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Boundedness From Below of Multiplication
Operators Between α-Bloch Spaces

Huaihui Chen and Minzhu Zhang

Abstract. In this paper, the boundedness from below of multiplication operators between α-Bloch

spaces Bα, α > 0, on the unit disk D is studied completely. For a bounded multiplication operator

Mu : Bα → Bβ , defined by Mu f = u f for f ∈ Bα, we prove the following result:

(i) If 0 < β < α, or 0 < α ≤ 1 and α < β, Mu is not bounded below;

(ii) if 0 < α = β ≤ 1, Mu is bounded below if and only if lim infz→∂D |u(z)| > 0;

(iii) if 1 < α ≤ β, Mu is bounded below if and only if there exist a δ > 0 and a positive r < 1 such that for

every point z ∈ D there is a point z ′ ∈ D with the property d(z ′, z) < r and (1−|z ′|2)β−α|u(z ′)| ≥
δ, where d( · , · ) denotes the pseudo-distance on D.

1 Introduction

Let D be the unit disk in the complex plane C and let H(D) be the class of holomor-

phic functions on D. For α > 0, a function f ∈ H(D) is called an α-Bloch function if

the semi-norm satisfies

‖ f ‖α := sup
z∈D

(1 − |z|2)α| f ′(z)| < ∞,

and called a little α-Bloch function if limz→∂D(1 − |z|2)α| f ′(z)| = 0. The class of all

α-Bloch functions is called the α-Bloch space, denoted by B
α, which is a Banach space

with the norm ‖ f ‖Bα = | f (0)| + ‖ f ‖α, and the class of all little α-Bloch functions

is called the little α-Bloch space, denoted by B
α
0 . When α = 1, we obtain Bloch

functions, the Bloch space, and little Bloch space, and we denote B = B
1 and B0 =

B
1
0. For the general theory of Bloch functions and α-Bloch functions, see [2, 7].

For a holomorphic self-mapping φ of D and u ∈ H(D), the weighted composition

operator uCφ on H(D) is defined by uCφ f = u f ◦ φ for f ∈ H(D). If φ(z) ≡ z or

u ≡ 1, the weighted composition operator becomes the multiplication operator or

the composition operator and is denoted by Mu or Cφ, respectively. The boundedness

and compactness of weighted composition operators have been studied completely.

S. Ohno, K. Stroethoff, and R. Zhao [6] proved the following results.

Theorem 1.1 Let β > 0. If α > 1, then uCφ : B
α → B

β is bounded if and only if

(1.1) sup
z∈D

|u(z)|(1 − |z|2)β |φ ′(z)|

(1 − |φ(z)|2)α
< ∞
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and

(1.2) sup
z∈D

(1 − |z|2)β |u ′(z)|

(1 − |φ(z)|2)α−1
< ∞.

If α = 1 or 0 < α < 1, then (1.2) is replaced by

(1.3) sup
z∈D

(1 − |z|2)β |u ′(z)|
(

1 + log
1

1 − |φ(z)|2

)

< ∞

or

(1.4) sup
z∈D

(1 − |z|2)β |u ′(z)| < ∞,

respectively.

For a multiplication operator, (1.1), (1.2), (1.3) become

sup
z∈D

(1 − |z|2)β−α|u(z)| < ∞,(1.1 ′)

sup
z∈D

(1 − |z|2)β−α+1|u ′(z)| < ∞,(1.2 ′)

sup
z∈D

(1 − |z|2)β |u ′(z)|
(

1 + log
1

1 − |z|2

)

< ∞,(1.3 ′)

respectively.

For a ∈ D, let φa denote the Möbius transformation of D onto itself which ex-

changes 0 and a. We have φa = φ−1
a , i.e., φa ◦ φa is the identity mapping, and for

z ∈ D,

|φ ′
a(z)|

1 − |φa(z)|2
=

1

1 − |z|2
,(1.5)

(1 − |z|2)(1 − |a|2)

|1 − az|2
= 1 − |φa(z)|2.(1.6)

It follows from (1.5) that for f ∈ H(D), we have

(1.7) (1 − |z|2)|( f ◦ φa) ′(z)| =
(

1 − |φa(z)|2
)

| f ′(φa(z))| for z ∈ D.

Equation (1.7) is used in this paper quite often without mention.

The pseudo-distance on D is defined by

d(z1, z2) = |φz1
(z2)| =

|z1 − z2|

|1 − z1z2|
for z1, z2 ∈ D.

