Canad. Math. Bull. Vol. 42 (2), 1999 pp. 184-189

On Arithmetic Means of Sequences Generated by a Periodic Function

Giovanni Fiorito

Abstract. In this paper we prove the convergence of arithmetic means of sequences generated by a periodic function $\varphi(x)$, moreover if $\varphi(x)$ satisfies a suitable symmetry condition, we prove that their limit is $\varphi(0)$. Applications of previous results are given to study other means of sequences and the behaviour of a class of recursive series.

Introduction

Let Φ_{2T} be the class of real functions defined in \mathbb{R} and periodic of period 2*T*. For every $\varphi(\mathbf{x}) \in \Phi_{2T}$ we consider the sequence $\{u_n\}$ given by

$$u_n = \varphi(n) \quad \forall n \in \mathbb{N};$$

We denote by $\{\mathcal{A}_{n,\varphi}\}$, $\{\mathcal{G}_{n,\varphi}\}$ and $\{\mathcal{M}_{n,\varphi}^p\}$, respectively, the sequence of arithmetic means, the sequence of geometric means and the sequence of power means of order p ($p \in \mathbb{R}^+$) of $\{u_n\}$.

Using a known fact we prove that the sequences $\{\mathcal{A}_{n,\varphi}\}$, $\{\mathcal{G}_{n,\varphi}\}$ and $\{\mathcal{M}_{n,\varphi}^{p}\}$ are convergent; moreover, if $\varphi(\mathbf{x})$ satisfies a suitable symmetry condition, the limit of these sequences is $\varphi(\mathbf{0})$. From these theorems we deduce, then, the convergence or the divergence of the class of recursive series \sum_{λ}^{φ} that we have considered in [3] and in [4]; finally we give some examples to complete the theory.

We introduce, now, other notations. If *x* is a real number we denote, as usual, by [*x*] the greatest integer less than or equal to *x*; we denote by $\{\tau_n\}$ the sequence defined by setting

$$au_n = n - \left[\frac{n}{2T}\right] 2T \quad \forall n \in \mathbb{N}.$$

If $T \in \mathbb{Q}^+$, we set $2T = \frac{u}{v}$ and suppose that *u* is prime to *v*.

1 Arithmetic Means and Applications

Theorem 1 Let $\varphi(\mathbf{x}) \in \Phi_{2T}$, and, if $T \in \mathbb{R}^+ - \mathbb{Q}$, let $\varphi(\mathbf{x})$ be bounded and Riemannintegrable in [0, 2T]. Then¹

$$\lim_{n\to\infty}\mathcal{A}_{n,\varphi} = \begin{cases} \frac{1}{2T}\int_0^{2T}\varphi(\mathbf{x})\,d\mathbf{x} & \text{if } T\in\mathbb{R}^+-\mathbb{Q}\\ \frac{\varphi(1)+\varphi(2)+\cdots+\varphi(u)}{u} & \text{if } T\in\mathbb{Q}^+. \end{cases}$$

¹If $T \in \mathbb{R}^+ - \mathbb{Q}$ and $\varphi(x)$ satisfies an other suitable hypothesis the result is known (see [2, p. 48, Exercise 2.15]). Received by the editors July 9, 1997. AMS subject classification: 40A05.

©Canadian Mathematical Society 1999.

On Arithmetic Means of Sequences

Proof We suppose at first that $T \in \mathbb{R}^+ - \mathbb{Q}$. In this case, the sequence $\left\{\frac{\tau_n}{2T}\right\}$ is uniformly distributed in [0, 1] and therefore for a known fact (see for example, [1, p. 473] and [7, p. 3, Corollary 1.1]) we have

(1)
$$\lim_{n\to\infty}\frac{f\left(\frac{\tau_1}{2T}\right)+f\left(\frac{\tau_2}{2T}\right)+\cdots+f\left(\frac{\tau_n}{2T}\right)}{n}=\int_0^1f(x)\,dx,$$

where $f(x) = \varphi(2Tx)$ is Riemann-integrable in [0, 1]. On the other hand we have also

