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Abstract

The simulation of distributions of financial assets is an important issue for financial
institutions. If risk measures are evaluated for a simulated distribution instead of the
model-implied distribution, the errors in the risk measurements need to be analyzed. For
distribution-invariant risk measures which are continuous on compacts, we employ the
theory of large deviations to study the probability of large errors. If the approximate risk
measurements are based on the empirical distribution of independent samples, then the
rate function equals the minimal relative entropy under a risk measure constraint. We
solve this minimization problem explicitly for shortfall risk and average value at risk.
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1. Introduction

The portfolios of banks consist in financial assets such as stocks, bonds, credits, and options.
The quantification of the risk associated with these assets is of crucial importance, since banks
need to manage their risks and are obliged to respect regulatory constraints. This requires both
suitable models of portfolio holdings and appropriate numerical measures of risk. In practice,
financial assets are frequently modeled as real-valued random variables on some underlying
probability space. In such a setting, the modeling assumptions determine in particular the
distributions of the financial assets. A standard approach taken to measure risk is to use certain
functionals of these distributions, namely static, distribution-invariant risk measures.

A theory of such risk measures is already well developed. Nevertheless, the implementation
of risk measurement requires further analysis. Model distributions are often not directly
tractable, but can only be simulated using Monte Carlo methods. If risk measures are evaluated
for the simulated distributions instead of the model-implied distributions, actual risk measure-
ments deviate from the model-implied risk and the errors in these measurements need to be
analyzed.

In this paper we employ the theory of large deviations to study these errors for various
risk measures. We investigate large deviation bounds for a broad class of static risk measures.
Specific examples include shortfall risk and average value at risk. For an axiomatic analysis of
coherent risk measures, we refer the reader to Artzner et al. (1999); for extensions to general
probability spaces and convex risk measures, see Delbaen (2002), Föllmer and Schied (2002),
(2004, pp. 152–220), and Frittelli and Rosazza (2002).

The paper is structured as follows. In a first step, we describe how the errors in the
risk measurements and large deviations are related. In Section 2 we investigate conditions
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Distribution-invariant risk measures 17

under which a large deviation principle (LDP) holds for risk measurements. An LDP can
be derived from a contraction principle if the risk measure has a certain regularity property,
namely continuity on compacts (i.e. compact sets). This notion is introduced in Section 2,
and a contraction principle for the corresponding class of risk measures is formulated. In
Section 3 we analyze the notion of continuity on compacts. In particular, we characterize
coherent, distribution-invariant risk measures which are continuous on compacts. Examples
include average value at risk and shortfall risk. Further properties of these risk measures were
discussed by Föllmer and Schied (2004, pp. 152–220), Weber (2006), Giesecke et al. (2005),
and Dunkel and Weber (2005).

For risk measurements based on empirical distributions, the rate function of the LDP can be
characterized more explicitly. For independent samples, the rate function of the large deviations
of the risk measurements is given as the minimal relative entropy under a risk measure constraint.
We calculate the minimal relative entropy explicitly for both shortfall risk and average value at
risk in Sections 4 and 5, based on general methods of Csiszár (1975).

For a shortfall risk constraint, the calculation of the minimal relative entropy only involves
a linear constraint. A solution to the problem is obtained in Section 4. In the case of average
value at risk, which we consider in Section 5, the analysis is more complicated. Our solution
is based on a particular representation of average value at risk as the expected loss with respect
to the worst-case measure which can be computed by means of the Neyman–Pearson lemma
(see (5.1)). The constraint set of the minimization problem is in general not convex, and the
calculation is quite involved. Necessary and sufficient conditions for the existence of a solution
are formulated in terms of the parameters of the problem. For average value at risk, we solve
the original problem in two steps. The first step is to minimize the relative entropy under a
linear constraint. Minimizing densities and minimal relative entropies are explicitly calculated.
The second step is to solve a minimization problem with three varying parameters.

2. Large deviation bounds

Throughout the paper, we assume that (�,F ,P) is a rich probability space, i.e. a probability
space on which a random variable with a continuous distribution exists. We recall the following
definition.

Definition 2.1. A mapping ρ : L∞(�,F ,P) → R is called a distribution-invariant risk mea-
sure if it satisfies the following conditions for all X, Y ∈ L∞.

• If X ≤ Y then ρ(X) ≥ ρ(Y ) (monotonicity).

• If m ∈ R then ρ(X +m) = ρ(X)−m (the translation property).

• If P ◦X−1 = P ◦Y−1 then ρ(X) = ρ(Y ) (distribution invariance).

We denote by M1,c ≡ M1,c(R) the space of Borel probability measures on R with compact
support. We endow M1,c with the weak topology. A distribution-invariant risk measure ρ
defines a functional ρ′ : M1,c → R by ρ′(µ) = ρ(X) for some X ∈ L∞ with distribution
L(X) := P ◦X−1 = µ. For more details, see Weber (2006), (2004).

We consider the following situation. Assume that we are interested in the risk of a fi-
nancial asset X ∈ L∞ with distribution µ = L(X) . Suppose that the distribution µ is
not directly tractable, but that samples of µ can be generated. For example, let (Xi) be a
sequence of independent random variables on the probability space (�,F ,P), with common
distribution µ. The empirical distribution of the first n samples, X1, X2, . . . , Xn, is then given
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18 S. WEBER

by the random measure

µn = 1

n

n∑
i=1

δXi , (2.1)

where δx denotes the Dirac measure placing all mass at x ∈ R. Thus, (µn) converges P-almost
surely (P-a.s.) to µ in the weak topology.

A naive Monte Carlo procedure for simulating ρ(X) is to calculate ρ′(µn), n ∈ N. A
possible measure of the quality of the nth approximation is the probability that the error of the
simulated risk deviates from the true risk of X by more than a given bound ε > 0, i.e.

P(|ρ′(µn)− ρ(X)| > ε).

If ρ is regular enough, asymptotic upper and lower exponential bounds for these error proba-
bilities can be obtained from the theory of large deviations.

Definition 2.2. A distribution-invariant risk measure ρ : L∞ → R is called continuous on
compacts if, for all compact sets K ⊆ R, the restriction of ρ′ to M1(K) is continuous. Here
M1(K) denotes the space of probability measures supported in K .

The notion of continuity on compacts is weaker than continuity of risk measures with respect
to the weak topology. For risk measures which are continuous on compacts, an LDP is an
immediate consequence of the contraction principle.

Proposition 2.1. Let ρ be a distribution-invariant risk measure that is continuous on compacts.
Assume that (µn) ⊆ M1,c is a sequence of random measures that satisfies an LDP with rate
sequence (γn) and rate function I . Additionally, assume that there exists a compact setK ⊆ R

such that suppµn ⊆ K for all n. Then (ρ′(µn))n satisfies an LDP with rate sequence (γn) and
rate function

J (x) := inf{I (ν) : ν ∈ M1,c, x = ρ′(ν)}.
Proof. The proposition is an immediate consequence of the contraction principle for Haus-

dorff spaces (see Dembo and Zeitouni (1998, Theorem 4.2.1)).

Remark 2.1. Value at risk is not continuous on compacts. Nevertheless, it is possible to derive
upper large deviation bounds by direct calculations; see, e.g. Fu et al. (2003) and Weber (2004).

We now specialize to the case of empirical measuresµn as defined in (2.1). For independent
samples, the sequence (µn)n converges P-a.s. to µ. Thus, a strong law of large numbers holds
for the risk measurements. At the same time, we have the following LDP for the risk measures.

Corollary 2.1. Let ρ be continuous on compacts. Then (ρ′(µn))n satisfies an LDP with rate n
and rate function

J (x) = inf{H(ν|µ) : ν ∈ M1,c, x = ρ′(ν)}.
HereH(ν|µ) denotes the relative entropy of the probability measure ν with respect toµ, defined
by

H(ν|µ) :=
{∫

f log f dµ if f := dν/dµ exists,

∞ otherwise.

Proof. The proof is a corollary of Sanov’s theorem (see, e.g. Dembo and Zeitouni (1998,
Theorem 6.2.10)) and the contraction principle for empirical measures stated in Proposition 2.1.
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3. Continuity on compacts

In this section we characterize risk measures which are continuous on compacts and thus
satisfy the contraction principle of the preceding section.