It is invariant under Möbius transformations of D onto itself. For a holomorphic

self-mapping φ, denote

τφ(z) =
(1 − |z|2|)φ ′(z)|

1 − |φ(z)|2
for z ∈ D,
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which is the dilation of φ with respect to the hyperbolic metric. The classical

Schwarz–Pick lemma asserts that τφ(z) ≤ 1 for z ∈ D (see [1]), and it follows from

(1.5) that τφa
(z) ≡ 1.

A bounded weighted composition operator uCφ : B
α → B

β is said to be bounded

below from B
α into B

β , if there exists a δ > 0 such that ‖uCφ f ‖Bβ ≥ δ‖ f ‖Bα for

f ∈ B
α. For the boundedness from below of composition operators on the Bloch

space B, the following result is known, see [3, 5].

Theorem 1.2 The following conditions are equivalent:

(i) Cφ is bounded below on B;

(ii) Cφ is bounded below on the subset {φa : a ∈ D} of B;

(iii) there exist a δ > 0 and an r ∈ (0, 1) such that for any w ∈ D there is a z ′ ∈ D

with the property that d(φ(z ′), w) ≤ r and τφ(z ′) ≥ δ .

Recently, the above result was generalized to composition operators on B
α for α > 1

by H. Chen and P. Gauthier [4].

Theorem 1.3 If α > 1, then Cφ : B
α → B

α is bounded below if and only if there exist

a δ > 0 and an r ∈ (0, 1) such that for any w ∈ D there is a z ′ ∈ D with the property

that d(φ(z ′), w) < r, τφ(z ′) ≥ δ and (1 − |z ′|2)/(1 − |φ(z ′)|2) ≥ δ.

In this paper, the boundedness from below of multiplication operators between

α-Bloch spaces is studied completely. We prove the following result. Let Mu : B
α →

B
β be a bounded multiplication operator. If 0 < β < α, or 0 < α ≤ 1 and α < β,

Mu is not bounded below. If 0 < α = β ≤ 1, Mu is bounded below if and only if

lim infz→∂D |u(z)| > 0. If 1 < α ≤ β, Mu is bounded below if and only if there exist

a δ > 0 and a positive r < 1 such that for every point z ∈ D there is a point z ′ ∈ D

with the property that d(z ′, z) < r and (1 − |z ′|2)β−α|u(z ′)| ≥ δ.

2 Some Lemmas

Lemma 2.1 For z1, z2 ∈ D, we have

(2.1)
1 − |z2|

2

1 − |z1|2
≤

1 + d(z1, z2)

1 − d(z1, z2)
.

Proof Applying (1.6), we have

1 − |z2|
2
= 1 − |φz1

(φz1
(z2))|2 =

(1 − |φz1
(z2)|2)(1 − |z1|

2)

|1 − z1φz1
(z2)|2

.

Thus,

1 − |z2|
2

1 − |z1|2
=

1 − |φz1
(z2)|2

|1 − z1φz1
(z2)|2

≤
1 − |φz1

(z2)|2

(1 − |φz1
(z2)|)2

=
1 + |φz1

(z2)|

1 − |φz1
(z2)|

.

Since |φz1
(z2)| = d(z1, z2), the lemma is proved.
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Lemma 2.2 Let f ∈ B
α. If α = 1, then

| f (z) − f (0)| ≤
‖ f ‖1

2
log

1 + |z|

1 − |z|

and

(2.2) | f (z)| ≤ ‖ f ‖B

(

1 + log
1

1 − |z|2

)

f or z ∈ D.

If α > 1, then

| f (z) − f (0)| ≤
Cα‖ f ‖α

(1 − |z|2)α−1

and

(2.3) | f (z)| ≤
Cα‖ f ‖Bα

(1 − |z|2)α−1
f or z ∈ D.

If 0 < α < 1, then

| f (z) − f (0)| ≤ Cα‖ f ‖α

and

(2.4) | f (z)| ≤ Cα‖ f ‖Bα f or z ∈ D.

Throughout this paper Cα denotes a positive constant depending on α only, which

may have different values at different places. Lemma 2.2 is easy to prove.

Lemma 2.3 For α > 0 and a ∈ D \ {0}, define

fα,a(z) =
1

αa

(1 − |a|2)

(1 − az)α
for z ∈ D.

Then

(2.5) 1 ≤ ‖ fα,a‖α ≤ 2|α−1|.

Proof If α > 1, for z ∈ D, by (1.6),

(1 − |z|2)α| f ′
α,a(z)| =

(1 − |z|2)α(1 − |a|2)

|1 − az|α+1

=
(1 − |z|2)α−1

|1 − az|α−1

(

1 − |φa(z)|2
)

≤ 2α−1 for z ∈ D.