(2)
$$\mathcal{A}_{n,\varphi} = \frac{\varphi(1) + \varphi(2) + \dots + \varphi(n)}{n} = \frac{\varphi(\tau_1) + \varphi(\tau_2) + \dots + \varphi(\tau_n)}{n}$$
$$= \frac{f\left(\frac{\tau_1}{2T}\right) + f\left(\frac{\tau_2}{2T}\right) + \dots + f\left(\frac{\tau_n}{2T}\right)}{n},$$

and

(3)
$$\int_0^1 f(x) \, dx = \int_0^1 \varphi(2Tx) \, dx = \frac{1}{2T} \int_0^{2T} \varphi(x) \, dx.$$

Then, from (1), (2) and (3) the thesis follows easily.

If $T \in \mathbb{Q}^+$, $\forall n > u$, we have

(4)

$$\mathcal{A}_{n,\varphi} = \frac{\varphi(1) + \varphi(2) + \dots + \varphi(u) + \dots + \varphi(n)}{n}$$

$$= \frac{\left[\frac{n}{u}\right] \left(\varphi(1) + \varphi(2) + \dots + \varphi(u)\right) + \varphi\left(\left[\frac{n}{u}\right] u + 1\right) + \dots + \varphi(n)}{n}.$$

Then, from (4) the desired conclusion follows, and the proof is completed.

Remark 1 Theorem 1 cannot be extended supposing that the function $\varphi(x)$ is Lebesgue-integrable. Indeed let us suppose that $f(x) \in \Phi_{2T}$ ($T \in \mathbb{R}^+ - \mathbb{Q}$) and that f(x) is bounded, Lebesgue-integrable in [0, 2T] and such that $\int_0^{2T} f(x) dx > 0$. Then let us consider the function $\varphi(x)$ obtained by extending by periodicity in \mathbb{R} the function

$$g(x) = \begin{cases} f(x) & \text{if } x \in [0, 2T] - E \\ 0 & \text{if } x \in E, \end{cases}$$

where *E* is the range of the sequence $\{\tau_n\}$. Therefore we have:

$$\varphi(\mathbf{x}) \in \Phi_{2T}, \quad \varphi(\mathbf{n}) = \mathbf{g}(\tau_n) = \mathbf{0} \quad \forall \mathbf{n} \in \mathbb{N}, \quad \mathcal{A}_{\mathbf{n},\varphi} = \mathbf{0} \quad \forall \mathbf{n} \in \mathbb{N}$$

and

$$\int_0^{2T} \varphi(x) \ dx = \int_0^{2T} f(x) \ dx > 0.$$

Corollary 1 Let $\varphi(x)$ satisfy the hypotheses of Theorem 1; moreover let $\varphi(x)$ satisfy the symmetry condition² $\varphi(x) + \varphi(2T - x) = 2\varphi(T) \ \forall x \in [0, T]$. Then, $\forall T \in \mathbb{R}^+$ the sequence $\{A_{n,\varphi}\}$ is convergent to $\varphi(0)$.

²This condition is equivalent to saying that the function $\varphi(x) - \varphi(0)$ is an odd function.

Proof We observe at first that from the symmetry condition it follows that $\forall k \in \mathbb{N}$

$$\varphi(kT) = \varphi(0)$$

and

$$\varphi(\mathbf{x}) + \varphi(2\mathbf{k}T - \mathbf{x}) = 2\varphi(T) \quad \forall \mathbf{x} \in [0, \mathbf{k}T].$$

