Canad. Math. Bull. Vol. **53** (1), 2010 pp. 23–36 doi:10.4153/CMB-2010-007-5 © Canadian Mathematical Society 2010

Boundedness From Below of Multiplication Operators Between α -Bloch Spaces

Huaihui Chen and Minzhu Zhang

Abstract. In this paper, the boundedness from below of multiplication operators between α -Bloch spaces \mathcal{B}^{α} , $\alpha > 0$, on the unit disk D is studied completely. For a bounded multiplication operator $M_u: \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$, defined by $M_u f = uf$ for $f \in \mathcal{B}^{\alpha}$, we prove the following result:

- (i) If $0 < \beta < \alpha$, or $0 < \alpha \le 1$ and $\alpha < \beta$, M_u is not bounded below;
- (ii) if $0 < \alpha = \beta \le 1$, M_u is bounded below if and only if $\lim \inf_{z \to \partial D} |u(z)| > 0$;
- (iii) if 1 < α ≤ β, M_u is bounded below if and only if there exist a δ > 0 and a positive r < 1 such that for every point z ∈ D there is a point z' ∈ D with the property d(z', z) < r and (1 − |z'|²)^{β−α}|u(z')| ≥ δ, where d(·, ·) denotes the pseudo-distance on D.

1 Introduction

Let *D* be the unit disk in the complex plane \mathbb{C} and let H(D) be the class of holomorphic functions on *D*. For $\alpha > 0$, a function $f \in H(D)$ is called an α -Bloch function if the semi-norm satisfies

$$||f||_{\alpha} := \sup_{z \in D} (1 - |z|^2)^{\alpha} |f'(z)| < \infty,$$

and called a *little* α -*Bloch function* if $\lim_{z\to\partial D}(1-|z|^2)^{\alpha}|f'(z)| = 0$. The class of all α -Bloch functions is called the α -Bloch space, denoted by \mathcal{B}^{α} , which is a Banach space with the norm $||f||_{\mathcal{B}^{\alpha}} = |f(0)| + ||f||_{\alpha}$, and the class of all little α -Bloch functions is called the *little* α -Bloch space, denoted by \mathcal{B}^{α}_0 . When $\alpha = 1$, we obtain Bloch functions, the Bloch space, and little Bloch space, and we denote $\mathcal{B} = \mathcal{B}^1$ and $\mathcal{B}_0 = \mathcal{B}^1_0$. For the general theory of Bloch functions and α -Bloch functions, see [2, 7].

For a holomorphic self-mapping ϕ of D and $u \in H(D)$, the weighted composition operator uC_{ϕ} on H(D) is defined by $uC_{\phi}f = uf \circ \phi$ for $f \in H(D)$. If $\phi(z) \equiv z$ or $u \equiv 1$, the weighted composition operator becomes the multiplication operator or the composition operator and is denoted by M_u or C_{ϕ} , respectively. The boundedness and compactness of weighted composition operators have been studied completely. S. Ohno, K. Stroethoff, and R. Zhao [6] proved the following results.

Theorem 1.1 Let $\beta > 0$. If $\alpha > 1$, then $uC_{\phi} \colon \mathbb{B}^{\alpha} \to \mathbb{B}^{\beta}$ is bounded if and only if

(1.1)
$$\sup_{z \in D} \frac{|u(z)|(1-|z|^2)^{\beta}|\phi'(z)|}{(1-|\phi(z)|^2)^{\alpha}} < \infty$$

Received by the editors November 6, 2006.

Published electronically December 4, 2009.

Research supported by NSFC(China): 10171047, 10671093.

AMS subject classification: 32A18, 30H05.

Keywords: α -Bloch function; multiplication operator.

and

(1.2)
$$\sup_{z \in D} \frac{(1-|z|^2)^{\beta} |u'(z)|}{(1-|\phi(z)|^2)^{\alpha-1}} < \infty.$$

If $\alpha = 1$ or $0 < \alpha < 1$, then (1.2) is replaced by

(1.3)
$$\sup_{z \in D} (1 - |z|^2)^{\beta} |u'(z)| \left(1 + \log \frac{1}{1 - |\phi(z)|^2} \right) < \infty$$

or

(1.4)
$$\sup_{z\in D} (1-|z|^2)^{\beta} |u'(z)| < \infty,$$

respectively.

For a multiplication operator, (1.1), (1.2), (1.3) become

$$(1.1') \qquad \sup_{z\in D} (1-|z|^2)^{\beta-\alpha} |u(z)| < \infty,$$

(1.2')
$$\sup_{z \in D} (1 - |z|^2)^{\beta - \alpha + 1} |u'(z)| < \infty,$$

(1.3')
$$\sup_{z\in D} (1-|z|^2)^{\beta} |u'(z)| \left(1+\log\frac{1}{1-|z|^2}\right) < \infty,$$

respectively.

For $a \in D$, let ϕ_a denote the Möbius transformation of D onto itself which exchanges 0 and a. We have $\phi_a = \phi_a^{-1}$, *i.e.*, $\phi_a \circ \phi_a$ is the identity mapping, and for $z \in D$,

(1.5)
$$\frac{|\phi_a'(z)|}{1-|\phi_a(z)|^2} = \frac{1}{1-|z|^2},$$

(1.6)
$$\frac{(1-|z|^2)(1-|a|^2)}{|1-\overline{a}z|^2} = 1 - |\phi_a(z)|^2$$

It follows from (1.5) that for $f \in H(D)$, we have

(1.7)
$$(1-|z|^2)|(f\circ\phi_a)'(z)| = (1-|\phi_a(z)|^2)|f'(\phi_a(z))| \text{ for } z\in D.$$

Equation (1.7) is used in this paper quite often without mention.

The pseudo-distance on *D* is defined by

$$d(z_1, z_2) = |\phi_{z_1}(z_2)| = \frac{|z_1 - z_2|}{|1 - \overline{z}_1 z_2|}$$
 for $z_1, z_2 \in D$.

It is invariant under Möbius transformations of D onto itself. For a holomorphic self-mapping ϕ , denote

$$au_{\phi}(z) = rac{(1-|z|^2|)\phi'(z)|}{1-|\phi(z)|^2} \quad ext{for } z \in D,$$

which is the dilation of ϕ with respect to the hyperbolic metric. The classical Schwarz–Pick lemma asserts that $\tau_{\phi}(z) \leq 1$ for $z \in D$ (see [1]), and it follows from (1.5) that $\tau_{\phi_a}(z) \equiv 1$.