The following theorem is elementary, but allows us to identify examples of risk measures
which are continuous on compacts. We recall that a risk measure ρ is said to be continuous from
above if Xn ↘ X P-a.s. implies that ρ(Xn) ↗ ρ(X). Analogously, ρ is said to be continuous
from below if Xn ↗ X P-a.s. implies that ρ(Xn) ↘ ρ(X).

Theorem 3.1. Let ρ be a distribution-invariant risk measure. The following conditions are
equivalent.

1. ρ is continuous on compacts.

2. ρ is continuous both from above and from below.

3. ρ is continuous for bounded sequences, i.e. for every bounded sequence (Xn) converging
P-a.s. to some X, it holds that limn→∞ ρ(Xn) = ρ(X).

Proof. Condition 2 implies condition 3. Let (Xn) be bounded and P-a.s. convergent to X.
Then (supm≥n Xm)n and (infm≥n Xm)n converge to X from above and below, respectively.
Thus,

ρ(X) = lim
n
ρ
(

sup
m≥n

Xm

)
≤ liminf

n→∞
ρ(Xn) ≤ lim sup

n→∞
ρ(Xn) ≤ lim

n
ρ
(

inf
m≥nXn

)
= ρ(X).

Condition 3 implies condition 2. If (Xn) converges to X from below or from above, then
(Xn) is bounded. This implies the claim.

Condition 1 implies condition 3. Let (Xn) be a bounded sequence converging P-a.s. to
some X. Then there exists a compact K ⊆ R such that Xn,X ∈ K , n ∈ N, P-a.s. Clearly
L(Xn),L(X) ∈ M1(K) and L(Xn) → L(X). Thus, ρ(Xn) = ρ′(L(Xn)) → ρ′(L(X)) =
ρ(X).

Condition 3 implies condition 1. Let K ⊆ R be a compact set and assume that µn ⇒ µ for
µn,µ ∈ M1(K) (where ‘⇒’ denotes weak convergence of probability measures). Denote by
Fn and F the distribution functions of µn and µ, respectively. Since (�,F ,P) is rich, there
exists a random variableZ with L(Z) = unif[0, 1]. DefineXn := F−1

n (Z) andX := F−1(Z),
where F−1

n and F−1 are the right-continuous inverses of Fn and F , respectively. Observe that
Xn → X P-a.s. as n → ∞. Moreover, Xn,X ∈ K P-a.s. Hence,

ρ′(µn) = ρ(Xn) → ρ(X) = ρ′(µ). (3.1)

This completes the proof.

We provide examples for risk measures which are continuous on compacts. The current
industry standard, value at risk, is not continuous on compacts. In contrast, the coherent risk
measure average value at risk is continuous on compacts. We recall that a risk measure is
coherent if for X, Y ∈ L∞ it satisfies both

• ρ(αX + (1 − α)Y ) ≤ αρ(X)+ (1 − α)ρ(Y ) for α ∈ [0, 1] (convexity) and

• ρ(αX) = αρ(X) for α ≥ 0 (positive homogeneity).
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20 S. WEBER

Example 3.1. The value at risk at level λ ∈ (0, 1) is defined by

VaRλ(X) = inf{m ∈ R : P(m+X < 0) ≤ λ}.
In order to see that value at risk is not continuous on compacts, we consider the following
example. Let the probability space (�,F ,P) be given by the unit interval [0, 1] and the
Lebesgue measure. For 1/n < 1 − λ, define Xn = 1[λ+1/n,1]. Then Xn ↗ X := 1[λ,1] as
n → ∞. However, VaRλ(Xn) = 0 does not converge to VaRλ(X) = −1 as n → ∞.

Example 3.2. The average value at risk at level λ ∈ (0, 1] is defined by

AVaRλ(X) = 1

λ

∫ λ

0
VaRγ (X) dγ.

Average value at risk is continuous on compacts.
According to Föllmer and Schied (2004, Theorem 4.47), AVaRλ is continuous from below.

Furthermore, by Föllmer and Schied (2004, Theorem 4.31), AVaRλ is continuous from above.
Thus, AVaR is continuous on compacts, by Theorem 3.1.

Average value at risk is an important building block in the construction of coherent, distri-
bution-invariant risk measures. We quote the following result of Kusuoka (2001).

Theorem 3.2. On a rich probability space, a coherent, distribution-invariant risk measure ρ
is continuous from above if and only if

ρ(X) = sup
µ∈M

∫
(0,1]

AVaRλ(X)µ(dλ) (3.2)

for some set M ⊆ M1((0, 1]). Here M1((0, 1]) denotes the space of Borel probability measures
on (0, 1]. The assumption of continuity from above can be dropped if the underlying probability
space is standard; see Jouini et al. (2006).

This representation of coherent, distribution-invariant risk measures provides a further
perspective on risk measures which are continuous on compacts; see Theorem 3.3 and Corol-
lary 3.2, below.

We denote by AVaR0(X) := ‖X−‖ the essential infimum of X. Motivated by Theorem 3.2,
we introduce the following notation. For a measure µ ∈ M1([0, 1]), i.e. a Borel probability
measure on [0, 1], we write

ρµ(X) :=
∫

[0,1]
AVaRλ(X)µ(dλ), X ∈ L∞.

For coherent risk measures we can now state necessary and sufficient conditions for conti-
nuity on compacts.

Theorem 3.3. For a coherent, distribution-invariant risk measure ρ, the following properties
are equivalent.

1. ρ is continuous from below.

2. ρ is continuous on compacts.

3. ρ is continuous in the Mackey topology τ(L∞, L1).
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4. There exists a law-invariant set D ⊆ L1 of densities representing ρ such that the
supremum is attained as follows:

ρ(X) = max
h∈D

E[−hX] for all X ∈ L∞.

5. There exists a σ(L1, L∞)-compact, law-invariant set D ⊆ L1 of densities representing
ρ, such that

ρ(X) = sup
h∈D

E[−hX] for all X ∈ L∞.

6. The maximal representative set,

Dmax :=
{
h ∈ L1 : ‖h‖L1 = 1, h ≥ 0, sup

X∈L∞
[E[−hX] − ρ(X)] = 0

}
,

is σ(L1, L∞)-compact.

7. There exists a law-invariant set D ⊆ L1 of densities representing ρ such that the
supremum is attained as follows:

ρ(X) = max
h∈D

∫ 1

0
qh(t)q−X(t) dt for all X ∈ L∞.

Here qY denotes the quantile function of a random variable Y .

8. There exists a set M ⊆ M((0, 1]) of probability measures representing ρ such that the
supremum is attained as follows:

ρ(X) = max
µ∈M⊆M1((0,1])

∫
(0,1]

AVaRγ (X)µ(dγ ) for all X ∈ L∞.

In properties 4, 5, and 7, the set D may be chosen to be convex. The set Dmax in property 6
is always convex.

Proof. Property 1 is equivalent to property 2. This follows from Föllmer and Schied (2004,
Corollary 4.35 and Theorem 4.31) and Theorem 3.1.

Property 5 implies property 1, which is equivalent to property 4. Except for the law
invariance of D in property 4, this is an immediate consequence of Föllmer and Schied (2004,
Corollary 4.35). We show that D can be chosen to be law invariant. By Föllmer and Schied
(2004, Corollary 4.34), we may choose D to be the maximal representative set of densities,

Dmax = {h ∈ L1 : ‖h‖L1 = 1, h ≥ 0, αmin(h) = 0},
defined in terms of the minimal penalty function,

αmin(h) = sup
X∈L∞

[E[−hX] − ρ(X)].

By Föllmer and Schied (2004, Theorem 4.54), αmin depends only on the law of its argument.
Thus, Dmax is law invariant.

Property 4 implies property 5. This is a consequence of James’ theorem (see Föllmer and
Schied (2004, Theorem A.66)). The proof parallels the argument in Föllmer and Schied (2004,
Corollary 4.35). The set D is law invariant by assumption.
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Property 4 implies property 6. As we pointed out in the second paragraph of the proof, the
set D in property 4 can be assumed to be Dmax. The weak compactness of Dmax follows, again
by James’ theorem.

Property 6 implies property 4. This is a special case of the implication of property 4 by
property 5.