Therefore if $T \in \mathbb{Q}^+$ and *u* is even, taking into account that u = 2Tv, we have

$$\frac{\varphi(1) + \varphi(2) + \dots + \varphi(u)}{u}$$

$$= \frac{\varphi(1) + \dots + \varphi(vT - 1) + \varphi(vT) + \varphi(vT + 1) + \dots + \varphi(2Tv - 1) + \varphi(2Tv)}{u}$$

$$= \varphi(T) = \varphi(0).$$

If $T \in \mathbb{Q}^+$ and *u* is odd, we have

$$\frac{\varphi(1) + \varphi(2) + \dots + \varphi(u)}{u}$$

$$= \frac{\varphi(1) + \dots + \varphi\left(\frac{2vT - 1}{2}\right) + \varphi\left(\frac{2vT + 1}{2}\right) + \dots + \varphi(2Tv - 1) + \varphi(2Tv)}{u}$$

$$= \varphi(T) = \varphi(0).$$

Finally, if $T \in \mathbb{R}^+ - \mathbb{Q}$, we have easily

$$\int_0^{2T} \varphi(\mathbf{x}) \, d\mathbf{x} = 2T\varphi(T) = 2T\varphi(0),$$

and this completes the proof.

Corollary 2 Let $\varphi(x) \ge 0 \ \forall x \in \mathbb{R}$ and let $[\varphi(x)]^p$ $(p \in \mathbb{R}^+)$ verify the hypotheses of Corollary 1. Then the sequence $\{\mathcal{M}_{n,\varphi}^p\}$ converges to $\varphi(0)$.

Proof Since

$$\mathcal{M}_{n,\varphi}^{p} = \left(\frac{\left(\varphi(1)\right)^{p} + \left(\varphi(2)\right)^{p} + \cdots + \left(\varphi(n)\right)^{p}}{n}\right)^{\frac{1}{p}},$$

it is sufficient to notice that the sequence $\{\mathcal{A}_{n,\varphi^p}\}$ converges to $(\varphi(\mathbf{0}))^p$.

Corollary 3 Let $\varphi(x) \in \Phi_{2T}$, $\inf \varphi(x) > 0$ and, if $T \in \mathbb{R}^+ - \mathbb{Q}$, let $\varphi(x)$ be bounded and Riemann-integrable in [0, 2T]. Then

$$\lim_{n\to\infty} \mathfrak{G}_{n,\varphi} = \begin{cases} e^{\frac{1}{2T}\int_0^{2T}\log\varphi(\mathbf{x})\,d\mathbf{x}} & \text{if } T\in\mathbb{R}^+-\mathbb{Q}\\ \sqrt[u]{\varphi(1)\cdot\varphi(2)\cdots\varphi(u)} & \text{if } T\in\mathbb{Q}^+. \end{cases}$$

On Arithmetic Means of Sequences

Proof It is sufficient to observe that the function $\log \varphi(x)$ satisfies the hypotheses of Theorem 1, and then the sequence $\{A_{n,\log\varphi}\}$ converges. From this, indeed, and from the relation

$$\sqrt[n]{\varphi(1)\varphi(2)\cdots\varphi(n)} = e^{\frac{1}{n}\sum_{i=1}^{n}\log\varphi(i)} \quad \forall n \in \mathbb{N}$$

the desired conclusion follows immediately.

Corollary 4 Let $\varphi(x)$ verify the hypotheses of Corollary 3; moreover let $\varphi(x)$ verify the symmetry condition

$$\varphi(\mathbf{x})\varphi(\mathbf{2}T-\mathbf{x}) = (\varphi(T))^2 \quad \forall \mathbf{x} \in [0, T].$$

Then the sequence $\{\mathcal{G}_{n,\varphi}\}$ *converges to* $\varphi(\mathbf{0})$ *.*

Proof It is sufficient to observe that the function $\log \varphi(x)$ satisfies the hypotheses of Corollary 1 and therefore the sequence $\{A_{n,\log\varphi}\}$ converges to $\log \varphi(0)$.

Corollary 5 Let $\varphi(x)$ verify the hypotheses of Corollary 4. Then the series $\sum_{\lambda}^{\varphi} \varphi$ converges or diverges to $+\infty$ according as $\varphi(0) < 1$ or $\varphi(0) > 1$.