A bounded weighted composition operator uC_{ϕ} : $\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is said to be bounded below from \mathcal{B}^{α} into \mathcal{B}^{β} , if there exists a $\delta > 0$ such that $||uC_{\phi}f||_{\mathcal{B}^{\beta}} \ge \delta ||f||_{\mathcal{B}^{\alpha}}$ for $f \in \mathcal{B}^{\alpha}$. For the boundedness from below of composition operators on the Bloch space \mathcal{B} , the following result is known, see [3,5].

Theorem 1.2 The following conditions are equivalent:

- (i) C_{ϕ} is bounded below on \mathcal{B} ;
- (ii) C_{ϕ} is bounded below on the subset $\{\phi_a : a \in D\}$ of \mathcal{B} ;
- (iii) there exist a $\delta > 0$ and an $r \in (0, 1)$ such that for any $w \in D$ there is a $z' \in D$ with the property that $d(\phi(z'), w) \leq r$ and $\tau_{\phi}(z') \geq \delta$.

Recently, the above result was generalized to composition operators on \mathcal{B}^{α} for $\alpha > 1$ by H. Chen and P. Gauthier [4].

Theorem 1.3 If $\alpha > 1$, then $C_{\phi} \colon \mathcal{B}^{\alpha} \to \mathcal{B}^{\alpha}$ is bounded below if and only if there exist $a \ \delta > 0$ and an $r \in (0, 1)$ such that for any $w \in D$ there is a $z' \in D$ with the property that $d(\phi(z'), w) < r, \tau_{\phi}(z') \ge \delta$ and $(1 - |z'|^2)/(1 - |\phi(z')|^2) \ge \delta$.

In this paper, the boundedness from below of multiplication operators between α -Bloch spaces is studied completely. We prove the following result. Let $M_u: \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ be a bounded multiplication operator. If $0 < \beta < \alpha$, or $0 < \alpha \leq 1$ and $\alpha < \beta$, M_u is not bounded below. If $0 < \alpha = \beta \leq 1$, M_u is bounded below if and only if $\liminf_{z\to\partial D} |u(z)| > 0$. If $1 < \alpha \leq \beta$, M_u is bounded below if and only if there exist a $\delta > 0$ and a positive r < 1 such that for every point $z \in D$ there is a point $z' \in D$ with the property that d(z', z) < r and $(1 - |z'|^2)^{\beta - \alpha} |u(z')| \geq \delta$.

2 Some Lemmas

Lemma 2.1 For $z_1, z_2 \in D$, we have

(2.1)
$$\frac{1-|z_2|^2}{1-|z_1|^2} \le \frac{1+d(z_1,z_2)}{1-d(z_1,z_2)}.$$

Proof Applying (1.6), we have

$$1 - |z_2|^2 = 1 - |\phi_{z_1}(\phi_{z_1}(z_2))|^2 = \frac{(1 - |\phi_{z_1}(z_2)|^2)(1 - |z_1|^2)}{|1 - \overline{z}_1\phi_{z_1}(z_2)|^2}$$

Thus,

$$\frac{1-|z_2|^2}{1-|z_1|^2} = \frac{1-|\phi_{z_1}(z_2)|^2}{|1-\overline{z}_1\phi_{z_1}(z_2)|^2} \le \frac{1-|\phi_{z_1}(z_2)|^2}{(1-|\phi_{z_1}(z_2)|)^2} = \frac{1+|\phi_{z_1}(z_2)|}{1-|\phi_{z_1}(z_2)|}$$

Since $|\phi_{z_1}(z_2)| = d(z_1, z_2)$, the lemma is proved.

25

Lemma 2.2 Let $f \in \mathbb{B}^{\alpha}$. If $\alpha = 1$, then

$$|f(z) - f(0)| \le \frac{\|f\|_1}{2} \log \frac{1 + |z|}{1 - |z|}$$

and

(2.2)
$$|f(z)| \le ||f||_{\mathcal{B}} \left(1 + \log \frac{1}{1 - |z|^2}\right) \quad for \ z \in D.$$

If $\alpha > 1$, then

$$|f(z) - f(0)| \le \frac{C_{\alpha} ||f||_{\alpha}}{(1 - |z|^2)^{\alpha - 1}}$$

and

(2.3)
$$|f(z)| \leq \frac{C_{\alpha} ||f||_{\mathcal{B}^{\alpha}}}{(1-|z|^2)^{\alpha-1}} \quad for \ z \in D.$$

If $0 < \alpha < 1$, then

$$|f(z) - f(0)| \le C_{\alpha} ||f||_{\alpha}$$

and

(2.4)
$$|f(z)| \leq C_{\alpha} ||f||_{\mathcal{B}^{\alpha}} \quad for \ z \in D.$$

Throughout this paper C_{α} denotes a positive constant depending on α only, which may have different values at different places. Lemma 2.2 is easy to prove.

Lemma 2.3 For $\alpha > 0$ and $a \in D \setminus \{0\}$, define

$$f_{lpha,a}(z) = rac{1}{lpha \overline{a}} rac{(1-|a|^2)}{(1-\overline{a}z)^{lpha}} \quad \textit{for } z \in D.$$

Then

(2.5)
$$1 \le ||f_{\alpha,a}||_{\alpha} \le 2^{|\alpha-1|}.$$

Proof If $\alpha > 1$, for $z \in D$, by (1.6),

$$(1 - |z|^2)^{\alpha} |f'_{\alpha,a}(z)| = \frac{(1 - |z|^2)^{\alpha} (1 - |a|^2)}{|1 - \overline{a}z|^{\alpha + 1}}$$
$$= \frac{(1 - |z|^2)^{\alpha - 1}}{|1 - \overline{a}z|^{\alpha - 1}} \left(1 - |\phi_a(z)|^2\right) \le 2^{\alpha - 1} \quad \text{for } z \in D.$$

By the same reasoning, if $\alpha \leq 1$, we have $(1 - |z|^2)^{\alpha} |f'_{\alpha,a}(z)| \leq 2^{1-\alpha}$ for $z \in D$. On the other hand, $(1 - |a|^2)^{\alpha} |f'_{\alpha,a}(a)| = 1$. This shows the lemma.