By the same reasoning, if α ≤ 1, we have (1 − |z|2)α| f ′
α,a(z)| ≤ 21−α for z ∈ D. On

the other hand, (1 − |a|2)α| f ′
α,a(a)| = 1. This shows the lemma.
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Lemma 2.4 Let an ∈ D and an → ∂D. If 0 < α < 1, β > 0, and u ∈ B
β , then

(2.6) sup
z∈D

(1 − |z|2)β |u ′(z) fα,an
(z)| → 0 as n → ∞.

If u ∈ B
β
0 , (2.6) holds for α = 1 also.

Proof Let α < 1 and u ∈ B
β and denote hn(z) = (1 − |z|2)β |u ′(z) fα,an

(z)|. Then,

sup
z∈D

hn(z) ≤ ‖u‖β sup
z∈D

(1 − |an|
2)

α|an||1 − anz|α
≤

2

α|an|
(1 − |an|)

1−α‖u‖β .

Equation (2.6) follows. If u ∈ B
β
0 , for ǫ > 0, there exists an r ′ < 1 such that

(1−|z|2)β |u ′(z)| < ǫ for |z| > r ′. Note that | f1,an
(z)| < (1+ |an|)/|an| < 4 for z ∈ D,

if |an| > 1/2. Thus, sup|z|>r ′ hn(z) < 4ǫ for sufficiently large n. On the other hand,

sup|z|≤r ′ hn(z) → 0 as n → ∞, since f1,an
(z) → 0, as n → ∞, uniformly for |z| ≤ r ′.

This shows (2.6), since ǫ may be small arbitrarily. The lemma is proved.

Lemma 2.5 If 0 < α < 1, α < β and u ∈ B
β , then

(2.7) lim
z→∂D

(1 − |z|2)β−α|u(z)| = 0,

As a consequence of (2.7), for any sequence an ∈ D, which tends to ∂D, we have

(2.8) sup
z∈D

(1 − |z|2)β |u(z) f ′
α,an

(z)| → 0 as n → ∞.

If β > α = 1 and u ∈ B
β
0 , (2.7) and (2.8) also hold.

Proof Under the former assumption, (2.7) is a direct consequence of Lemma 2.2. To

prove (2.7) under the latter assumption, let ǫ > 0. There exists an r0 < 1 such that

(1 − |z|2)β |u ′(z)| < ǫ for |z| > r0. For z = reiθ with r > r0, we have

|u(z)| ≤ |u(r0eiθ)| +

∫ r

r0

|u ′(ρeiθ)|dρ ≤ |u(r0eiθ)| + ǫ

∫ r

r0

dρ

(1 − ρ2)β

≤ |u(r0eiθ)| +
ǫ

(β − 1)(1 − r)β−1
,

(1 − |z|2)β−1|u(z)| ≤ (1 − |z|2)β−1M +
2β−1ǫ

β − 1
,

where M = max{|u(r0eiθ)| : 0 ≤ θ ≤ 2π}. Thus,

lim sup
z→∂D

(1 − |z|2)β−1|u(z)| ≤
2β−1ǫ

β − 1
.

Equation (2.7) is proved, since ǫ may be arbitrarily small.
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It follows from (2.7) that for ǫ > 0, there exists an r ′ < 1 such that

(1 − |z|2)β−α|u(z)| < ǫ for |z| > r ′.

Denote kn(z) = (1 − |z|2)β |u(z) f ′
α,an

(z)|. Then,

sup
|z|>r ′

kn(z) ≤ ‖ fα,an
‖α sup

|z|>r ′
(1 − |z|2)β−α|u(z)| ≤ ǫ‖ fα,an

‖α ≤ 21−αǫ.

It is obvious that sup|z|≤r ′ kn(z) → 0 as n → ∞, since fα,an
(z) → 0, as n → ∞,

uniformly for |z| ≤ r ′. Equation (2.8) is proved since ǫ may be arbitrarily small. The

proof is complete.

Lemma 2.6 Let an ∈ D be a sequence such that an → ∂D. If u ∈ B0, then for any

positive number r < 1,

sup
d(z,an)≤r

|u(z) − u(an)| → 0 as n → ∞.

Proof Let r < 1 be given. For ǫ > 0, there exists an r ′ < 1 such that

(1 − |z|2)|u ′(z)| < ǫ for |z| > r ′. Since an → ∂D, there is an N such that the

pseudo-disk ∆n = {z : d(z, an) ≤ r} is contained in the annulus {z : r ′ < |z| < 1},

and consequently, (1 − |z|2)|u ′(z)| < ǫ for z ∈ ∆n provided that n > N. For n > N

and z ′ ∈ ∆n, letting un = u ◦ φan
and ζ ′

= φan
(z ′), we have

|u(z ′) − u(an)| = |un(ζ ′) − un(0)| =

∫ ζ ′

0

|u ′
n(ζ)||dζ|

≤
1

1 − |ζ ′|2

∫ ζ ′

0

(1 − |ζ|2)|u ′
n(ζ)||dζ|.