Property 4 implies property 3. This is an immediate consequence of Aliprantis and Border
(1999, Theorem 5.102).

Property 3 implies property 4. By Aliprantis and Border (1999, Theorem 5.102) we have
ρ(X) = maxh∈D E[−hX], where

D = {h ∈ L1 : E[−hX] ≤ ρ(X) for all X ∈ L∞}
is σ(L1, L∞)-compact.

If h ∈ D then h ≥ 0 P-a.s. Suppose that h ≥ 0 P-a.s. does not hold. With X = 1{h<0}, for
n ∈ N we obtain

E[−nh1{h<0}] ≤ ρ(nX) ≤ ρ(X).

The left-hand side of this inequality converges to ∞ as n tends to ∞, contradicting the fact that
ρ(X) ∈ R.

Finally, with X = 1 we obtain E[−h] ≤ ρ(1) = −1 and, thus, E[h] ≥ 1, and with X = −1
we obtain E[h] ≤ ρ(−1) = 1. This implies that D is a set of densities. Since (�,F ,P) is a rich
probability space and ρ is distribution invariant, we can use Kallenberg (1997,Theorem 6.10)
to show that D is law invariant.

Property 7 implies property 8. For a probability density h ∈ L1, we define

[h] = {ĥ ∈ L1 : ĥ P∼ h}

(where ‘
P∼’denotes equality in distribution under the measure P). We show that the equivalence

classes
{[h] : h ∈ L1, h ≥ 0, ‖h‖L1 = 1}

and the probability measures M((0, 1]) are in one-to-one correspondence.
Let µ be given. By Föllmer and Schied (2004, Lemma 4.63), µ corresponds uniquely

to an increasing, concave function ψ : [0, 1] → [0, 1] with ψ(0) = 0 and ψ(1) = 1. Its
right-continuous right-hand derivative, ψ ′+, is therefore positive and satistfies

∫ 1

0
ψ ′+(t) dt = ψ(1)− ψ(0) = 1.

The derivative ψ ′+ hence defines a probability density on ((0, 1),B, λ), where λ denotes the
Lebuesgue measure. Since (�,F ,P) is a rich probability space, there exists an h ∈ L1

with L(h; P) = L(ψ ′+; λ), where the notation L(·; ·) makes explicit the dependence of the
distribution on the measure. We define M(µ) := [h].

Conversely, let h ∈ L1 be a probability density with equivalence class [h]. Then
ψ(t) = ∫ t

0 qh(1 − u) du depends on the distribution of h only. We have ψ(0) = 0 and
ψ(1) = EP[h] = 1 (where EP denotes expectation under the probability measure P), since h
is a probability density. The function ψ is increasing, since qh ≥ 0. Moreover, t �→ qh(1 − t)

is decreasing, which implies that ψ is concave. By Föllmer and Schied (2004, Lemma 4.63),
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ψ corresponds to a unique probability measure µ ∈ M1((0, 1]). From the construction it is
obvious that [h] = M(µ).

For a fixed µ ∈ M((0, 1]), we set ρµ(X) = ∫
(0,1] AVaRγ (X)µ(dγ ). Let ψ be defined,

according to Föllmer and Schied (2004, Lemma 4.63), as the function corresponding to µ. By
construction, for h ∈ M(µ) we have qh(t) = ψ ′+(1 − t) for t ∈ [0, 1]. By Föllmer and Schied
(2004, Lemma 4.63 and Theorem 4.64),

ρµ(X) =
∫ 1

0
q−X(t)ψ ′+(1 − t) dt =

∫ 1

0
q−X(t)qh(t) dt.

Now assume that property 7 holds. Then

ρ(X) = max
h∈D

∫ 1

0
qh(t)q−X(t) dt = max

µ=M−1([h]), h∈D
ρµ(X) = max

µ∈M
ρµ(X),

where M = {M−1([h]) : h ∈ D}. Conversely, if property 8 holds we obtain

ρ(X) = max
µ∈M

ρµ(X) = max
h∈D

∫ 1

0
qh(t)q−X(t) dt,

where D = ⋃
µ∈M M(µ).

Property 4 implies property 7. For h ∈ D , by the Hardy–Littlewood inequality (see Föllmer
and Schied (2004, Theorem A.24)) we have

E[−hX] ≤
∫ 1

0
qh(t)q−X(t) dt.

Since (�,F ,P) is rich, there exists a pair of random variables (h̃, Y ) such that L((h̃,−Y ); P)=
L((qh, q−X); λ). Note that of course h̃

P∼ h and Y
P∼ X, but that h̃ and Y are anticomonotonic.

This implies that ∫ 1

0
qh(t)q−X(t) dt = E[−h̃Y ] ≤ ρ(Y ) = ρ(X).

Taking suprema yields

ρ(X) = max
h∈D

E[−hX] = sup
h∈D

∫ 1

0
qh(t)q−X(t) dt.

Then, letting h∗ = argmaxh∈D E[−hX], we have

ρ(X) = E[−h∗X] ≤
∫ 1

0
qh∗(t)q−X(t) dt ≤ ρ(X).

Hence, the supremum in property 7 is attained.
Property 8 implies property 1. For a fixed µ ∈ M((0, 1]), we set

ρµ(X) =
∫
(0,1]

AVaRγ (X)µ(dγ ).

By Föllmer and Schied (2004, Corollary 4.74), there exists a set of densities Dµ such that
ρµ(X) = maxh∈Dµ E[−hX]. Letting D = ⋃

µ∈M Dµ, we obtain ρ(X) = maxh∈D E[−hX].
By Föllmer and Schied (2004, Corollary 4.35), it follows that ρ is continuous from below.
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Remark 3.1. If (�,F ,P) is a standard probability space, then every distribution-invariant,
convex risk measure is continuous from above. This has recently been pointed out by Jouini et
al. (2006). Their result provides another justification for the fact that continuity on compacts
is implied by continuity from below.

Remark 3.2. If the maximizing density in Theorem 3.3 can be explicitly calculated, this can
be used to explicitly find the minimal relative entropy under the risk measure constraint. This
provides a way to obtain the rate function in Corollary 2.1. We will consider the case of average
value at risk in Section 5.

Corollary 3.1. For a risk measure ρ : L∞ → R, the following properties are equivalent.

1. ρ is distribution-invariant, coherent, and continuous on compacts.

2. The acceptance set, A, ofρ is a law-invariant, convex cone, and, for increasing sequences
(Xn)n ⊆ L∞ withX = limn→∞Xn P-a.s., X ∈ A, and any ε > 0, we haveXn+ε ∈ A
for large enough n.

Proof. Property 1 implies property 2. This is obvious.
Property 2 implies property 1. The law invariance and coherence of ρ are immediate. By

Theorem 3.3 we need to verify continuity from below. Letting Yn ↗ Y P-a.s., we have
X = Y + ρ(Y ) ∈ A and Xn = Yn + ρ(Y ) ↗ X P-a.s. For any ε > 0, we have ρ(Xn + ε) ≤ 0
for large enough n; thus, ρ(Yn) ≤ ρ(Y ) + ε. This implies that ρ(Yn) converges to ρ(Y ) as n
tends to ∞.

Corollary 3.2. Suppose that a coherent, distribution-invariant risk measure ρ admits a rep-
resentation as in (3.2) for some weakly compact set M ⊆ M1((0, 1]). Then the supremum
in (3.2) is actually a maximum, and ρ is continuous on compacts.

Proof. Since λ �→ AVaRλ(X) is continuous and bounded in [−‖X‖, ‖X‖],

µ �→
∫
(0,1]

AVaRγ (X)µ(dγ )

defines a weakly continuous functional on M((0, 1]). Since M is weakly compact, the
supremum in (3.2) is attained. By Theorem 3.3, it follows that ρ is continuous on compacts.

The condition of Corollary 3.2 is of course satisfied if the set M is a singleton. In this case,
ρ is simply a mixture of average values at risk at different levels. By a result of Schmeidler
(1986), the class of such risk measures is closely related to the family of distribution-invariant
risk measures that are comonotonic; see Föllmer and Schied (2004, Section 4.7).

Theorem 3.4. On a rich probability space, the class of risk measures

ρµ(X) =
∫

AVaRλ(X)µ(dλ), µ ∈ M1([0, 1]),

is precisely the class of all distribution-invariant, convex risk measures onL∞ that are comono-
tonic. In particular, these risk measures are also coherent. Furthermore, ρµ is continuous on
compacts if and only if µ({0}) = 0.