26

Boundedness From Below of Multiplication Operators between α -Bloch Spaces

Lemma 2.4 Let $a_n \in D$ and $a_n \to \partial D$. If $0 < \alpha < 1$, $\beta > 0$, and $u \in \mathbb{B}^{\beta}$, then

(2.6)
$$\sup_{z\in D} (1-|z|^2)^{\beta} |u'(z)f_{\alpha,a_n}(z)| \to 0 \quad as \ n\to\infty$$

If $u \in \mathcal{B}_0^\beta$, (2.6) holds for $\alpha = 1$ also.

Proof Let $\alpha < 1$ and $u \in \mathbb{B}^{\beta}$ and denote $h_n(z) = (1 - |z|^2)^{\beta} |u'(z) f_{\alpha, a_n}(z)|$. Then,

$$\sup_{z\in D} h_n(z) \leq \|u\|_{\beta} \sup_{z\in D} \frac{(1-|a_n|^2)}{\alpha |a_n| |1-\overline{a}_n z|^{\alpha}} \leq \frac{2}{\alpha |a_n|} (1-|a_n|)^{1-\alpha} \|u\|_{\beta}.$$

Equation (2.6) follows. If $u \in \mathcal{B}_0^\beta$, for $\epsilon > 0$, there exists an r' < 1 such that $(1-|z|^2)^\beta |u'(z)| < \epsilon$ for |z| > r'. Note that $|f_{1,a_n}(z)| < (1+|a_n|)/|a_n| < 4$ for $z \in D$, if $|a_n| > 1/2$. Thus, $\sup_{|z| > r'} h_n(z) < 4\epsilon$ for sufficiently large *n*. On the other hand, $\sup_{|z| \le r'} h_n(z) \to 0$ as $n \to \infty$, since $f_{1,a_n}(z) \to 0$, as $n \to \infty$, uniformly for $|z| \le r'$. This shows (2.6), since ϵ may be small arbitrarily. The lemma is proved.

Lemma 2.5 If $0 < \alpha < 1$, $\alpha < \beta$ and $u \in \mathbb{B}^{\beta}$, then

(2.7)
$$\lim_{z \to \partial D} (1 - |z|^2)^{\beta - \alpha} |u(z)| = 0,$$

As a consequence of (2.7), *for any sequence* $a_n \in D$, *which tends to* ∂D , *we have*

(2.8)
$$\sup_{z\in D}(1-|z|^2)^{\beta}|u(z)f'_{\alpha,a_n}(z)|\to 0 \quad as \ n\to\infty.$$

If $\beta > \alpha = 1$ and $u \in \mathfrak{B}^{\beta}_{0}$, (2.7) and (2.8) also hold.

Proof Under the former assumption, (2.7) is a direct consequence of Lemma 2.2. To prove (2.7) under the latter assumption, let $\epsilon > 0$. There exists an $r_0 < 1$ such that $(1 - |z|^2)^{\beta} |u'(z)| < \epsilon$ for $|z| > r_0$. For $z = re^{i\theta}$ with $r > r_0$, we have

$$\begin{split} |u(z)| &\leq |u(r_0 e^{i\theta})| + \int_{r_0}^r |u'(\rho e^{i\theta})|d\rho \leq |u(r_0 e^{i\theta})| + \epsilon \int_{r_0}^r \frac{d\rho}{(1-\rho^2)^{\beta}} \\ &\leq |u(r_0 e^{i\theta})| + \frac{\epsilon}{(\beta-1)(1-r)^{\beta-1}}, \\ &(1-|z|^2)^{\beta-1}|u(z)| \leq (1-|z|^2)^{\beta-1}M + \frac{2^{\beta-1}\epsilon}{\beta-1}, \end{split}$$

where $M = \max\{|u(r_0e^{i\theta})| : 0 \le \theta \le 2\pi\}$. Thus,

$$\limsup_{z \to \partial D} (1 - |z|^2)^{\beta - 1} |u(z)| \le \frac{2^{\beta - 1}\epsilon}{\beta - 1}.$$

Equation (2.7) is proved, since ϵ may be arbitrarily small.

https://doi.org/10.4153/CMB-2010-007-5 Published online by Cambridge University Press

It follows from (2.7) that for $\epsilon > 0$, there exists an r' < 1 such that

$$(1 - |z|^2)^{\beta - \alpha} |u(z)| < \epsilon \text{ for } |z| > r'.$$

Denote $k_n(z) = (1 - |z|^2)^{\beta} |u(z) f'_{\alpha, a_n}(z)|$. Then,

$$\sup_{|z|>r'} k_n(z) \le \|f_{\alpha,a_n}\|_{\alpha} \sup_{|z|>r'} (1-|z|^2)^{\beta-\alpha} |u(z)| \le \epsilon \|f_{\alpha,a_n}\|_{\alpha} \le 2^{1-\alpha} \epsilon.$$

It is obvious that $\sup_{|z| \le r'} k_n(z) \to 0$ as $n \to \infty$, since $f_{\alpha,a_n}(z) \to 0$, as $n \to \infty$, uniformly for $|z| \le r'$. Equation (2.8) is proved since ϵ may be arbitrarily small. The proof is complete.

Lemma 2.6 Let $a_n \in D$ be a sequence such that $a_n \to \partial D$. If $u \in \mathcal{B}_0$, then for any positive number r < 1,

$$\sup_{d(z,a_n)\leq r} |u(z)-u(a_n)|\to 0 \quad as \ n\to\infty.$$

Proof Let r < 1 be given. For $\epsilon > 0$, there exists an r' < 1 such that $(1 - |z|^2)|u'(z)| < \epsilon$ for |z| > r'. Since $a_n \to \partial D$, there is an N such that the pseudo-disk $\overline{\Delta}_n = \{z : d(z, a_n) \le r\}$ is contained in the annulus $\{z : r' < |z| < 1\}$, and consequently, $(1 - |z|^2)|u'(z)| < \epsilon$ for $z \in \overline{\Delta}_n$ provided that n > N. For n > N and $z' \in \overline{\Delta}_n$, letting $u_n = u \circ \phi_{a_n}$ and $\zeta' = \phi_{a_n}(z')$, we have

$$\begin{aligned} |u(z') - u(a_n)| &= |u_n(\zeta') - u_n(0)| = \int_0^{\zeta'} |u'_n(\zeta)| |d\zeta| \\ &\leq \frac{1}{1 - |\zeta'|^2} \int_0^{\zeta'} (1 - |\zeta|^2) |u'_n(\zeta)| |d\zeta|. \end{aligned}$$

Note that $|\zeta'| = d(z'a_n) \leq r$. Meanwhile, $\phi_{a_n}(\zeta) \in \overline{\Delta}_n$ and $(1 - |\zeta|^2)|u'_n(\zeta)| = (1 - |\phi_{a_n}(\zeta)|^2)|u'(\phi_{a_n}(\zeta))| < \epsilon$ if $|\zeta| \leq r$. Thus, $|u(z') - u(a_n)| \leq \frac{r\epsilon}{1-r^2}$. The lemma is proved, since ϵ may be arbitrarily small.

