{n, \log \varphi}^{\varphi}\right\}$ converges to $\log \varphi(0)$.

Corollary 5 Let $\varphi(\mathrm{x})$ verify the hypotheses of Corollary 4. Then the series ${ }^{3} \sum_{\lambda}^{\varphi}$ converges or diverges to $+\infty$ according as $\varphi(0)<1$ or $\varphi(0)>1$.

Remark 2 Theorem 1 and the following corollaries are useful if the sequence $\left\{u_{n}\right\}$ is not convergent because in this case the well known theorems of Cesàro cannot be applicable.

This case really happens, for example, if $\varphi(\mathrm{x}) \in \Phi_{2 T} \cap \mathrm{C}^{\circ}(\mathrm{R}), \mathrm{T} \in \mathrm{R}^{+}-\mathrm{Q}$ and $\varphi(\mathrm{x})$ is not constant. Indeed let $\left.\mathrm{x}_{1}, \mathrm{x}_{2} \in\right] 0,2 \mathrm{~T}$ and such that $\varphi\left(\mathrm{x}_{1}\right)<\varphi\left(\mathrm{x}_{2}\right)$. Then, by the continuity of $\varphi(\mathrm{x})$ there exists $\delta>0$ such that

$$
\begin{gathered}
{\left[\mathrm{x}_{1}-\delta, \mathrm{x}_{1}+\delta\right] \subseteq[0,2 \mathrm{~T}], \quad\left[\mathrm{x}_{2}-\delta, \mathrm{x}_{2}+\delta\right] \subseteq[0,2 \mathrm{~T}],} \\
{\left[\mathrm{x}_{1}-\delta, \mathrm{x}_{1}+\delta\right] \cap\left[\mathrm{x}_{2}-\delta, \mathrm{x}_{2}+\delta\right]=\varnothing}
\end{gathered}
$$

and moreover

$$
\forall \mathrm{x}^{\prime} \in\left[\mathrm{x}_{1}-\delta, \mathrm{x}_{1}+\delta\right] \quad \text { and } \forall \mathrm{x}^{\prime \prime} \in\left[\mathrm{x}_{2}-\delta, \mathrm{x}_{2}+\delta\right]
$$

wehave

$$
\begin{equation*}
\varphi\left(\mathrm{x}^{\prime \prime}\right)-\varphi\left(\mathrm{x}^{\prime}\right)>\frac{\varphi\left(\mathrm{x}_{2}\right)-\varphi\left(\mathrm{x}_{1}\right)}{2} . \tag{5}
\end{equation*}
$$

On theother hand for Kronecker's theorem (seefor example[5, p. 373]) $\forall \eta>0$ there exist $\mathrm{n}, \mathrm{m} \in \mathrm{N} \cap[\eta,+\infty[$ such that

$$
\begin{equation*}
\tau_{\mathrm{n}} \in\left[\mathrm{x}_{1}-\delta, \mathrm{x}_{1}+\delta\right] \quad \text { and } \quad \tau_{\mathrm{m}} \in\left[\mathrm{x}_{2}-\delta, \mathrm{x}_{2}+\delta\right] . \tag{6}
\end{equation*}
$$

${ }^{3} \sum_{\lambda}^{\varphi}$ is the series whose terms are defined recursively by setting

$$
\left\{\begin{array}{l}
\mathrm{a}_{1}=\lambda \in \mathrm{R}^{+} \\
\mathrm{a}_{\mathrm{n}+1}=\varphi(\mathrm{n}) \mathrm{a}_{\mathrm{n}} \quad \forall \mathrm{n} \in \mathrm{~N} .
\end{array}\right.
$$

From (5) and (6) it follows

$$
\varphi(\mathrm{m})-\varphi(\mathrm{n})=\varphi\left(\tau_{\mathrm{m}}\right)-\varphi\left(\tau_{\mathrm{n}}\right)>\frac{\varphi\left(\mathrm{x}_{2}\right)-\varphi\left(\mathrm{x}_{1}\right)}{2}
$$

and this proves, obviously, that the sequence $\left\{u_{n}\right\}$ is not regular.
Corollary 6 Let $f(x)$ be bounded and Riemann-integrable in the interval $[a, b]$ and let $T \in$ $\mathrm{R}^{+}-\mathrm{Q}$. Then ${ }^{4}$

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \mathcal{A}_{n, \varphi} \tag{7}
\end{equation*}
$$

where $\varphi(x)$ is obtained by extending by periodicity in R the function $\mathrm{f}\left(\frac{b-a}{2 T} \mathrm{x}+\mathrm{a}\right), \mathrm{x} \in$ [0, 2T].

Proof We have easily

$$
\int_{a}^{b} f(x) d x=\frac{b-a}{2 T} \int_{0}^{2 T} f\left(\frac{b-a}{2 T} t+a\right) d t=\frac{b-a}{2 T} \int_{0}^{2 T} \varphi(x) d x .
$$

And from this relation the desired conclusion follows immediately by virtue of Theorem 1.
Example 1 Let $\varphi_{1}(\mathrm{x})=\sin \mathrm{x}$. We see easily that $\varphi_{1}(\mathrm{x})$ satisfies the hypotheses of Corollary 1 (with $\mathrm{T}=\pi$), then the sequence $\left\{\mathcal{A}_{\mathrm{n}, \varphi_{1}}\right\}$ converges to 0 .