Proof. For the proof of the first part of the theorem, see Föllmer and Schied (2004, The-
orem 4.87). The second part follows from Föllmer and Schied (2004, Corollary 4.74) and
Theorem 3.1.
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Remark 3.3. The risk measure ρµ can also be represented as a Choquet integral with respect to
a continuous, concave distortion of the underlying probability measure; see Föllmer and Schied
(2004, Corollary 4.71)

Finally, we discuss an important class of distribution-invariant, convex risk measures which
are continuous on compacts, namely shortfall risk.

Definition 3.1. Let � : R → R be a convex loss function, i.e. an increasing, nonconstant,
convex function. Assume that z is an interior point of the range of �. We define the acceptance
set

A =
{
X ∈ L∞ :

∫
�(−X) dP ≤ z

}
.

The shortfall risk is defined by

ρ(X) = inf{m ∈ R : X +m ∈ A}.

Shortfall risk is a distribution-invariant risk measure which is continuous from above and
below (see Föllmer and Schied (2004, Proposition 4.104 and Theorem 4.31)). Thus, by
Theorem 3.1, shortfall risk is continuous on compacts. Like average value at risk, shortfall
risk has many desirable properties. In contrast to value at risk, it encourages diversification,
since it is convex, and does not neglect the size of losses. For a detailed analysis of this risk
measure, including applications to dynamic risk measurement and Monte Carlo simulations,
we refer the reader to Weber (2006), Giesecke et al. (2005), and Dunkel and Weber (2005).

4. Entropy minimization under a shortfall risk constraint

As we have seen in Corollary 2.1, for independently generated samples the rate function
of the large deviations of risk measures is determined by the minimal relative entropy under
a risk measure constraint. In the current section we consider a first example of the entropy
minimization problem under a risk measure constraint: we discuss a shortfall risk constraint.
Shortfall risk has many appealing properties. It is distribution invariant, coherent, and sensitive
to the size of losses. In contrast to average value at risk, shortfall risk can be used for the weakly
consistent dynamic evaluation of financial assets (see Weber (2006)).

The minimization problem. Let � : R → R be a convex loss function, let z ∈ R be a
point in the interior of the range of �, and let ρ be the shortfall risk associated with � and z.
Fix a constant y ∈ R and a reference probability µ ∈ M1,c with compact support. We are
interested in the problem of minimizing H(ν|µ) where ν ∈ M1,c and ρ′(ν) = y. We set
a := inf{x ∈ R : x ∈ suppµ} and b := sup{x ∈ R : x ∈ suppµ}; thus, suppµ ⊆ [a, b].
Observe that supp ν �⊆ suppµ implies that ν �� µ and, thus, H(ν|µ) = ∞. We may therefore
restrict our attention to the constraint set

C := {ν ∈ M1([a, b]) : ρ′(ν) = y}.

4.1. Existence of solutions

A necessary and sufficient criterion for the existence of solutions can be formulated in terms
of the parameters a, b, and y. We need the following general result, which will also be used in
Section 5. Since shortfall risk is continuous on compacts, the entropy minimization problem
under a shortfall risk constraint represents a special case of the next lemma.
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Letµ ∈ M1,c, and a, b, y ∈ R be given as above. For any distribution-invariant risk measure
ρ : L∞ → R which is continuous on compacts, we define

Cρ := {ν ∈ M1([a, b]) : ρ′(ν) = y}.
We consider the problem of minimizing H(·|µ) on Cρ .

Lemma 4.1. Suppose that Cρ �= ∅. There exists a solution to the entropy minimization problem
with constraint set Cρ . If there exists a ν ∈ Cρ such thatH(ν|µ) < ∞, then the minimizer has
finite relative entropy.

Proof. If H(ν|µ) = ∞ for all ν ∈ Cρ , then any ν ∈ Cρ minimizes the relative entropy.
Otherwise, observe that M1([a, b]) is weakly compact since [a, b] is compact. Since ρ
is continuous on compacts, Cρ is then also a weakly compact set. Since H(·|µ) is lower
semicontinuous, it achieves its minimum on Cρ .

In the case of shortfall risk, the following characterization theorem is essential. A proof is
contained in the proof of Föllmer and Schied (2004, Proposition 4.104).

Proposition 4.1. Let X ∈ L∞. Then ρ(X) = y if and only if
∫
�(−X − y) dP = z.

The following proposition characterizes the existence of solutions.

Proposition 4.2. The following conditions are equivalent.

1. There exists a ν ∈ C such that H(ν|µ) < ∞.

2. The minimal value of the relative entropy on C is finite, and is attained for some element
of C.

3. The point a is an atom of µ and �(−a − y) = z, the point b is an atom of µ and
�(−b − y) = z, or

�(−b − y) < z < �(−a − y). (4.1)

If (4.1) holds then there exists a ν ≈ µ, ν ∈ C, with H(ν|µ) < ∞.

Proof. See Appendix A.

4.2. Structure of the solution

Since shortfall risk imposes a linear constraint, the solution to the minimization problem
can be characterized. Its density with respect to µ is of exponential form. The exponent is a
linear combination of the constraint functions. We quote a result of Csiszár (1975).

Theorem 4.1. For i = 1, 2, . . . , I with I ∈ N, let fi : R → R be measurable functions and
let ai ∈ R. Let µ ∈ M1(R) and define the constraint set

Ĉ =
{
ν ∈ M1(R) :

∫
fi(x)ν(dx) = ai, i = 1, 2, . . . , I

}
.

Assume that there exists a ν ∈ Ĉ with ν ≈ µ and H(ν|µ) < ∞. Then there exists a unique
minimizer on Ĉ with finite relative entropy. The measure ν is the minimizer if and only if its
µ-density is of the following form, with normalizing constant c > 0 andhi ∈ R, i = 1, 2, . . . , I :

dν

dµ
= c exp

( I∑
i=1

hifi

)
.

https://doi.org/10.1239/jap/1175267161 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1175267161


Distribution-invariant risk measures 27

Corollary 4.1. Assume that (4.1) holds. Then ν is the unique minimizer of the relative entropy
on C if and only if its µ-density is of the following form:

dν

dµ
(x) = c exp(h�(−x − y)). (4.2)

Here c > 0 is a normalizing constant, h ∈ R, and the following conditions need to be satisfied:

z = c

∫
�(−x − y) exp(h�(−x − y))µ(dx), (4.3)

1 = c

∫
exp(h�(−x − y))µ(dx). (4.4)

Proof. By Proposition 4.2 there exists a ν ∈ C withH(ν|µ) < ∞ and ν ≈ µ. It follows from
Theorem 4.1 that there exists a unique minimizer of the relative entropy. By Proposition 4.1, a
measure ν ∈ M1([a, b]) is an element of C if and only if

∫
�(−x − y)ν(dx) = z. Thus, the

minimizer ν has µ-density (4.2) by Theorem 4.1. Condition (4.3) is required by the constraint
and condition (4.4) is a normalization.

If ν is the minimizing density characterized in Corollary 4.1, then the minimal relative
entropy is given by the expression

H(ν|µ) = log c + hz.

Remark 4.1. If a is an atom ofµ and �(−a−y) = z, or if b is an atom ofµ and �(−b−y) = z,
then C = {δx} with x = a or x = b, respectively. Here δx denotes the Dirac measure
at x ∈ R. Furthermore, the minimizer, ν, of the relative entropy is trivially unique, and
H(ν|µ) = − logµ{x} with x = a or x = b in the same respective cases.

5. Entropy minimization under average value at risk constraints

In the current section we discuss the minimization problem for a second class of risk
measures, namely average value at risk. Average value at risk also has appealing properties.
It is distribution invariant, coherent, and, in the event of a large loss, takes the size of the loss
into account. The last fact follows from, for example, the following representation of average
value at risk at level λ, where q is some λ-quantile of the random variable X:

AVaRλ(X) = 1

λ
E[(q −X)+] − q.