Lemma 2.7 Let $\alpha \geq 0, 0 < r < 1, u \in H(D)$, and $a_n \rightarrow \partial D$ as $n \rightarrow \infty$. If

$$\delta_n = \sup_{d(z,a_n) \leq r} (1 - |z|^2)^{\alpha} |u(z)| \to 0 \quad as \ n \to \infty,$$

then

$$\sup_{d(z,a_n)\leq r'}(1-|z|^2)^{\alpha+1}|u'(z)|\to 0, \quad as \ n\to\infty,$$

for any r' < r.

Proof Let 0 < r' < r. For a fixed *n*, let $\zeta = \phi_{a_n}(z)$ for $z \in D$, and $u_n = u \circ \phi_{a_n}$. If $|\zeta| \leq r$, then $d(z, a_n) \leq r$ and, by (2.1),

$$|u_n(\zeta)| = |u(z)| \le \frac{\delta_n}{(1-|z|^2)^{\alpha}} \le \frac{\delta_n}{(1-|a_n|^2)^{\alpha}} \frac{(1+r)^{\alpha}}{(1-r)^{\alpha}}$$

Thus, by Cauchy's inequality,

$$|u'_n(\zeta)| \le \frac{\delta_n}{(1-|a_n|^2)^{lpha}} \frac{(1+r)^{lpha}}{(1-r)^{lpha}(r-r')} \quad \text{for } |\zeta| \le r'.$$

Then, if $d(z, a_n) \leq r'$, we have $|\zeta| \leq r'$ and, by (2.1),

$$(1-|z|^2)^{\alpha+1}|u'(z)| = (1-|z|^2)^{\alpha}(1-|\zeta|^2)|u'_n(\zeta)| \le \frac{\delta_n(1+r)^{2\alpha}}{(1-r)^{2\alpha}(r-r')}.$$

This shows the lemma.

Lemma 2.8 Let $uC_{\phi}: \mathbb{B}^{\alpha} \to \mathbb{B}^{\beta}$ be bounded. If there exists a $\delta > 0$ such that $\|uC_{\phi}f\|_{\mathbb{B}^{\beta}} \geq \delta \|f\|_{\alpha}$ holds for $f \in \mathbb{B}^{\alpha}$, then uC_{ϕ} is bounded below from \mathbb{B}^{α} into \mathbb{B}^{β} .

Proof Suppose on the contrary that there is a sequence $f_n \in \mathcal{B}^{\alpha}$ such that $||f_n||_{\mathcal{B}^{\alpha}} = 1$ for n = 1, 2, ..., and $||uC_{\phi}f_n||_{\mathcal{B}^{\beta}} \to 0$ as $n \to \infty$. Then, by hypothesis, $||f_n||_{\alpha} \to 0$ and, consequently, $|f_n(0)| \to 1$ as $n \to \infty$. Without loss of generality, assume that $f_n(0) \to 1$ as $n \to \infty$. By Lemma 2.2, we have $f_n \to 1$ and $uC_{\phi}f_n \to u$ locally uniformly in D as $n \to \infty$. Thus, $||u||_{\beta} \le \lim_{n\to\infty} ||uC_{\phi}f_n||_{\beta} = 0$ and $u \equiv 0$, which contradicts the assumption of the lemma. The proof is complete.

Lemma 2.9 Let $\alpha > 0$, $u \in H(D)$, $u \not\equiv 0$, and $f_n \in H(D)$ for n = 1, 2, ... If $||uf_n||_{\mathbb{B}^{\alpha}} \to 0$ as $n \to \infty$, then $f_n \to 0$, as $n \to \infty$, locally uniformly in D.

Proof Since $u \neq 0$, for any positive $r_0 < 1$, there exists an r' such that $r_0 < r' < 1$ and $u(z) \neq 0$ for |z| = r'. By Lemma 2.2, $|u(z)f_n(z)| \leq C_{\alpha,r'} ||uf_n||_{\mathcal{B}^{\alpha}}$ and, consequently, $|f_n(z)| \leq (C_{\alpha,r'}/\delta) ||uf_n||_{\mathcal{B}^{\alpha}}$ for n = 1, 2, ..., and |z| = r', where $\delta = \min_{|z|=r'} |u(z)| > 0$. By maximum principle, this shows that $f_n \to 0$, as $n \to \infty$, uniformly for $|z| \leq r'$, since $||uf_n||_{\mathcal{B}^{\alpha}} \to 0$, as $n \to \infty$, by hypothesis. The lemma is proved.

3 Theorems and Their Proofs

It is easy to see that if $0 < \beta < \alpha$, $M_u: \mathbb{B}^{\alpha} \to \mathbb{B}^{\beta}$ is not bounded unless $u \equiv 0$. Then, M_u is obviously not bounded below. So we only need to consider the case $0 < \alpha \leq \beta$.

Theorem 3.1 Let $0 < \alpha \leq 1$ and $\alpha < \beta$. If $M_u: \mathbb{B}^{\alpha} \to \mathbb{B}^{\beta}$ is bounded, then M_u is not bounded below from \mathbb{B}^{α} into \mathbb{B}^{β} .