Remark 2 Theorem 1 and the following corollaries are useful if the sequence $\{u_n\}$ is not convergent because in this case the well known theorems of Cesàro cannot be applicable.

This case really happens, for example, if $\varphi(x) \in \Phi_{2T} \cap C^{\circ}(\mathbb{R})$, $T \in \mathbb{R}^{+} - \mathbb{Q}$ and $\varphi(x)$ is not constant. Indeed let $x_1, x_2 \in [0, 2T[$ and such that $\varphi(x_1) < \varphi(x_2)$. Then, by the continuity of $\varphi(x)$ there exists $\delta > 0$ such that

$$[\mathbf{x}_1 - \delta, \mathbf{x}_1 + \delta] \subseteq [\mathbf{0}, \mathbf{2}T], \quad [\mathbf{x}_2 - \delta, \mathbf{x}_2 + \delta] \subseteq [\mathbf{0}, \mathbf{2}T],$$

 $[\mathbf{x}_1 - \delta, \mathbf{x}_1 + \delta] \cap [\mathbf{x}_2 - \delta, \mathbf{x}_2 + \delta] = \emptyset$

and moreover

$$\forall x' \in [x_1 - \delta, x_1 + \delta]$$
 and $\forall x'' \in [x_2 - \delta, x_2 + \delta]$

we have

(5)
$$\varphi(\mathbf{x}'') - \varphi(\mathbf{x}') > \frac{\varphi(\mathbf{x}_2) - \varphi(\mathbf{x}_1)}{2}.$$

On the other hand for Kronecker's theorem (see for example [5, p. 373]) $\forall \eta > 0$ there exist $n, m \in \mathbb{N} \cap [\eta, +\infty[$ such that

$$\begin{cases} a_1 = \lambda \in \mathbb{R}^+ \\ a_{n+1} = \varphi(n)a_n \quad \forall n \in \mathbb{N}. \end{cases}$$

 $^{{}^3\}sum_{\lambda}^{\varphi}$ is the series whose terms are defined recursively by setting

Giovanni Fiorito

From (5) and (6) it follows

$$\varphi(\mathbf{m}) - \varphi(\mathbf{n}) = \varphi(\tau_{\mathbf{m}}) - \varphi(\tau_{\mathbf{n}}) > \frac{\varphi(\mathbf{x}_2) - \varphi(\mathbf{x}_1)}{2},$$

and this proves, obviously, that the sequence $\{u_n\}$ is not regular.

Corollary 6 Let f(x) be bounded and Riemann-integrable in the interval [a, b] and let $T \in$ $\mathbb{R}^+ - Q$. Then⁴

(7)
$$\int_{a}^{b} f(x) dx = (b-a) \lim_{n \to \infty} \mathcal{A}_{n,\varphi},$$

where $\varphi(x)$ is obtained by extending by periodicity in \mathbb{R} the function $f\left(\frac{b-a}{2T}x+a\right)$, $x \in$ [0, 2T].

Proof We have easily

$$\int_a^b f(x) \, dx = \frac{b-a}{2T} \int_0^{2T} f\left(\frac{b-a}{2T}t + a\right) \, dt = \frac{b-a}{2T} \int_0^{2T} \varphi(x) \, dx$$

And from this relation the desired conclusion follows immediately by virtue of Theorem 1.

Example 1 Let $\varphi_1(x) = \sin x$. We see easily that $\varphi_1(x)$ satisfies the hypotheses of Corollary 1 (with $T = \pi$), then the sequence $\{A_{n,\varphi_1}\}$ converges to 0.

We have so obtained, by other means, a well known result (see [6, p. 316, Example 5]).

Example 2 Let us consider the function

$$f(\mathbf{x}) = \begin{cases} -\mathbf{x}^2 + \pi \mathbf{x} + \lambda & \text{for } \mathbf{x} \in [0, \pi] \\ \mathbf{x}^2 - 3\pi \mathbf{x} + 2\pi^2 + \lambda & \text{for } \mathbf{x} \in]\pi, 2\pi], \end{cases}$$

where $\lambda \in \mathbb{R}$.