The minimization problem. Fix a reference probability measure µ ∈ M1,c with compact
support, let λ ∈ (0, 1) be a level, and let y ∈ R be a constant. We are interested in the problem of
minimizingH(ν|µ) where ν ∈ M1,c and AVaRλ(ν) = y. We set a := inf{x ∈ R : x ∈ suppµ}
and b := sup{x ∈ R : x ∈ suppµ}.As in the case of shortfall risk, we may restrict our attention
to the constraint set

C := {ν ∈ M1([a, b]) : AVaRλ(ν) = y}.
5.1. Existence of solutions

A necessary and sufficient criterion for the existence of solutions can be formulated in terms
of the parameters a, b, and y. The derivation is based on Lemma 4.1.

In the case of average value at risk, the existence of a minimizer with finite relative entropy
can be rephrased in terms of the parameters of the problem. For this purpose, it is useful to
recall a particular representation of AVaRλ (see Föllmer and Schied (2004)).
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Proposition 5.1. Let λ ∈ (0, 1) and ν ∈ M1,c. Then

AVaRλ(ν) = −
∫
xfν(x)ν(dx), (5.1)

where fν is the following density of a probability measure with respect to ν:

fν(x) = 1

λ
(1(−∞,q)+κ 1{q}). (5.2)

Here q is a λ-quantile of ν, i.e.∫
1(−∞,q) dν ≤ λ,

∫
1(−∞,q] dν ≥ λ,

and the parameter κ is defined as follows:

κ =
⎧⎨
⎩

0 if ν{q} = 0,
λ− ν((−∞, q))

ν({q}) if ν{q} �= 0.

The following proposition characterizes the existence of solutions.

Proposition 5.2. The following conditions are equivalent.

1. There exists a ν ∈ C such that H(ν|µ) < ∞.

2. The minimal value of the relative entropy on C is finite, and is attained for some element
of C.

3. Either a < −y < b or −y is an atom of µ.

Proof. See Appendix A.

5.2. Structure of the solutions

Classical results of Csiszár (1975) determine the general structure of the minimizer. We
compute the solution explicitly. In order to avoid trivial cases, we will always assume that one
and, thus, all of the equivalent conditions of Proposition 5.2 are satisfied. We distinguish two
cases of different complexities: in case (A) µ does not have any atoms, while in case (B) µ
possibly does have atoms.

5.2.1. A two-step procedure. I. First we focus on case (A). We can restrict our attention to
probability measures which are absolutely continuous with respect to µ. A minimizer ν will
thus not have any atoms. The formulae characterizing the density fν in (5.1) simplify to
fν = 1/λ 1(−∞,q), and

∫
1(−∞,q)(x)ν(dx) = λ.

The original problem can be reduced to a family of relative entropy minimization problems
under linear constraints and a one-dimensional minimization problem.

Step 1. Fix some quantile level q ∈ R. Minimize ν �→ H(ν|µ) over all probability measures
ν � µ which satisfy the constraints

−1

λ

∫
x 1(−∞,q)(x)ν(dx) = y, (5.3)∫

1(−∞,q)(x)ν(dx) = λ. (5.4)
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We will provide conditions under which this problem has a solution. The solution is then unique
and can be written in terms of an exponential density.

Step 2. As we will see, if for q ∈ R the minimization problem in step 1 has a solution with
finite relative entropy, then the minimizer will be unique. We denote this minimizer by νq .
Otherwise, we set νq = � with the convention that H(�|µ) = ∞. With this notation, the
solution to the original problem is given by the set argminν∈DH(ν|µ) with D = {νq : q ∈ R}.
5.2.2. Entropy minimization under linear constraints. I. We fix an arbitrary reference measure
µ ∈ M1,c without atoms, and let q ∈ R. In this section we consider the following mini-
mization problem: minimize ν �→ H(ν|µ) over all probability measures which satisfy the
constraints (5.3) and (5.4).

Proposition 5.3. The following conditions are equivalent.

1. There exists a probability measure ν with H(ν|µ) < ∞ that satisfies constraints (5.3)
and (5.4).

2. There exists a probability measure ν with H(ν|µ) < ∞ that is equivalent to µ and
satisfies constraints (5.3) and (5.4).

3. Under constraints (5.3) and (5.4), there exists a unique minimizer of the relative entropy.

4. a < −y < q < b and µ(−y, q) > 0.

Proof. See Appendix A.

If one and, thus, all of the equivalent conditions of Proposition 5.3 are satisfied, then the
unique minimizer can be characterized. The proof follows directly from Theorem 4.1.

Corollary 5.1. Assume that one of the equivalent conditions of Proposition 5.3 holds. The
measure ν is the unique minimizer of the relative entropy under constraints (5.3) and (5.4) if
and only if its µ-density is of the following form:

dν

dµ
(x) = c exp((h1 + h2x) 1(−∞,q)(x)).

Here c > 0 is a normalizing constant, h1, h2 ∈ R, and the following conditions need to be
satisfied:

−λy = c

∫
x exp(h1 + h2x) 1(−∞,q)(x)µ(dx),

λ = c

∫
exp(h1 + h2x) 1(−∞,q)(x)µ(dx),

1 = c

∫
exp((h1 + h2x) 1(−∞,q)(x))µ(dx).

If ν is the minimizing density characterized in Corollary 5.1, then the minimal relative
entropy is given by the expression H(ν|µ) = log c + λ(h1 − h2y).

5.2.3. The original problem. I. Assuming that one and, thus, all of the equivalent conditions
of Proposition 5.3 are satisfied, we denote the unique solution to the minimization problem
under the linear constraints (5.3) and (5.4) by νq . The proof of the following proposition is
immediate.
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Proposition 5.4. There exists a solution to the problem of minimizing the relative entropy on
C if and only if a < −y < b. The collection of all solutions is given by {νq : q ∈ Q∗}, where

Q∗ = argmin{H(νq |µ) : a < −y < q < b, µ(−y, q) > 0}.
5.2.4. A two-step procedure. II. We now consider case (B) in which µ may have atoms. As
in case (A), the problem can be decomposed into two subproblems, but the presence of atoms
makes the problem more complicated.

Step 1. Fix some quantile level q ∈ R. We distinguish two subcases:

(a) q is not an atom of the reference measure µ;

(b) q is an atom of µ.

Case (a) is only slightly more complicated than the situation which we considered in
Proposition 5.3. Case (b) involves two additional parameters. Let d ∈ [0, λ] and u ∈ [0, 1−λ].
If d = u = 0 then we set d(d + u)−1 = 0. In step 1 we need to minimize ν �→ H(ν|µ) over
all probability measures ν � µ which satisfy the constraints

λ− d =
∫

1(−∞,q)(x)ν(dx), (5.5)

λ+ u =
∫

1(−∞,q](x)ν(dx), (5.6)

y = −1

λ

∫
x

(
1(−∞,q)(x)+ d

d + u
1{q}(x)

)
ν(dx). (5.7)

We will provide conditions under which the problems have a solution. The solution is then
unique and can again be represented by a density which is of exponential form outside the set
where it vanishes. The solution will not always be equivalent to the reference measure µ.

Step 2. As we will show, if the minimization problems (a) and (b) in step 1 have a solution
with finite relative entropy for fixed parameters q, u, and d, then the minimizer will be unique.
Let q ∈ R, d ∈ [0, λ], and u ∈ [0, 1 − λ]. If q is not an atom of µ, then we are in the situation
of case (a). If the minimizer exists and u = d = 0, we denote it by νq,d,u = νq,0,0. If q
is an atom then we consider case (b). If the minimizer exists, we denote it by νq,d,u. In all
other cases, we set νq,u,d = � with the convention that H(�|µ) = ∞. With this notation, the
solution to the original problem is given by the set of minimizers

argmin
ν∈D

H(ν|µ), D = {νq,d,u : q ∈ R, d ∈ [0, λ], u ∈ [0, 1 − λ]}. (5.8)

5.2.5. Entropy minimization under linear constraints. II. First consider case (a). We fix an
arbitrary reference measure µ ∈ M1,c and a quantile level q ∈ R. We assume that q is not
an atom of µ; nevertheless, the measure µ may have atoms. In this section we consider the
following minimization problem: minimize ν �→ H(ν|µ) over all probability measures which
satisfy constraints (5.3) and (5.4).

Proposition 5.5. The following conditions are equivalent.