Note that |ζ ′| = d(z ′an) ≤ r. Meanwhile, φan
(ζ) ∈ ∆n and (1 − |ζ|2)|u ′

n(ζ)| =

(1 − |φan
(ζ)|2)|u ′(φan

(ζ))| < ǫ if |ζ| ≤ r. Thus, |u(z ′) − u(an)| ≤ rǫ
1−r2 . The lemma

is proved, since ǫ may be arbitrarily small.

Lemma 2.7 Let α ≥ 0, 0 < r < 1, u ∈ H(D), and an → ∂D as n → ∞. If

δn = sup
d(z,an)≤r

(1 − |z|2)α|u(z)| → 0 as n → ∞,

then

sup
d(z,an)≤r ′

(1 − |z|2)α+1|u ′(z)| → 0, as n → ∞,

for any r ′ < r.

Proof Let 0 < r ′ < r. For a fixed n, let ζ = φan
(z) for z ∈ D, and un = u ◦ φan

. If

|ζ| ≤ r, then d(z, an) ≤ r and, by (2.1),

|un(ζ)| = |u(z)| ≤
δn

(1 − |z|2)α
≤

δn

(1 − |an|2)α

(1 + r)α

(1 − r)α
.
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Thus, by Cauchy’s inequality,

|u ′
n(ζ)| ≤

δn

(1 − |an|2)α

(1 + r)α

(1 − r)α(r − r ′)
for |ζ| ≤ r ′.

Then, if d(z, an) ≤ r ′, we have |ζ| ≤ r ′ and, by (2.1),

(1 − |z|2)α+1|u ′(z)| = (1 − |z|2)α(1 − |ζ|2)|u ′
n(ζ)| ≤

δn(1 + r)2α

(1 − r)2α(r − r ′)
.

This shows the lemma.

Lemma 2.8 Let uCφ : B
α → B

β be bounded. If there exists a δ > 0 such that

‖uCφ f ‖Bβ ≥ δ‖ f ‖α holds for f ∈ B
α, then uCφ is bounded below from B

α into B
β .

Proof Suppose on the contrary that there is a sequence fn ∈ B
α such that

‖ fn‖Bα = 1 for n = 1, 2, . . . , and ‖uCφ fn‖Bβ → 0 as n → ∞. Then, by hypothesis,

‖ fn‖α → 0 and, consequently, | fn(0)| → 1 as n → ∞. Without loss of generality,

assume that fn(0) → 1 as n → ∞. By Lemma 2.2, we have fn → 1 and uCφ fn → u

locally uniformly in D as n → ∞. Thus, ‖u‖β ≤ limn→∞ ‖uCφ fn‖β = 0 and u ≡ 0,

which contradicts the assumption of the lemma. The proof is complete.

Lemma 2.9 Let α > 0, u ∈ H(D), u 6≡ 0, and fn ∈ H(D) for n = 1, 2, . . . . If

‖u fn‖Bα → 0 as n → ∞, then fn → 0, as n → ∞, locally uniformly in D.

Proof Since u 6≡ 0, for any positive r0 < 1, there exists an r ′ such that r0 < r ′ < 1

and u(z) 6= 0 for |z| = r ′. By Lemma 2.2, |u(z) fn(z)| ≤ Cα,r ′‖u fn‖Bα and, con-

sequently, | fn(z)| ≤ (Cα,r ′/δ)‖u fn‖Bα for n = 1, 2, . . . , and |z| = r ′, where δ =

min|z|=r ′ |u(z)| > 0. By maximum principle, this shows that fn → 0, as n → ∞,

uniformly for |z| ≤ r ′, since ‖u fn‖Bα → 0, as n → ∞, by hypothesis. The lemma is

proved.

3 Theorems and Their Proofs

It is easy to see that if 0 < β < α, Mu : B
α → B

β is not bounded unless u ≡ 0. Then,

Mu is obviously not bounded below. So we only need to consider the case 0 < α ≤ β.

Theorem 3.1 Let 0 < α ≤ 1 and α < β. If Mu : B
α → B

β is bounded, then Mu is

not bounded below from B
α into B

β .