Proof Let $a_n \in D$ be a sequence such that $a_n \to \partial D$ as $n \to \infty$, and let $f_n = f_{\alpha,a_n}$ be functions defined in Lemma 2.3. We have

(3.1)
$$\|uf_n\|_{\mathcal{B}^{\beta}} \le |u(0)f_n(0)| + \sup_{z \in D} (h_n(z) + k_n(z)),$$

where $h_n(z) = (1 - |z|^2)^{\beta} |u'(z)||f_n(z)|$ and $k_n(z) = (1 - |z|^2)^{\beta} |u(z)||f'_n(z)|$. It is obvious that $u(0)f_n(0) \to 0$ as $n \to \infty$. By (1.3') and (1.4), $u \in \mathcal{B}_0^{\beta}$ if $\alpha = 1$, and $u \in \mathcal{B}^{\beta}$ if $0 < \alpha < 1$. Thus, using Lemmas 2.4 and 2.5 and Equations (2.6) and (2.8), we obtain $\sup_{z \in D}(h_n(z) + k_n(z)) \to 0$ as $n \to \infty$. It is proved that $||uf_n||_{\mathcal{B}^{\beta}} \to 0$ as $n \to \infty$, which shows that M_u is not bounded below since $||f_n||_{\mathcal{B}^{\alpha}} \ge 1$, by (2.5), for $n = 1, 2, \ldots$. The theorem is proved. **Theorem 3.2** Let $0 < \alpha \leq 1$ and $M_u: \mathbb{B}^{\alpha} \to \mathbb{B}^{\alpha}$ be bounded. Then, the following conditions are equivalent:

- (i) M_u is bounded below on \mathbb{B}^{α} ;
- (ii) M_u is bounded below on the subset $\{f_{\alpha,a} : a \in D \setminus \{0\}\}$ of \mathbb{B}^{α} , where $f_{\alpha,a}$ denote functions defined in Lemma 2.3;
- (iii) $\liminf_{z\to\partial D} |u(z)| > 0.$

Proof Since M_u is bounded on \mathcal{B}^{α} , we have $u \in \mathcal{B}^{\alpha} \subset \mathcal{B}_0$ if $\alpha < 1$ by (1.4), and $u \in \mathcal{B}_0$ if $\alpha = 1$ by (1.3'), and

$$(3.2) \qquad \qquad \sup_{z \in D} |u(z)| = M < \infty$$

for $0 < \alpha \le 1$ by (1.1'). It is obvious that (i) implies (ii).

Assume that (iii) does not hold, *i.e.*, there exists a sequence $a_n \to \partial D$ such that $u(a_n) \to 0$ as $n \to \infty$. For n = 1, 2, ..., let $f_n = f_{\alpha, a_n}$. We have (3.1) again with the same definition of h_n and k_n as before and $u(0) f_n(0) \to 0$ as $n \to \infty$. By Lemma 2.4, $\sup_{z \in D} h_n(z) \to 0$ as $n \to \infty$.

To estimate $k_n(z)$, let $\epsilon > 0$ be given. We have

$$(3.3) (1-|z|^2)^{\alpha}|f'_n(z)| = \frac{(1-|z|^2)^{\alpha}(1-|a_n|^2)}{|1-\overline{a}_n z|^{\alpha+1}} = \frac{(1-|z|^2)^{\alpha}(1-|a_n|^2)^{\alpha}}{|1-\overline{a}_n z|^{2\alpha}} \frac{(1-|a_n|^2)^{1-\alpha}}{|1-\overline{a}_n z|^{1-\alpha}} = (1-|\phi_{a_n}(z)|^2)^{\alpha} \frac{(1-|a_n|^2)^{1-\alpha}}{|1-\overline{a}_n z|^{1-\alpha}},$$

where the identity (1.6) is used. Let $r' = (1 - \epsilon^{1/\alpha})^{1/2}$. By (3.3) and (3.2),

(3.4)
$$k_n(z) \le 2^{1-\alpha} M \epsilon \quad \text{if } d(z, a_n) = |\phi_{a_n}(z)| \ge r'$$

On the other hand, by Lemma 2.6,

$$\lambda_n = \sup_{d(z,a_n) \le r'} |u(z)| \le |u(a_n)| + \sup_{d(z,a_n) \le r'} |u(z) - u(a_n)| \to 0 \quad \text{as } n \to \infty,$$

since $u \in \mathcal{B}_0$. Thus,

(3.5)
$$\sup_{d(z,a_n) \le r'} k_n(z) \le \lambda_n \|f_n\|_{\alpha} \le 2^{1-\alpha} \lambda_n \to 0 \quad \text{as } n \to \infty.$$

Combining (3.4) and (3.5), we see that $\sup_{z \in D} k_n(z) \to 0$ as $n \to \infty$, since ϵ may be arbitrarily small. We have proved that the terms at the right side of (3.1) are all convergent to 0 as $n \to \infty$. Therefore, $||uf_n||_{\mathcal{B}^\beta} \to 0$ as $n \to \infty$, which contradicts (ii) for $||f_n||_{\alpha} \ge 1$ by (2.5). The implication (ii) \Rightarrow (iii) is proved.

Now assume that (iii) holds. We want to prove (i). Denote

$$\delta = \liminf_{z \to \partial D} |u(z)| > 0.$$

Suppose on the contrary that M_u is not bounded below on \mathbb{B}^{α} . Then, by Lemma 2.8, there exists a sequence $f_n \in \mathbb{B}^a$ such that $||f_n||_{\alpha} = 1$ for n = 1, 2, ..., and $||uf_n||_{\mathbb{B}^{\alpha}} \to 0$ as $n \to \infty$. By Lemma 2.9, $f_n \to 0$, as $n \to \infty$, locally uniformly in *D*. Let $z_n \in D$ be a sequence such that $(1 - |z_n|^2)^{\alpha} |f'_n(z_n)| \ge 1/2$ for n = 1, 2, ... Then $z_n \to \partial D$ as $n \to \infty$.

Let r' be close to 1 so that $|u(z)| \ge \delta/2$ for r' < |z| < 1. By (2.2) and (2.4), for n = 1, 2, ..., and r' < |z| < 1, we have

(3.6)
$$|f_n(z)| \le \frac{2\|uf_n\|_{\mathcal{B}}}{\delta} \Big(1 + \log \frac{1}{1 - |z|^2}\Big)$$

or

$$(3.6') |f_n(z)| \le \frac{C_\alpha \|uf_n\|_{\mathcal{B}^\alpha}}{\delta},$$

according to $\alpha = 1$ or $\alpha < 1$.