1. There exists a probability measure ν with H(ν|µ) < ∞ that satisfies constraints (5.3)
and (5.4).

2. Under constraints (5.3) and (5.4), there exists a unique minimizer of the relative entropy.
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3. One of the following conditions holds:

(i) a < −y < q < b and µ(−y, q) > 0;

(ii) a ≤ −y < q < b and −y is an atom of µ.

Moreover, if condition 3(i) holds then there exists a probability measure ν with H(ν|µ) < ∞
that is equivalent to µ and satisfies constraints (5.3) and (5.4).

Proof. See Appendix A.

Definition 5.1. For i = 1, 2, . . . , I with I ∈ N, let fi : R → R be measurable functions and
let ai ∈ R. Let µ ∈ M1(R) and define the constraint set

Ĉ =
{
ν ∈ M1(R) :

∫
fi(x)ν(dx) = ai, i = 1, 2, . . . , I

}
.

By C̄ we denote the subset of elements ν ∈ Ĉ with H(ν|µ) < ∞. A measurable set N ⊆ R is
called a maximal common nullset if

1. ν(N) = 0 for all ν ∈ C̄ and

2. there exists a ν ∈ C̄ such that 1N +dν/dµ > 0 µ-a.s.

Remark 5.1. Maximal common nullsets always exist if C̄ �= ∅. This can be demonstrated as,
for example, an application of Zorn’s lemma.

Remark 5.2. A maximal common nullset is indeed a maximal set in the following sense. Let
M ⊆ R be a measurable set that satisfies condition 1 of Definition 5.1, and assume thatN ⊆ M

is a maximal common nullset. ThenM is also a maximal common nullset, and µ(M \N) = 0.
For a proof, see Weber (2004).

Remark 5.3. Elements of C̄ that are µ-equivalent exist under the following equivalent condi-
tions (for a proof, see Weber (2004)).

(i) There exists a ν ∈ C̄ with ν ≈ µ.

(ii) Some maximal common nullset is a µ-nullset.

(iii) Any maximal common nullset is a µ-nullset.

(iv) Any µ-nullset is a maximal common nullset.

(v) Maximal common nullsets and µ-nullsets coincide.

(vi) The empty set is a maximal common nullset.

In the context of the minimization problem of the current section, maximal common nullsets
can be characterized in terms of the parameters of the problem. If condition 3(i) of Proposi-
tion 5.5 holds, then maximal common nullset are µ-nullsets. The next proposition investigates
the properties maximal common nullsets have when condition 3(i) is not satisfied but condi-
tion 3(ii) holds.
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Proposition 5.6. Assume that condition 3(i) of Proposition 5.5 holds.

1. If a = −y and µ(−y, q) = 0 then any maximal common nullset is a µ-nullset. That
is, there exists a µ-equivalent probability measure ν with H(ν|µ) < ∞ that satisfies
constraints (5.3) and (5.4).

2. If a = −y and µ(−y, q) > 0 then (a, q) is a maximal common nullset.

3. If a < −y and µ(−y, q) = 0 then [a,−y) is a maximal common nullset.

Proof. See Appendix A.

The minimizers are characterized by the following result of Csiszár (1975).

Theorem 5.1. For i = 1, 2, . . . , I with I ∈ N, let fi : R → R be measurable functions and
let ai ∈ R. Let µ ∈ M1(R) and define the constraint set

Ĉ =
{
ν ∈ M1(R) :

∫
fi(x)ν(dx) = ai, i = 1, 2, . . . , I

}
.

Assume that there exists a ν ∈ Ĉ with H(ν|µ) < ∞. Let N be a maximal common nullset.
Then there exists a unique minimizer on Ĉ with finite relative entropy. The measure ν is the
minimizer if and only if its µ-density is of the following form, with normalizing constant c > 0
and hi ∈ R, i = 1, 2, . . . , I :

dν

dµ
= c exp

( I∑
i=1

hifi

)
1Nc .

Corollary 5.2. Assume that one and, thus, all of the equivalent conditions of Proposition 5.5
hold. Let N be a maximal common nullset (see Propositions 5.5 and 5.6). The measure ν is
the unique minimizer of the relative entropy under constraints (5.3) and (5.4) if and only if its
µ-density is of the following form:

dν

dµ
(x) = c exp((h1 + h2x) 1(−∞,q)(x)) 1Nc(x).

Here c > 0 is a normalizing constant, h1, h2 ∈ R, and the following conditions need to be
satisfied:

−λy = c

∫
x exp(h1 + h2x) 1(−∞,q)(x) 1Nc(x)µ(dx), (5.9)

λ = c

∫
exp(h1 + h2x) 1(−∞,q)(x) 1Nc(x)µ(dx), (5.10)

1 = c

∫
exp((h1 + h2x) 1(−∞,q)(x)) 1Nc(x)µ(dx). (5.11)

Proof. The proof follows directly from Theorem 5.1. Condition (5.11) is a normalization,
and conditions (5.9) and (5.10) are required by the constraint.

If ν is the minimizing density characterized in Corollary 5.2, then the minimal relative
entropy is given by the expression H(ν|µ) = log c + λ(h1 − h2y).

Now consider case (b). We fix an arbitrary reference measure µ ∈ M1,c and parameters
q ∈ R, d ∈ [0, λ], and u ∈ [0, 1 − λ], and assume that q now is an atom of µ. In this section
we consider the following minimization problem: minimize ν �→ H(ν|µ) over all probability
measures which satisfy the constraints (5.5), (5.6), and (5.7).
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Proposition 5.7. The following conditions are equivalent.

1. There exists a probability measure ν with H(ν|µ) < ∞ that satisfies constraints (5.5),
(5.6), and (5.7).

2. Under constraints (5.5), (5.6), and (5.7), there exists a unique minimizer of the relative
entropy.

3. a ≤ −y ≤ q ≤ b and one of the following conditions holds:

(i) d = 0, −y < q, and −y is an atom of µ;

(ii) d = 0, a < −y < q, and µ(−y, q) > 0;

(iii) d > 0, a < −y, and, with ā := sup{x ∈ suppµ : x < q},

−y > λ− d

λ
a + d

λ
q, −y < λ− d

λ
ā + d

λ
q;

(iv) d > 0 and, for some atom r ∈ R of µ,

−y = λ− d

λ
r + d

λ
q.

Moreover, if condition 3(ii) or 3(iii) holds, then there exists a probability measure ν with
H(ν|µ) < ∞ that is equivalent to µ and satisfies constraints (5.5), (5.6), and (5.7).

Proof. See Appendix A.

The next proposition investigates the properties maximal common nullsets have when con-
dition 3 of Proposition 5.7 is satisfied. This characterization, together with Theorem 5.1, allows
us to specify the solution to the minimization problem under constraints (5.5), (5.6), and (5.7).

Proposition 5.8. Assume that a ≤ −y ≤ q ≤ b holds.

1. Suppose that d = 0 and that −y = a < q is an atom of µ. Then (−y, q) is a maximal
common nullset.

2. Suppose that d = 0 and that a < −y < q. If µ(−y, q) = 0 and −y is an atom of µ,
then [a,−y) is a maximal common nullset. If µ(−y, q) > 0 then the empty set is a maximal
common nullset.

3. If condition 3(iii) of Proposition 5.7 holds, then the empty set is a maximal common nullset.

4. Suppose that condition 3(iv) of Proposition 5.7 holds.

(i) If λ = d then (−∞, q) is a maximal common nullset.

(ii) If λ �= d and r = a then (a, q) is a maximal common nullset.

(iii) If λ �= d , r > a, and µ(r, q) = 0, then [a, r) is a maximal common nullset.

Proof. See Appendix A.

Remark 5.4. Proposition 5.8 covers all cases which are considered in Proposition 5.7. The
proof of this is left to the reader.
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As a corollary of Proposition 5.8 and Theorem 5.1, we finally obtain a characterization of
the solution.

Corollary 5.3. Assume that one of the equivalent conditions of Proposition 5.7 holds. Let N
be a maximal common nullset (see Proposition 5.8). The measure ν is the unique minimizer of
the relative entropy under constraints (5.5), (5.6), and (5.7) if and only if its µ-density is of the
following form:

dν

dµ
(x) = c exp

(
(h1 + h2 + h3x) 1(−∞,q)(x)+

(
h2 + h3

d

d + u
x

)
1{q}(x)

)
1Nc(x).