Proof Let an ∈ D be a sequence such that an → ∂D as n → ∞, and let fn = fα,an
be

functions defined in Lemma 2.3. We have

(3.1) ‖u fn‖Bβ ≤ |u(0) fn(0)| + sup
z∈D

(hn(z) + kn(z)),

where hn(z) = (1 − |z|2)β |u ′(z)|| fn(z)| and kn(z) = (1 − |z|2)β |u(z)|| f ′
n (z)|. It is

obvious that u(0) fn(0) → 0 as n → ∞. By (1.3 ′) and (1.4), u ∈ B
β
0 if α = 1, and

u ∈ B
β if 0 < α < 1. Thus, using Lemmas 2.4 and 2.5 and Equations (2.6) and (2.8),

we obtain supz∈D(hn(z) + kn(z)) → 0 as n → ∞. It is proved that ‖u fn‖Bβ → 0 as

n → ∞, which shows that Mu is not bounded below since ‖ fn‖Bα ≥ 1, by (2.5), for

n = 1, 2, . . . . The theorem is proved.
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Theorem 3.2 Let 0 < α ≤ 1 and Mu : B
α → B

α be bounded. Then, the following

conditions are equivalent:

(i) Mu is bounded below on B
α;

(ii) Mu is bounded below on the subset { fα,a : a ∈ D \ {0}} of B
α, where fα,a denote

functions defined in Lemma 2.3;

(iii) lim infz→∂D |u(z)| > 0.

Proof Since Mu is bounded on B
α, we have u ∈ B

α ⊂ B0 if α < 1 by (1.4), and

u ∈ B0 if α = 1 by (1.3 ′), and

(3.2) sup
z∈D

|u(z)| = M < ∞

for 0 < α ≤ 1 by (1.1 ′). It is obvious that (i) implies (ii).

Assume that (iii) does not hold, i.e., there exists a sequence an → ∂D such that

u(an) → 0 as n → ∞. For n = 1, 2, . . . , let fn = fα,an
. We have (3.1) again with the

same definition of hn and kn as before and u(0) fn(0) → 0 as n → ∞. By Lemma 2.4,

supz∈D hn(z) → 0 as n → ∞.

To estimate kn(z), let ǫ > 0 be given. We have

(1 − |z|2)α| f ′
n (z)| =

(1 − |z|2)α(1 − |an|
2)

|1 − anz|α+1

=
(1 − |z|2)α(1 − |an|

2)α

|1 − anz|2α

(1 − |an|
2)1−α

|1 − anz|1−α

=
(

1 − |φan
(z)|2

)α (1 − |an|
2)1−α

|1 − anz|1−α
,

(3.3)

where the identity (1.6) is used. Let r ′ = (1 − ǫ1/α)1/2. By (3.3) and (3.2),

(3.4) kn(z) ≤ 21−αMǫ if d(z, an) = |φan
(z)| ≥ r ′.

On the other hand, by Lemma 2.6,

λn = sup
d(z,an)≤r ′

|u(z)| ≤ |u(an)| + sup
d(z,an)≤r ′

|u(z) − u(an)| → 0 as n → ∞,

since u ∈ B0. Thus,

(3.5) sup
d(z,an)≤r ′

kn(z) ≤ λn‖ fn‖α ≤ 21−αλn → 0 as n → ∞.

Combining (3.4) and (3.5), we see that supz∈D kn(z) → 0 as n → ∞, since ǫ may

be arbitrarily small. We have proved that the terms at the right side of (3.1) are all

convergent to 0 as n → ∞. Therefore, ‖u fn‖Bβ → 0 as n → ∞, which contradicts

(ii) for ‖ fn‖α ≥ 1 by (2.5). The implication (ii)⇒(iii) is proved.
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Now assume that (iii) holds. We want to prove (i). Denote

δ = lim inf
z→∂D

|u(z)| > 0.

Suppose on the contrary that Mu is not bounded below on B
α. Then, by Lemma 2.8,

there exists a sequence fn ∈ B
a such that ‖ fn‖α = 1 for n = 1, 2, . . . , and

‖u fn‖Bα → 0 as n → ∞. By Lemma 2.9, fn → 0, as n → ∞, locally uniformly

in D. Let zn ∈ D be a sequence such that (1 − |zn|
2)α| f ′

n (zn)| ≥ 1/2 for n = 1, 2, . . . .

Then zn → ∂D as n → ∞.

Let r ′ be close to 1 so that |u(z)| ≥ δ/2 for r ′ < |z| < 1. By (2.2) and (2.4), for

n = 1, 2, . . . , and r ′ < |z| < 1, we have

(3.6) | fn(z)| ≤
2‖u fn‖B

δ

(

1 + log
1

1 − |z|2

)

or

(3.6 ′) | fn(z)| ≤
Cα‖u fn‖Bα

δ
,

according to α = 1 or α < 1.