We have so obtained, by other means, a well known result (see [6, p. 316, Example 5]).

Example 2 Let us consider the function

$$
f(x)= \begin{cases}-x^{2}+\pi x+\lambda & \text { for } x \in[0, \pi] \\ x^{2}-3 \pi x+2 \pi^{2}+\lambda & \text { for } x \in] \pi, 2 \pi]\end{cases}
$$

where $\lambda \in \mathrm{R}$.
Let $\varphi_{2}(x)$ be the function obtained by extending $f(x)$ by periodicity in R. We see easily that $\varphi_{2}(\mathrm{x})$ satisfies the hypotheses of Corollary 1 (with $\mathrm{T}=\pi$), therefore the sequence $\left\{\mathcal{A}_{n, \varphi_{2}}\right\}$ converges to λ.

Example 3 Let us consider thefunction

$$
\varphi_{3}(x)=k e^{\sin x},
$$

where $k \in \mathrm{R}^{+}$.
We see easily that $\varphi_{3}(\mathrm{X})$ satisfies the hypotheses of Corollaries 4 and 5 (with $\mathrm{T}=\pi$). Therefore the sequence $\left\{\mathcal{S}_{n, \varphi_{3}}\right\}$ converges to k and the series $\sum_{\lambda}^{\varphi_{3}}$ converges or diverges to $+\infty$ according as ${ }^{5} \mathrm{k}<1$ or $\mathrm{k}>1$.

[^2]Example4 Let

$$
g(x)= \begin{cases}-x^{2}+\pi x+k & \text { for } x \in[0, \pi] \\ \frac{k^{2}}{-x^{2}+3 \pi x-2 \pi^{2}+k} & \text { for } x \in] \pi, 2 \pi]\end{cases}
$$

where $k \in \mathrm{R}^{+}$, and let us consider the function $\varphi_{4}(\mathrm{x})$ obtained by extending $\mathrm{g}(\mathrm{x})$ by periodicity in R. We see easily that the function $\varphi_{4}(x)$ satisfies the hypotheses of Corollaries 4 and 5 (with $\mathrm{T}=\pi$). Therefore the sequence $\left\{\mathcal{G}_{\left.n, \varphi_{4}\right\}}\right\}$ converges to k and the series $\sum_{\lambda}^{\varphi_{4}}$ converges or diverges to $+\infty$ according as ${ }^{6} \mathrm{k}<1$ or $\mathrm{k}>1$.

Example 5 Let

$$
f(x)=\arctan x \quad x \in\left[0, \frac{3}{2}[,\right.
$$

and let us consider the function $\varphi_{5}(x)$ obtained by extending $f(x)$ by periodicity in R. We see easily that the function $\varphi_{5}(\mathrm{x})$ satisfies the hypotheses of Theorem 1 (with $2 \mathrm{~T}=\frac{3}{2}$). Therefore the sequence $\left\{\mathcal{A}_{n, \varphi_{5}}\right\}$ converges to

$$
\frac{\varphi_{5}(1)+\varphi_{5}(2)+\varphi_{5}(3)}{3}=\frac{\frac{\pi}{4}+\arctan \frac{1}{2}}{3} .
$$

References

[1] N. K. Bary, A Treatise on Trigonometric Series Vol. II. Pergamon Press, 1964.
[2] R. E. Edwards, Fourier Series A M odern Introduction Vol. I. Holt, Rinehart and Winston, Inc., 1967.
[3] G. Fiorito, R. Musmeci and M. Strano, Diophantine approximations and convergence of series in Banach spaces. M atematiche (Catania) XLVIII(1993), Fasc. II, 349-358.

Uniforme distribuzione ed applicazioni ad una classe di serie ricorrenti. M atematiche (Catania) XLVIII(1993), Fasc. I, 123-133.
[5] G. Hardy and E. Wright, An introduction to the theory of numbers. Clarendon Press, Oxford, 1954.
[6] K. Knopp, Theory and application of infinite series. H afner Publishing Company, New York, 1971.
[7] L. Kuipers and H. Niederreiter, Uniform distribution of sequences. J. Wiley \& Sons, New York, 1974.

Dipartimento di M atematica
Università di Catania
vialeAndrea Doria 6
Catania I-95125
Italy
email: Fiorito@dipmat.unict.it

[^3]
[^0]: ${ }^{1}$ IfT $\in \mathrm{R}^{+}-\mathrm{Q}$ and $\varphi(\mathrm{x})$ satisfies an other suitablehypothesis the result is known (see [2, p. 48, Exercise 2.15]). Received by the editors July 9, 1997.
 AM S subject classification: 40A05.
 (C)Canadian M athematical Society 1999.

[^1]: ${ }^{2}$ This condition is equivalent to saying that the function $\varphi(\mathrm{x})-\varphi(0)$ is an odd function.

[^2]: ${ }^{4}$ The formula (1) may be utilized to compute an approximate value of the integral $\int_{a}^{b} f(x) d x$.
 ${ }^{5}$ For $\mathrm{k}=1$ the series $\sum_{\lambda}^{\varphi_{3}}$ diverges to $+\infty$ because the general term does not tend to 0 .

[^3]: ${ }^{6}$ For $k=1$ the problem of determining the behaviour of the series $\sum_{\lambda}^{\varphi_{4}}$ is open.