For sufficiently large *n*, we have $|z_n| > r'$, $|u(z_n)| \ge \delta/2$, and

(3.7)
$$(1-|z_n|^2)^{\alpha}|u(z_n)||f_n'(z_n)| \ge \frac{\delta}{4}$$

If $\alpha <$ 1, then

(3.8)
$$(1-|z_n|^2)^{\alpha}|u'(z_n)||f_n(z_n)| \to 0 \text{ as } n \to \infty,$$

since $u \in \mathcal{B}^{\alpha}$ and $f_n \to 0$, as $n \to \infty$, uniformly on *D* by (3.6'). In the case that $\alpha = 1$, by (1.3'),

$$M = \sup_{z \in D} (1 - |z|^2) |u'(z)| \left(1 + \log \frac{1}{1 - |z|^2} \right) < \infty.$$

Thus, for sufficiently large n, by (3.6),

$$\begin{aligned} (1 - |z_n|^2)|u'(z_n)||f_n(z_n)| &\leq \frac{2||uf_n||_{\mathcal{B}}}{\delta}(1 - |z_n|^2)^{\alpha}|u'(z_n)|\Big(1 + \log\frac{1}{1 - |z_n|^2}\Big) \\ &\leq \frac{2M||uf_n||_{\mathcal{B}}}{\delta}. \end{aligned}$$

This shows that (3.8) holds also for $\alpha = 1$. However,

$$(3.9) \|uf_n\|_{\mathcal{B}^{\alpha}} \ge (1-|z_n|^2)^{\alpha} |u(z_n)| |f'_n(z_n)| - (1-|z_n|^2)^{\alpha} |u'(z_n)| |f_n(z_n)|.$$

It follows from (3.9), (3.7), and (3.8) that $||uf_n||_{\mathcal{B}^{\alpha}} \ge \delta/8$ for sufficiently large *n*. We arrive at a contradiction, and the implication (iii) \Rightarrow (i) is proved. This completes the proof of the theorem.

Theorem 3.3 Let $\beta \ge \alpha > 1$ and $M_u: \mathbb{B}^{\alpha} \to \mathbb{B}^{\beta}$ be bounded. Then, the following conditions are equivalent:

- (i) M_u is bounded below from \mathbb{B}^{α} into \mathbb{B}^{β} ;
- (ii) M_u is bounded below from the subset $\{f_{\alpha,a} : a \in D \setminus \{0\}\}$ of \mathbb{B}^{α} into \mathbb{B}^{β} with $f_{\alpha,a}$ as in Lemma 2.3;
- (iii) there exist a $\delta > 0$ and a positive r < 1 such that for every point $z \in D$ there is a $z' \in D$ with the property that d(z', z) < r and $(1 |z'|^2)^{\beta \alpha} |u(z')| \ge \delta$.

Proof Since M_u is bounded, by (1.2') and (1.1'), we have

(3.10)
$$\sup_{z \in D} (1 - |z|^2)^{\beta - \alpha + 1} |u'(z)| = M_1 < \infty,$$

(3.11)
$$\sup_{z \in D} (1 - |z|^2)^{\beta - \alpha} |u(z)| = M_2 < \infty.$$

It is obvious that (i) implies (ii).

Assume that (iii) does not hold, *i.e.*, there exist sequences $r_n \rightarrow 1$ and $a_n \rightarrow \partial D$ such that

(3.12)
$$\delta_n = \sup_{d(z,a_n) \le r_n} (1 - |z|^2)^{\beta - \alpha} |u(z)| \to 0 \quad \text{as } n \to \infty.$$

Then, using Lemma 2.7, we see that for any r' < 1

(3.13)
$$\sup_{d(z,a_n)\leq r'}(1-|z|^2)^{\beta-\alpha+1}|u'(z)|\to 0 \quad \text{as } n\to\infty.$$

Assume that $|a_n| > 1/2$ and let $f_n = f_{\alpha,a_n}$ for n = 1, 2, ... Then, we have (3.1) again with the same definition of h_n and k_n as before and $u(0)f_n(0) \to 0$ as $n \to \infty$.

Let $z \in D$. By (1.6), we have

$$\begin{split} h_n(z) &= \left(1 - |z|^2\right)^{\beta - \alpha + 1} |u'(z)| \frac{(1 - |z|^2)^{\alpha - 1} (1 - |a_n|^2)}{\alpha |a_n| |1 - \overline{a}_n z|^{\alpha}} \\ &\leq \frac{\left(1 - |z|^2\right)^{\beta - \alpha + 1} |u'(z)|}{\alpha |a_n|} \frac{(1 - |z|^2)^{\alpha - 1 - \lambda} (1 - |a_n|^2)^{1 - \lambda}}{|1 - \overline{a}_n z|^{\alpha - 2\lambda}} \left(1 - |\phi_{a_n}(z)|^2\right)^{\lambda} \\ &\leq \frac{2^{\alpha + 1 - 2\lambda}}{\alpha} \left(1 - |z|^2\right)^{\beta - \alpha + 1} |u'(z)| \left(1 - |\phi_{a_n}(z)|^2\right)^{\lambda}, \end{split}$$

where $\lambda = \min{\{\alpha - 1, 1\}}$. Consequently, by (3.10),

(3.14)
$$h_n(z) \le \frac{2^{\alpha+1-2\lambda}}{\alpha} \left(1 - |z|^2\right)^{\beta-\alpha+1} |u'(z)| \text{ and }$$

(3.15)
$$h_n(z) \le \frac{2^{\alpha + 1 - 2\lambda} M_1}{\alpha} \left(1 - |\phi_{a_n}(z)|^2 \right)^{\lambda}.$$

Similarly, for $k_n(z)$, we have

$$(3.16) k_n(z) = (1 - |z|^2)^{\beta - \alpha} |u(z)| \cdot \frac{(1 - |z|^2)^{\alpha} (1 - |a_n|^2)}{|1 - \overline{a}_n z|^{\alpha + 1}} \\ \leq (1 - |z|^2)^{\beta - \alpha} |u(z)| \cdot \frac{(1 - |z|^2)^{\alpha - 1}}{|1 - \overline{a}_n z|^{\alpha - 1}} \left(1 - |\phi_{a_n}(z)|^2\right) \\ \leq 2^{\alpha - 1} (1 - |z|^2)^{\beta - \alpha} |u(z)| \left(1 - |\phi_{a_n}(z)|^2\right), \\ \leq 2^{\alpha - 1} (1 - |z|^2)^{\beta - \alpha} |u(z)|, \end{cases}$$

and, by (3.11),

(3.17)
$$k_n(z) \le 2^{\alpha - 1} M_2 \left(1 - |\phi_{a_n}(z)|^2 \right)$$

For $\epsilon > 0$, let $r' = (1 - \epsilon)^{1/2}$. If $d(z, a_n) = |\phi_{a_n}(z)| > r'$, by (3.15) and (3.17), we have

$$h_n(z) < 2^{\alpha+1-2\lambda} M_1 \epsilon^{\lambda} / \alpha$$
 and $k_n(z) < 2^{\alpha-1} M_2 \epsilon$.