For sufficiently large n, we have |zn| > r ′, |u(zn)| ≥ δ/2, and

(3.7) (1 − |zn|
2)α|u(zn)|| f ′

n (zn)| ≥
δ

4
.

If α < 1, then

(3.8) (1 − |zn|
2)α|u ′(zn)|| fn(zn)| → 0 as n → ∞,

since u ∈ B
α and fn → 0, as n → ∞, uniformly on D by (3.6 ′). In the case that

α = 1, by (1.3 ′),

M = sup
z∈D

(1 − |z|2)|u ′(z)|
(

1 + log
1

1 − |z|2

)

< ∞.

Thus, for sufficiently large n, by (3.6),

(1 − |zn|
2)|u ′(zn)|| fn(zn)| ≤

2‖u fn‖B

δ
(1 − |zn|

2)α|u ′(zn)|
(

1 + log
1

1 − |zn|2

)

≤
2M‖u fn‖B

δ
.

This shows that (3.8) holds also for α = 1. However,

(3.9) ‖u fn‖Bα ≥ (1 − |zn|
2)α|u(zn)|| f ′

n (zn)| − (1 − |zn|
2)α|u ′(zn)|| fn(zn)|.

It follows from (3.9), (3.7), and (3.8) that ‖u fn‖Bα ≥ δ/8 for sufficiently large n. We

arrive at a contradiction, and the implication (iii)⇒(i) is proved. This completes the

proof of the theorem.
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Theorem 3.3 Let β ≥ α > 1 and Mu : B
α → B

β be bounded. Then, the following

conditions are equivalent:

(i) Mu is bounded below from B
α into B

β ;

(ii) Mu is bounded below from the subset { fα,a : a ∈ D \{0}} of B
α into B

β with fα,a

as in Lemma 2.3;

(iii) there exist a δ > 0 and a positive r < 1 such that for every point z ∈ D there is a

z ′ ∈ D with the property that d(z ′, z) < r and (1 − |z ′|2)β−α|u(z ′)| ≥ δ.

Proof Since Mu is bounded, by (1.2 ′) and (1.1 ′), we have

sup
z∈D

(1 − |z|2)β−α+1|u ′(z)| = M1 < ∞,(3.10)

sup
z∈D

(1 − |z|2)β−α|u(z)| = M2 < ∞.(3.11)

It is obvious that (i) implies (ii).

Assume that (iii) does not hold, i.e., there exist sequences rn → 1 and an → ∂D

such that

(3.12) δn = sup
d(z,an)≤rn

(1 − |z|2)β−α|u(z)| → 0 as n → ∞.

Then, using Lemma 2.7, we see that for any r ′ < 1

(3.13) sup
d(z,an)≤r ′

(1 − |z|2)β−α+1|u ′(z)| → 0 as n → ∞.

Assume that |an| > 1/2 and let fn = fα,an
for n = 1, 2, . . . . Then, we have (3.1)

again with the same definition of hn and kn as before and u(0) fn(0) → 0 as n → ∞.

Let z ∈ D. By (1.6), we have

hn(z) =
(

1 − |z|2
)β−α+1

|u ′(z)|
(1 − |z|2)α−1(1 − |an|

2)

α|an||1 − anz|α

≤

(

1 − |z|2
)β−α+1

|u ′(z)|

α|an|

(1 − |z|2)α−1−λ(1 − |an|
2)1−λ

|1 − anz|α−2λ

(

1 − |φan
(z)|2

)λ

≤
2α+1−2λ

α

(

1 − |z|2
)β−α+1

|u ′(z)|
(

1 − |φan
(z)|2

)λ
,

where λ = min{α − 1, 1}. Consequently, by (3.10),

hn(z) ≤
2α+1−2λ

α

(

1 − |z|2
)β−α+1

|u ′(z)| and(3.14)

hn(z) ≤
2α+1−2λM1

α

(

1 − |φan
(z)|2

)λ
.(3.15)
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Similarly, for kn(z), we have

kn(z) = (1 − |z|2)β−α|u(z)| ·
(1 − |z|2)α(1 − |an|

2)

|1 − anz|α+1

≤ (1 − |z|2)β−α|u(z)| ·
(1 − |z|2)α−1

|1 − anz|α−1

(

1 − |φan
(z)|2

)

≤ 2α−1(1 − |z|2)β−α|u(z)|
(

1 − |φan
(z)|2

)

,

≤ 2α−1(1 − |z|2)β−α|u(z)|,

(3.16)

and, by (3.11),

(3.17) kn(z) ≤ 2α−1M2

(

1 − |φan
(z)|2

)

.