Here c > 0 is a normalizing constant, h1, h2, h3 ∈ R, and conditions (5.5), (5.6), and (5.7)
must be satisfied.

In particular, the minimizer ν is equivalent to µ if and only if the empty set is a maximal
common nullset.

Proof. The proof follows directly from Theorem 5.1.

If ν is the minimizing density characterized in Corollary 5.3, then the minimal relative
entropy is given by the expression H(ν|µ) = log c + h1(λ− d)+ h2(λ+ u)− h3λy.

5.2.6. The original problem. II. The general case. The solution to the entropy minimization
problem on the constraint set C can be obtained by minimizing over the solutions under linear
constraints. The proof is now immediate.

Proposition 5.9. There exists a solution to the problem of minimizing the relative entropy on
C if and only if a < −y < b or −y is an atom of µ. The collection of all solutions is given
in (5.8).

Appendix A. Proofs for Sections 4 and 5

Proof of Proposition 4.2. Conditions 1 and 2 are clearly equivalent, by Lemma 4.1. Assume
now that condition 1 is satisfied. Suppose that neither a nor b is an atom of µ. Then neither
a nor b is an atom of ν. Since ν ∈ C, we have supp ν ⊆ [a, b]. If �(−a − y) < z then
�(−x − y) < z for x ∈ (a, b]. If �(−a − y) = z then �(−x − y) < z for x ∈ (a, b], since
�−1({z}) is a singleton and � is increasing. Thus, if �(−a−y) ≤ z then

∫
�(−x−y)ν(dx) < z,

since a is not an atom of ν. By Proposition 4.1, y �= ρ′(ν), which is a contradiction. Thus,
�(−a − y) > z. Analogously, it can be shown that �(−b − y) < z. If a or b is an atom then
additionally �(−a− y) = z or �(−b− y) = z is possible. This proves that condition 1 implies
condition 3.

Conversely, assume that condition 3 holds. If a is an atom of µ and �(−a − y) = z, then
define ν � µ by dν/dµ = (1/µ({a})) 1{a} . Then H(ν|µ) < ∞ and

∫
�(−x − y)ν(dx) =

�(−a− y) = z, and, thus, ρ′(ν) = y by Proposition 4.1. Analogously, if b is an atom of µ and
�(−b − y) = z, then dν/dµ = (1/µ({b})) 1{b} defines ν ∈ C with H(ν|µ) < ∞.

Finally, assume that �(−b− y) < z < �(−a − y). Since �−1({z}) is a singleton, we obtain
�(−x − y) < z for x > q and �(−x − y) > z for x < q, where q := −�−1({z})− y ∈ (a, b).
Thus,

u+ :=
∫

1[a,q](x)�(−x − y)µ(dx) > z, u− :=
∫

1(q,b](x)�(−x − y)µ(dx) < z.
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Choose an α ∈ (0, 1) such that αu+ + (1 − α)u− = z. Then we define ν � µ by

dν

dµ
= α 1[a,q] +(1 − α) 1(q,b] .

Clearly, H(ν|µ) < ∞ and ν ∈ C by Proposition 4.1.

Proof of Proposition 5.2. Conditions 1 and 2 are clearly equivalent, by Lemma 4.1. We will
show that conditions 1 and 3 are equivalent. First we suppose that −y is an atom of µ. Then
we set

dν

dµ
= 1

µ({−y}) 1{−y} .

In this case, −y is a λ-quantile of ν and AVaRλ(ν) = y. Next we suppose that −y is not
an atom of µ and that condition 1 holds. Then −y ≤ a, a < −y < b, or −y ≥ b. Let
ν ∈ C with H(ν|µ) < ∞. In particular, ν � µ. Since supp ν ⊆ [a, b], it follows that
−y = −AVaRλ(ν) ∈ [a, b]. If a = −y = −AVaRλ(ν) then a must be an atom of ν. Since
ν � µ, a is then also an atom of µ, which is a contradiction. Analogously, it can be shown
that b �= −y. We therefore obtain a < −y < b. Finally, we have to show that for a < −y < b

there always exists a ν ∈ C such that H(ν|µ) < ∞. We consider the following two cases.

(i) There exists a q ∈ R with a < −y < q < b such that µ(−y, q) > 0. Since µ has at
most countably many atoms, we may and will assume that q is not an atom of µ.

(ii) There exists no such q ∈ R. This implies that µ(−y, b) = 0. Then b must be an atom
of µ, since b = sup{x ∈ R : x ∈ suppµ}.

We first consider case (i). Since a < −y < q, there exists an α′ ∈ (0, 1) such that

−y = α′ 1

µ([a,−y))
∫
x 1[a,−y)(x)µ(dx)+(1−α′) 1

µ([−y, q))
∫
x 1[−y,q)(x)µ(dx). (A.1)

Define the weights

α = λα′

µ([a,−y)) , β = λ(1 − α′)
µ([−y, q)) , γ = 1 − λ

µ([q, b]) . (A.2)

We define a probability measure by

dν

dµ
= α 1[a,−y)+β 1[−y,q)+γ 1[q,b] . (A.3)

ThenH(ν|µ) < ∞. We show thatν ∈ C. First, by direct calculation we find thatν((−∞, q)) =
ν((−∞, q]) = λ. Thus, q is a λ-quantile of ν. Second,

AVaRλ(ν) = −1

λ

∫
x 1[a,q)(x)ν(dx)

= −
(

α′

µ([a,−y))
∫
x 1[a,−y)(x)µ(dx)+ 1 − α′

µ([−y, q))
∫
x 1[−y,q)(x)µ(dx)

)
= y.

Next we consider case (b). In this case, we let

ā := 1

µ((−∞,−y])
∫
x 1(−∞,−y] µ(dx) < −y.
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Let γ := λ(b + y)/(b − ā) ∈ (0, λ). We define a probability measure ν via its density,

dν

dµ
= γ

µ([a,−y]) 1[a,b)+ 1 − γ

µ({b}) 1{b} .

Then H(ν|µ) < ∞. We now verify that ν ∈ C. Observe that∫
1(−∞,b)(x)ν(dx) = γ

µ([a,−y])
∫

1(−∞,−y](x)µ(dx) = γ < λ.

This implies that b is a λ-quantile of ν. We can now calculate AVaRλ using (5.2) with κ =
(λ− γ )/ν({b}). We find that

AVaRλ(ν) = −γ
λµ([a,−y])

∫
x 1(−∞,b)(x)µ(dx)− (λ− γ )b

λ

= −āγ
λ

− (λ− γ )b

λ
= (b − ā)γ

λ
− b = y.

Proof of Proposition 5.3. Condition 3 trivially implies condition 1. In order to show that
condition 1 implies condition 3, observe that the constraint set defined by (5.3) and (5.4) is
variation closed and convex. By Csiszár (1975, Theorem 2.1), it follows that the minimization
problem has a solution with finite relative entropy. The uniqueness of the minimizer follows,
since the constraint set is convex andH(·|µ) is strictly convex on its essential domain. Together,
these results show that conditions 1 and 3 are equivalent.

Next we show that condition 2 implies condition 1, which in turn implies condition 4, which
itself implies condition 2. The first implication is clear. Assume that condition 1 holds. We
show that this implies condition 4. By assumption, ν � µ and ν does not have any atoms.
Since supp ν ⊆ [a, b], we find that q ∈ (a, b). Thus,

−y = 1

λ

∫
x 1(−∞,q)(x)ν(dx) = 1

ν([a, q))
∫
x 1[a,q)(x)ν(dx) ∈ [a, q). (A.4)

Since −y is not an atom ofµ, (A.4) implies that a < −y. Suppose moreover thatµ((−y, q)) =
0 and, thus, ν([−y, q)) = 0. Then

−y = 1

λ

∫
x 1(−∞,q)(x)ν(dx) = 1

ν((a,−y))
∫
x 1(a,−y)(x)ν(dx) < −y,

which is a contradiction.
Finally, we show that condition 4 implies condition 2. Define the density of ν with respect

to µ by (A.3) with coefficients given by (A.1) and (A.2). This defines a measure ν which is
equivalent to µ and satisfies constraints (5.3) and (5.4).