On the other hand, by (3.12), (3.13), (3.14), and (3.16),

$$\sup_{d(z,a_n)\leq r'}(h_n(z)+k_n(z))\to 0 \quad \text{as } n\to\infty.$$

Now, it is proved that

$$\sup_{z\in D}(h_n(z)+k_n(z))\to 0 \quad \text{as } n\to\infty,$$

since ϵ may be arbitrarily small. We have proved that all of the terms in the right side of the inequality (3.1) tend to 0 as $n \to \infty$. So, $||uf_n||_{\mathcal{B}^\beta} \to 0$ as $n \to \infty$, which means that (ii) does not hold. This shows the implication (ii) \Rightarrow (iii).

Now, we will proceed to prove (iii) \Rightarrow (i). Assume that (iii) holds. We want to prove (i). Suppose on the contrary that M_u is not bounded below from \mathcal{B}^{α} into \mathcal{B}^{β} . Then, by Lemma 2.8, there exists a sequence $f_n \in \mathcal{B}^{\alpha}$ such that $||f_n||_{\alpha} = 1$ for n = 1, 2, ...,and $||uf_n||_{\mathcal{B}^{\beta}} \to 0$ as $n \to \infty$. By Lemma 2.9, $f_n \to 0$, as $n \to \infty$, locally uniformly in *D*. Let $z_n \in D$ be a sequence such that $(1 - |z_n|^2)^{\alpha} |f'_n(z_n)| \ge 1/2$ for n = 1, 2, Then $z_n \to \partial D$ as $n \to \infty$.

Let $\delta > 0$ and r < 1 be the number in (iii). For $n = 1, 2, \dots$, let $z_n \in \Delta_n$ be a point such that $d(z_n, z'_n) < r$ and

(3.18)
$$(1 - |z'_n|^2)^{\beta - \alpha} |u(z'_n)| \ge \delta,$$

and let

$$\zeta'_n = \phi_{z_n}(z'_n), \quad u_n = (1 - |z_n|^2)^{\beta - \alpha} u \circ \phi_{z_n}, \quad g_n = (1 - |z_n|^2)^{\alpha - 1} f_n \circ \phi_{z_n}.$$

https://doi.org/10.4153/CMB-2010-007-5 Published online by Cambridge University Press

Since $|\zeta'_n| = d(z'_n, z_n) < r$, without loss of generality, assume that $\zeta'_n \to \zeta'_0 \in D$. By (2.3) and (2.1), we have

$$(3.19) |g_n(0)| = (1 - |z_n|^2)^{\alpha - 1} |f_n(z_n)| \le C_\alpha ||f_n||_{\mathcal{B}^\alpha} \le C_\alpha (1 + |f_n(0)|),$$

$$(3.20) |g'_n(0)| = (1 - |z_n|^2)^{\alpha} |f'_n(z_n)| \ge 1/2,$$

and

$$(3.21) |g'_n(\zeta)| = \frac{1}{1 - |\zeta|^2} (1 - |z_n|^2)^{\alpha - 1} (1 - |\phi_{z_n}(\zeta)|^2) |f'_n(\phi_{z_n}(\zeta))| \leq \frac{(1 + |\zeta|)^{\alpha - 1}}{(1 - |\zeta|)^{\alpha - 1} (1 - |\zeta|^2)} (1 - |\phi_{z_n}(\zeta)|^2)^{\alpha} |f'_n(\phi_{z_n}(\zeta))| \leq \frac{(1 + |\zeta|)^{\alpha - 1}}{(1 - |\zeta|)^{\alpha - 1} (1 - |\zeta|^2)} for \ \zeta \in D.$$

For *u_n*, by (2.1), (3.11), and (3.18), we have

(3.22)
$$|u_n(\zeta'_n)| = (1 - |z_n|^2)^{\beta - \alpha} |u(z'_n)|$$
$$\geq \frac{(1 - r)^{\beta - \alpha}}{(1 + r)^{\beta - \alpha}} (1 - |z'_n|^2)^{\beta - \alpha} |u(z'_n)| \geq \frac{\delta (1 - r)^{\beta - \alpha}}{(1 + r)^{\beta - \alpha}}$$

and

(3.23)
$$|u_{n}(\zeta)| \leq \frac{(1+|\zeta|)^{\beta-\alpha}}{(1-|\zeta|)^{\beta-\alpha}} (1-|\phi_{z_{n}}(\zeta)|^{2})^{\beta-\alpha} |u(\phi_{z_{n}}(\zeta))|$$
$$\leq \frac{M_{2}(1+|\zeta|)^{\beta-\alpha}}{(1-|\zeta|)^{\beta-\alpha}} \quad \text{for } \zeta \in D.$$

It follows from (2.3) that

$$(3.24) |u_n(0)g_n(0)| = (1 - |z_n|^2)^{\beta - 1} |u_n(z_n)g_n(z_n)| \le C_\beta ||uf_n||_{\mathcal{B}^\beta}$$

By (3.19), (3.21), and (3.23), g_n and u_n are bounded locally uniformly in *D*. Thus, by Montel's theorem, g_n and u_n contain locally uniformly convergent subsequences. Without loss of generality, we may assume that $g_n \to g_0$ and $u_n \to u_0$, as $n \to \infty$, locally uniformly in *D*. For a fixed *n*, letting $z = \phi_{z_n}(\zeta)$, by (2.1), we have

$$\begin{split} \|uf_n\|_{\mathcal{B}^{\beta}} &\geq (1-|z|^2)^{\beta} |(uf_n)'(z)| \\ &= (1-|\phi_{z_n}(\zeta)|^2)^{\beta} |(uf_n)'(\phi_{z_n}(\zeta))| \\ &= (1-|\phi_{z_n}(\zeta)|^2)^{\beta-1}(1-|\zeta|^2) |\left((u\circ\phi_{z_n})(f_n\circ\phi_{z_n})\right)'(\zeta)| \\ &\geq \frac{(1-|\zeta|^2)(1-|\zeta|)^{\beta-1}}{(1+|\zeta|)^{\beta-1}}(1-|z_n|^2)^{\beta-1} |\left((u\circ\phi_{z_n})(f_n\circ\phi_{z_n})\right)'(\zeta)| \\ &= \frac{(1-|\zeta|^2)(1-|\zeta|)^{\beta-1}}{(1+|\zeta|)^{\beta-1}} |\left(u_ng_n\right)'(\zeta)| \quad \text{for } \zeta \in D. \end{split}$$

Letting $n \to \infty$ in the above estimate, we see that u_0g_0 is a constant. Note that $u_0(0)g_0(0) = 0$ by (3.24). Thus, $u_0g_0 \equiv 0$. However, both u_0 and g_0 are not equal to 0 identically, since $|g'_0(0)| > 0$ and $|u_0(\zeta'_0)| > 0$ by (3.20) and (3.22), respectively. We arrive at a contradiction, and this shows (iii) \Rightarrow (i).