Let $\varphi_2(x)$ be the function obtained by extending f(x) by periodicity in \mathbb{R} . We see easily that $\varphi_2(x)$ satisfies the hypotheses of Corollary 1 (with $T = \pi$), therefore the sequence $\{\mathcal{A}_{n,\varphi_2}\}$ converges to λ .

Example 3 Let us consider the function

$$\varphi_3(\mathbf{x}) = \mathbf{k} e^{\sin \mathbf{x}},$$

where $k \in \mathbb{R}^+$.

We see easily that $\varphi_3(x)$ satisfies the hypotheses of Corollaries 4 and 5 (with $T = \pi$). Therefore the sequence $\{\mathcal{G}_{n,\varphi_3}\}$ converges to k and the series $\sum_{\lambda}^{\varphi_3}$ converges or diverges to $+\infty$ according as⁵ k < 1 or k > 1.

188

⁴The formula (1) may be utilized to compute an approximate value of the integral $\int_a^b f(x) dx$. ⁵For k = 1 the series $\sum_{\lambda}^{\varphi_3}$ diverges to $+\infty$ because the general term does not tend to 0.

On Arithmetic Means of Sequences

Example 4 Let

$$g(x) = \begin{cases} -x^2 + \pi x + k & \text{for } x \in [0, \pi] \\ \frac{k^2}{-x^2 + 3\pi x - 2\pi^2 + k} & \text{for } x \in [\pi, 2\pi], \end{cases}$$

where $k \in \mathbb{R}^+$, and let us consider the function $\varphi_4(x)$ obtained by extending g(x) by periodicity in \mathbb{R} . We see easily that the function $\varphi_4(x)$ satisfies the hypotheses of Corollaries 4 and 5 (with $T = \pi$). Therefore the sequence $\{\mathcal{G}_{n,\varphi_4}\}$ converges to k and the series $\sum_{\lambda}^{\varphi_4}$ converges or diverges to $+\infty$ according as⁶ k < 1 or k > 1.

Example 5 Let

$$f(x) = \arctan x \quad x \in \left[0, \frac{3}{2}\right[,$$

and let us consider the function $\varphi_5(x)$ obtained by extending f(x) by periodicity in \mathbb{R} . We see easily that the function $\varphi_5(x)$ satisfies the hypotheses of Theorem 1 (with $2T = \frac{3}{2}$). Therefore the sequence $\{\mathcal{A}_{n,\varphi_5}\}$ converges to

$$\frac{\varphi_5(1) + \varphi_5(2) + \varphi_5(3)}{3} = \frac{\frac{\pi}{4} + \arctan\frac{1}{2}}{3}.$$

References

- [1] N. K. Bary, A Treatise on Trigonometric Series Vol. II. Pergamon Press, 1964.
- [2] R. E. Edwards, Fourier Series A Modern Introduction Vol. I. Holt, Rinehart and Winston, Inc., 1967.
- [3] G. Fiorito, R. Musmeci and M. Strano, *Diophantine approximations and convergence of series in Banach spaces.* Matematiche (Catania) **XLVIII**(1993), Fasc. II, 349–358.
- [5] G. Hardy and E. Wright, An introduction to the theory of numbers. Clarendon Press, Oxford, 1954.
- [6] K. Knopp, *Theory and application of infinite series*. Hafner Publishing Company, New York, 1971.
- [7] L. Kuipers and H. Niederreiter, Uniform distribution of sequences. J. Wiley & Sons, New York, 1974.

Dipartimento di Matematica Università di Catania viale Andrea Doria 6 Catania I-95125 Italy email: Fiorito@dipmat.unict.it

 $^{^6\}mathrm{For}\ k=1$ the problem of determining the behaviour of the series $\sum_{\lambda}^{\varphi_4}$ is open.