Proof of Proposition 5.5. The proof that conditions 1 and 2 are equivalent is analogous to
the proof of the equivalence of conditions 1 and 3 of Proposition 5.3.

Next we show that conditions 1 and 3 here are equivalent. Assume that condition 1 holds.
By assumption, ν � µ and ν does not have an atom at q. Since supp ν ⊆ [a, b], we find that
q ∈ (a, b). Thus,

−y = 1

λ

∫
x 1(−∞,q)(x)ν(dx) = 1

ν([a, q))
∫
x 1[a,q)(x)ν(dx) ∈ [a, q). (A.5)
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Suppose that −y is not an atom of µ. Then (A.5) implies that a < −y. Suppose moreover that
µ((−y, q)) = 0 and, thus, ν([−y, q)) = 0. Then

−y = 1

λ

∫
x 1(−∞,q)(x)ν(dx) = 1

ν([a,−y))
∫
x 1[a,−y)(x)ν(dx) < −y,

which is a contradiction.
Finally, we show that condition 3 implies condition 1. If −y is an atom of µ, then we set

dν

dµ
= λ

µ({−y}) 1{−y} + 1 − λ

µ((q, b]) 1(q,b] . (A.6)

The measure ν satisfies constraints (5.3) and (5.4) and has finite relative entropy. Nevertheless,
it might not be equivalent to µ. If −y is not an atom of µ, then a < −y and µ(−y, q) > 0.
Define the density of ν with respect to µ by (A.3) with coefficients given by (A.1) and (A.2).
This defines a measure ν which is equivalent to µ and satisfies constraints (5.3) and (5.4).

Proof of Proposition 5.6. In part 1, (A.6) defines a density of a µ-equivalent probability
measure ν with H(ν|µ) < ∞ that satisfies the constraints. In order to verify part 2, set
N := (a, q). Let ν be a measure with H(ν|µ) < ∞ that satisfies the constraints. If ν(N) > 0
then

−y = 1

λ

∫
x 1(−∞,q) ν(dx) > −y, (A.7)

which is a contradiction. Next, define a measure ν with density (A.6). As shown in the proof
of Proposition 5.5, ν satisfies constraints (5.3) and (5.4), and H(ν|µ) < ∞. Moreover, µ-a.s.,

1N + dν

dµ
> 0.

The proof of part 3 is completely analogous to the proof of part 2. We simply have to set
N := [a,−y) and reverse the inequality in (A.7).

Proof of Proposition 5.7. The proof that conditions 1 and 2 are equivalent is analogous to
the proof of the equivalence of conditions 1 and 3 of Proposition 5.3.

We now show that condition 1 implies condition 3. First consider the case in which d = 0.
We have

−y = 1

λ

∫
x 1(−∞,q)(x)ν(dx) = 1

ν((−∞, q))

∫
x 1(−∞,q)(x)ν(dx) < q. (A.8)

If −y is an atom ofµ then condition 3(i) holds. Next, suppose that −y is not an atom ofµ; thus,
neither is it an atom of ν. From (A.8) it follows that −y > a. Suppose that µ((−y, q)) = 0.
Then ν((−∞,−y)) = ν((−∞, q)) = λ. Hence,

−y = 1

λ

∫
x 1(−∞,q)(x)ν(dx) = 1

ν((−∞,−y))
∫
x 1(−∞,−y)(x)ν(dx) < −y,

which is a contradiction. This implies condition 3(ii).
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Next consider the case in which d > 0. Then q is an atom of ν. If λ = d then condition 3(iv)
holds with r = q. Otherwise ν((−∞, q)) > 0 and a < q. From (5.7), we obtain

−y = λ− d

λ

1

ν((−∞, q))

∫
x 1(−∞,q)(x)ν(dx)︸ ︷︷ ︸
=:r

+d
λ
q,

from which it follows that r ∈ [a, q) and a < −y. If r is not an atom of µ then it is not an atom
of ν and a < r < ā. This implies condition 3(iii). If r is an atom of µ then condition 3(iv)
holds.

Finally we have to show that condition 3 implies condition 1. In all cases we will specify
a density with respect to µ such that the resulting measure ν satisfies both H(ν|µ) < ∞ and
constraints (5.5), (5.6), and (5.7). In case (i) choose

dν

dµ
= λ

µ({−y}) 1{−y} + 1 − λ

ν([q,∞))
1[q,∞) . (A.9)

Next consider case (ii). Clearly

1

µ([−y, q))
∫
x 1[−y,q)(x)µ(dx) > −y.

Hence, there exists an α′ ∈ (0, 1)which satisfies (A.1). We choose a density according to (A.2)
and (A.3). As in the proof of Proposition 5.2, simple calculations show that the constraints are
satisfied. Observe that the measure ν specified by (A.3) is equivalent to µ.

Assume that condition 3(iii) is satisfied. Then there exists an r ∈ (a, ā) such that

−y = λ− d

λ
r + d

λ
q.

By the definition of a and ā, it holds that µ([a, r)) > 0 and µ([r, q)) > 0. Moreover,

r >
1

µ([a, r))
∫
x 1[a,r)(x)µ(dx) =: g−,

r <
1

µ([r, q))
∫
x 1[r,q)(x)µ(dx) =: g+.

Thus, there exists an α ∈ (0, 1) such that r = αg− + (1 − α)g+. Let

dν

dµ
= (λ− d)

(
α

µ([a, r)) 1[a,r)+ 1 − α

µ([r, q)) 1[r,q)
)

+ d + u

µ({q}) 1{q} + 1 − λ− u

µ((q,∞))
1(q,∞) .

Then ν satisfies constraints (5.5), (5.6), and (5.7). Observe that ν is equivalent to µ.
Finally, if condition 3(iv) holds, then the following density, for example, defines an appro-

priate measure ν:

dν

dµ
= λ− d

µ({r}) 1{r} + d + u

µ({q}) 1{q} + 1 − λ− u

µ((q,∞))
1(q,∞) . (A.10)
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Proof of Proposition 5.8. Denote by C̄ the set of measures ν withH(ν|µ) < ∞ that satisfy
constraints (5.5), (5.6), and (5.7). It follows from Proposition 5.7 that C̄ is never empty in the
cases considered in the current proposition.

1. Let ν ∈ C̄. If ν(−y, q) > 0 then (5.7) implies that

−y = ν({−y})
ν([−y, q)) (−y)+ ν((−y, q))

ν([−y, q))
1

ν((−y, q))
∫
x 1(−y,q)(x)ν(dx) > −y,

which is a contradiction. Thus, ν((−y, q)) = 0.

Next, define ν ∈ C̄ using density (A.9). Then, µ-a.s., 1(−y,q)+dν/dµ > 0.

2. We first consider the case in whichµ((−y, q)) = 0. Let ν ∈ C̄ and assume that ν([a,−y)) >
0. Then (5.7) implies that

−y = ν({−y})
ν([a,−y]) (−y)+ ν([a,−y))

ν([a,−y])
1

ν([a,−y))
∫
x 1[a,−y)(x)ν(dx) < −y,

which is a contradiction. Thus, ν([a,−y)) = 0.
If ν ∈ C̄ is specified using density (A.9) then, µ-a.s., 1[a,−y)+dν/dµ > 0.
Second, we consider the case in which µ((−y, q)) > 0. By Proposition 5.7, there exists a

µ-equivalent measure ν ∈ C̄. The claim follows from Remark 5.3.

3. This follows from Proposition 5.7 and Remark 5.3.

4. If λ = d then ν((−∞, q)) = 0 for ν ∈ C̄, by (5.5). In case (ii), assume for ν ∈ C̄ that
ν((a, q)) > 0. From (5.7) we then obtain

−y = 1

λ

∫
x 1(−∞,q)(x)ν(dx)+ d

λ
q = λ− d

λ

1

λ− d

∫
x 1[r,q)(x)ν(dx)+ d

λ
q > −y,

which is a contradiction. Thus, ν((a, q)) = 0. In case (iii), assume for ν ∈ C̄ that ν([a, r)) > 0.
Arguing analogously, we find that ν([a, r)) = 0.

Finally, set N := (−∞, q) in case (i), N := (a, q) in case (ii), and N := [a, r) in case (iii).
Define ν ∈ C̄ according to density (A.10). Then, µ-a.s., 1N +dν/dµ > 0.
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