For ǫ > 0, let r ′ = (1 − ǫ)1/2. If d(z, an) = |φan
(z)| > r ′, by (3.15) and (3.17), we

have

hn(z) < 2α+1−2λM1ǫ
λ/α and kn(z) < 2α−1M2ǫ.

On the other hand, by (3.12), (3.13), (3.14), and (3.16),

sup
d(z,an)≤r ′

(hn(z) + kn(z)) → 0 as n → ∞.

Now, it is proved that

sup
z∈D

(hn(z) + kn(z)) → 0 as n → ∞,

since ǫ may be arbitrarily small. We have proved that all of the terms in the right side

of the inequality (3.1) tend to 0 as n → ∞. So, ‖u fn‖Bβ → 0 as n → ∞, which

means that (ii) does not hold. This shows the implication (ii)⇒(iii).

Now, we will proceed to prove (iii)⇒(i). Assume that (iii) holds. We want to prove

(i). Suppose on the contrary that Mu is not bounded below from B
α into B

β . Then,

by Lemma 2.8, there exists a sequence fn ∈ B
α such that ‖ fn‖α = 1 for n = 1, 2, . . . ,

and ‖u fn‖Bβ → 0 as n → ∞. By Lemma 2.9, fn → 0, as n → ∞, locally uniformly

in D. Let zn ∈ D be a sequence such that (1 − |zn|
2)α| f ′

n (zn)| ≥ 1/2 for n = 1, 2, · · · .

Then zn → ∂D as n → ∞.

Let δ > 0 and r < 1 be the number in (iii). For n = 1, 2, · · · , let zn ∈ ∆n be a

point such that d(zn, z ′n) < r and

(3.18) (1 − |z ′n|
2)β−α|u(z ′n)| ≥ δ,

and let

ζ ′
n = φzn

(z ′n), un = (1 − |zn|
2)β−αu ◦ φzn

, gn = (1 − |zn|
2)α−1 fn ◦ φzn

.
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Since |ζ ′
n| = d(z ′n, zn) < r, without loss of generality, assume that ζ ′

n → ζ ′
0 ∈ D. By

(2.3) and (2.1), we have

|gn(0)| = (1 − |zn|
2)α−1| fn(zn)| ≤ Cα‖ fn‖Bα ≤ Cα(1 + | fn(0)|),(3.19)

|g ′
n(0)| = (1 − |zn|

2)α| f ′
n (zn)| ≥ 1/2,(3.20)

and

|g ′
n(ζ)| =

1

1 − |ζ|2
(1 − |zn|

2)α−1(1 − |φzn
(ζ)|2)| f ′

n (φzn
(ζ))|

≤
(1 + |ζ|)α−1

(1 − |ζ|)α−1(1 − |ζ|2)
(1 − |φzn

(ζ)|2)α| f ′
n (φzn

(ζ))|

≤
(1 + |ζ|)α−1

(1 − |ζ|)α−1(1 − |ζ|2)
for ζ ∈ D.

(3.21)

For un, by (2.1), (3.11), and (3.18), we have

|un(ζ ′
n)| = (1 − |zn|

2)β−α|u(z ′n)|

≥
(1 − r)β−α

(1 + r)β−α
(1 − |z ′n|

2)β−α|u(z ′n)| ≥
δ(1 − r)β−α

(1 + r)β−α

(3.22)

and

|un(ζ)| ≤
(1 + |ζ|)β−α

(1 − |ζ|)β−α
(1 − |φzn

(ζ)|2)β−α|u(φzn
(ζ))|

≤
M2(1 + |ζ|)β−α

(1 − |ζ|)β−α
for ζ ∈ D.

(3.23)

It follows from (2.3) that

(3.24) |un(0)gn(0)| = (1 − |zn|
2)β−1|un(zn)gn(zn)| ≤ Cβ‖u fn‖Bβ .

By (3.19), (3.21), and (3.23), gn and un are bounded locally uniformly in D. Thus,

by Montel’s theorem, gn and un contain locally uniformly convergent subsequences.