Remark. We indicate that condition (iii) in Theorem 3.2 can be replaced by an apparently weaker one:

(iii') there exist a $\delta > 0$ and a positive r < 1 such that for every point $z \in D$ there is a $z' \in D$ with the property that d(z', z) < r and $|u(z')| \ge \delta$.

This condition is the same as in Theorem 3.3 for $\beta = \alpha > 1$. In fact, (iii') and (iii) are equivalent if M_u is bounded on \mathcal{B}^{α} for some $\alpha \leq 1$. Let u be such a function. Then $u \in \mathcal{B}_0$ by (1.3') or (1.4). If (iii) does not hold, *i.e.*, there exists a sequence $z_n \to \partial D$ with $u(z_n) \to 0$, then for any $\delta > 0$ and 0 < r < 1, $|u(z)| < \delta$ for $d(z, z_n) < r$ and sufficiently n, since $\sup_{d(z,z_n) < r} |u(z) - u(z_n)| \to 0$ by Lemma 2.6. This means that (iii') is not true. This shows that (iii') \Rightarrow (iii) and they are equivalent. However, the following example shows that in the case $\alpha = \beta > 1$, the condition (iii) in Theorem 3.3 cannot be replaced by the stronger one: $\liminf_{z \to \partial D} |u(z)| > 0$.

Example. Let r = 1/4, $r_1 = 1/2$, $\Delta_1 = \{z : d(z, r_1) < r\}$, and r'_1, r''_1 be the left and right intersection points of $\partial \Delta_1$ and the positive real axis. Generally, when Δ_n, r_n, r'_n , and r''_n have been defined, we let $r_{n+1} > r_n$ be the point with $d(r''_n, r_{n+1}) = 2^{-2^{-n}}$, $\Delta_{n+1} = \{z : d(z, r_{n+1}) < r\}$, and r''_{n+1} be the intersection points of $\partial \Delta_{n+1}$ and the positive real axis. Then $\overline{\Delta}_n$, $n = 1, 2, \ldots$, are disjoint from one another. We define the function *u* by the Blaschke product $u(z) = \prod_{n=1}^{\infty} \frac{r_n - z}{1 - r_n z}$. If $z \in \partial \Delta_n$ for some *n*, then

$$\begin{aligned} |u(z)| &= \prod_{k=1}^{\infty} d(z, r_k) = \frac{1}{4} \prod_{k=1}^{n-1} d(z, r_k) \prod_{k=n+1}^{\infty} d(z, r_k) \\ &\geq \frac{1}{4} \prod_{k=1}^{n-1} d(r'_n, r_k) \prod_{k=n+1}^{\infty} d(r''_n, r_k) \geq \frac{1}{4} \prod_{k=1}^{n-1} d(r''_k, r_n) \prod_{k=n+1}^{\infty} d(r''_{k-1}, r_k) \\ &\geq \frac{1}{4} \prod_{k=1}^{n-1} d(r''_k, r_{k+1}) \prod_{k=n+1}^{\infty} d(r''_{k-1}, r_k) = \frac{1}{4} \prod_{k=1}^{\infty} d(r''_k, r_{k+1}) = \frac{1}{8}. \end{aligned}$$

This shows that $|u(z)| \ge 1/8$ for $z \in \bigcup_{n=1}^{\infty} \partial \Delta_n$. Let u_n be the partial product of the Blaschke product, $U_n = \bigcup_{k=1}^n \Delta_k$ and $U = \bigcup_{k=1}^{\infty} \Delta_k$. Then, for n = 1, 2, ...,by using the maximum principle to the function $1/u_n$, we see that $|u_n(z)| \ge 1/8$ for $z \in D \setminus U_n$, since $|u_n(z)| \ge |u(z)| \ge 1/8$ for $z \in \partial U_n$ and $|u_n(z)| = 1$ for $z \in \partial D$. Thus, $|u(z)| \ge 1/8$ for $z \in D \setminus U$ and, consequently, u satisfies condition (iii) in Theorem 3.3 with $\alpha = \beta > 1$, r = 1/4, and $\delta = 1/8$. Meanwhile, M_u is bounded on \mathbb{B}^{α} for $\alpha > 1$ since u satisfies (1.1') and (1.2') with $\beta = \alpha > 1$. Therefore, M_u is bounded below by Theorem 3.3. However, $\lim \inf_{z \to \partial D} |u(z)| = 0$. This shows that for $\alpha = \beta > 1$, condition (iii) in Theorem 3.3 cannot be replaced by the stronger one: $\lim \inf_{z \to \partial D} |u(z)| > 0$.

H. Chen and M. Zhang

References

- [1] L. V. Ahlfors, *Conformal invariants: topics in geometric function theory.* McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York, 1973.
- [2] J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions. J. Reine Angew. Math. 270(1974), 12–37.
- H. Chen, Boundedness from below of composition operators on the Bloch spaces. Sci. China Ser. A 46(2003), no. 6, 838–846. doi:10.1360/02ys0212
- [4] H. Chen and P. Gauthier, Boundedness from below of composition operators on α-Bloch spaces. Canad. Math. Bull. 51(2008), no. 2, 195–204. doi:10.4153/CMB-2008-021-2
- [5] P. Ghatage, J. Yan, and D. Zheng, Composition operators with closed range on the Bloch space. Proc. Amer. Math. Soc. 129(2000), no. 7, 2039–2044.
- S. Ohno, K. Stroethoff, and R. Zhao, doi:10.1090/S0002-9939-00-05771-3 Weighted composition operators between Bloch-type spaces. Rocky Mountain J. Math. 33(2003), no. 1, 191–215.
- K. Zhu, Bloch type spaces of analytic functions. Rocky Mountain J. Math. 23(1993), no. 3, 1143–1177. doi:10.1216/rmjm/1181072549

Department of Mathematics, Nanjing Normal University, Nanjing 210097, P.R. China e-mail: hhchen@njnu.edu.cn

Department of Mathematics, Southeast University, Nanjing 210096, P.R. China e-mail: zmz.wl@163.com

36