Without loss of generality, we may assume that gn → g0 and un → u0, as n → ∞,

locally uniformly in D. For a fixed n, letting z = φzn
(ζ), by (2.1), we have

‖u fn‖Bβ ≥ (1 − |z|2)β |(u fn) ′(z)|

= (1 − |φzn
(ζ)|2)β |(u fn) ′(φzn

(ζ))|

= (1 − |φzn
(ζ)|2)β−1(1 − |ζ|2)|

(

(u ◦ φzn
)( fn ◦ φzn

)
) ′

(ζ)|

≥
(1 − |ζ|2)(1 − |ζ|)β−1

(1 + |ζ|)β−1
(1 − |zn|

2)β−1|
(

(u ◦ φzn
)( fn ◦ φzn

)
) ′

(ζ)|

=
(1 − |ζ|2)(1 − |ζ|)β−1

(1 + |ζ|)β−1
|
(

ungn

) ′
(ζ)| for ζ ∈ D.
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Letting n → ∞ in the above estimate, we see that u0g0 is a constant. Note that

u0(0)g0(0) = 0 by (3.24). Thus, u0g0 ≡ 0. However, both u0 and g0 are not equal to

0 identically, since |g ′
0(0)| > 0 and |u0(ζ ′

0)| > 0 by (3.20) and (3.22), respectively. We

arrive at a contradiction, and this shows (iii)⇒(i).

Remark. We indicate that condition (iii) in Theorem 3.2 can be replaced by an ap-

parently weaker one:

(iii ′) there exist a δ > 0 and a positive r < 1 such that for every point z ∈ D there is

a z ′ ∈ D with the property that d(z ′, z) < r and |u(z ′)| ≥ δ.

This condition is the same as in Theorem 3.3 for β = α > 1. In fact, (iii′) and (iii) are

equivalent if Mu is bounded on B
α for some α ≤ 1. Let u be such a function. Then

u ∈ B0 by (1.3 ′) or (1.4). If (iii) does not hold, i.e., there exists a sequence zn → ∂D

with u(zn) → 0, then for any δ > 0 and 0 < r < 1, |u(z)| < δ for d(z, zn) < r

and sufficiently n, since supd(z,zn)<r |u(z) − u(zn)| → 0 by Lemma 2.6. This means

that (iii′) is not true. This shows that (iii′) ⇒ (iii) and they are equivalent. However,

the following example shows that in the case α = β > 1, the condition (iii) in

Theorem 3.3 cannot be replaced by the stronger one: lim infz→∂D |u(z)| > 0.

Example. Let r = 1/4, r1 = 1/2, ∆1 = {z : d(z, r1) < r}, and r ′1, r ′ ′1 be the left and

right intersection points of ∂∆1 and the positive real axis. Generally, when ∆n, rn, r ′n,

and r ′ ′n have been defined, we let rn+1 > rn be the point with d(r ′ ′n , rn+1) = 2−2−n

,

∆n+1 = {z : d(z, rn+1) < r}, and r ′n+1, r ′ ′n+1 be the intersection points of ∂∆n+1 and

the positive real axis. Then ∆n, n = 1, 2, . . . , are disjoint from one another. We

define the function u by the Blaschke product u(z) =
∏∞

n=1
rn−z

1−rnz
. If z ∈ ∂∆n for

some n, then

|u(z)| =

∞
∏

k=1

d(z, rk) =
1

4

n−1
∏

k=1

d(z, rk)
∞
∏

k=n+1

d(z, rk)

≥
1

4

n−1
∏

k=1

d(r ′n, rk)
∞
∏

k=n+1

d(r ′ ′n , rk) ≥
1

4

n−1
∏

k=1

d(r ′ ′k , rn)
∞
∏

k=n+1

d(r ′ ′k−1, rk)

≥
1

4

n−1
∏

k=1

d(r ′ ′k , rk+1)
∞
∏

k=n+1

d(r ′ ′k−1, rk) =
1

4

∞
∏

k=1

d(r ′ ′k , rk+1) =
1

8
.

This shows that |u(z)| ≥ 1/8 for z ∈
⋃∞

n=1 ∂∆n. Let un be the partial product of

the Blaschke product, Un =
⋃n

k=1 ∆k and U =
⋃∞

k=1 ∆k. Then, for n = 1, 2, . . . ,

by using the maximum principle to the function 1/un, we see that |un(z)| ≥ 1/8 for

z ∈ D \ Un, since |un(z)| ≥ |u(z)| ≥ 1/8 for z ∈ ∂Un and |un(z)| = 1 for z ∈ ∂D.

Thus, |u(z)| ≥ 1/8 for z ∈ D \ U and, consequently, u satisfies condition (iii) in

Theorem 3.3 with α = β > 1, r = 1/4, and δ = 1/8. Meanwhile, Mu is bounded

on B
α for α > 1 since u satisfies (1.1 ′) and (1.2 ′) with β = α > 1. Therefore, Mu

is bounded below by Theorem 3.3. However, lim infz→∂D |u(z)| = 0. This shows that

for α = β > 1, condition (iii) in Theorem 3.3 cannot be replaced by the stronger

one: lim infz→∂D |u(z)| > 0.
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