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NONPARAMETRIC ESTIMATION OF
TIME-CHANGED LÉVY MODELS
UNDER HIGH-FREQUENCY DATA

JOSÉ E. FIGUEROA-LÓPEZ,∗ Purdue University

Abstract

Let {Zt }t≥0 be a Lévy process with Lévy measure ν, and let τ(t) = ∫ t
0 r(u) du, where

{r(t)}t≥0 is a positive ergodic diffusion independent from Z. Based upon discrete
observations of the time-changed Lévy process Xt := Zτt during a time interval
[0, T ], we study the asymptotic properties of certain estimators of the parameters
β(ϕ) := ∫

ϕ(x)ν(dx), which in turn are well known to be the building blocks of several
nonparametric methods such as sieve-based estimation and kernel estimation. Under
uniform boundedness of the second moments of r and conditions on ϕ necessary for the
standard short-term ergodic property limt→0 E ϕ(Zt )/t = β(ϕ) to hold, consistency and
asymptotic normality of the proposed estimators are ensured when the time horizon T
increases in such a way that the sampling frequency is high enough relative to T .

Keywords: Lévy process; nonparametric estimation; high-frequency-based inference;
stochastic volatility
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1. Introduction

Historically, Brownian motion has been the model of choice to describe the evolution of
a random measurement whose value is the result of a large number of small shots occurring
through time with high frequency. This is indeed the situation with stock prices whose value
is the result of a high number of agents posting bids and asking prices almost at all times.
However, processes exhibiting infinitely many jumps in any finite time horizon [0, T ] are
arguably better approximations to such high-activity stochastic processes. A Lévy process is
a natural extension of Brownian motion which preserves the tractable statistical properties of
its increments, but relaxes the continuity of paths. The previous considerations motivated an
explosion of financial-price models driven by Lévy processes with infinite jump activity. The
simplest of these models postulates that the price of a commodity (say a stock) at time t is
determined by

St := S0eXt , (1.1)

where X := {Xt }t≥0 is a Lévy process. Even this simple extension of the classical Black–
Scholes model, in which X is simply a Brownian motion with drift, is able to accommodate
several features commonly observed in the returns of financial assets, such as heavy tails, high-
kurtosis, and asymmetry. Among the better known models are the variance Gamma model
of [19], the CGMY model of [5], and the generalized hyperbolic motion of [1] and [9] (see
also [2] and [8]).
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Even though the geometric Lévy paradigm (1.1) incorporates several desirable stylized
features, the model has several shortcomings, especially in accounting for the so-called volatility
clustering and leverage phenomena exhibited by real financial data. Roughly speaking, the
former effect refers to the fact that there are periods of high variability in the market, followed
by periods of low variability. People usually say that ‘high-volatility’ events tend to cluster in
time. Leverage refers to the empirical observation that returns seem to be negatively correlated
with volatility. These two effects cannot be captured by model (1.1). To explain why this is the
case and to motivate the use of random clocks, let us study the realized variation up to time t
of the log returns in the periods [t0, t1], . . . , [tn−1, tn]:

Vπ(t) :=
∑

{i : ti≤t}
log2

(
Sti

Sti−1

)
, (1.2)

where π : t0 = 0 < t1 < · · · < tn := T < ∞. When the mesh π̄ := maxi{ti − ti−1} of the
partition is small, we can think of the increment Vπ(t) − Vπ(s) as a measure of the volatility
of the stock during the period [s, t]. Under model (1.1),

Vπ(t) =
∑

{i : ti≤t}
(Xti −Xti−1)

2,

which is well known to converge, in probability, to the quadratic variation of the process,

[X]t := σ 2t +
∑
s≤t

�Xs

as π̄ → 0. In this case, the realized variations in consecutive time periods of equal time length
�, say Vπ(�), Vπ(2�)− Vπ(�), etc., will look like white noise (i.e. independent, identically
distributed random variables) and will not exhibit the volatility clustering phenomenon.

In recent years subordinated Lévy processes have been proposed to incorporate the inter-
mittency and leverage phenomena (cf. [4] and [6]). Concretely, these models postulate that the
asset price at time t is given by (1.1) with

Xt := Zτ(t), (1.3)

where Z is a Lévy process and {τ(t)}t≥0 stands for a nondecreasing absolutely continuous
process. This approach leads to a geometric time-changed Lévy model:

St = S0eZτ(t) ,

where the process τ plays the role of a ‘business’ clock which may reflect nonsynchronous
trading effects or a ‘cumulative measure of economic activity’. To incorporate volatility
clustering, random clocks {τ(t)}t≥0 of the form

τ(t) :=
∫ t

0
r(u) du, (1.4)

with {r(t)}t≥0 being a positive mean-reverting process, are plausible choices. This crucial
observation was first noticed by Carr et al. [6], who specialized further their model to consider
particular parametric models for Z (such as normal inverse Gaussian or variance gamma
processes) and explicit positive ergodic diffusions for r such as the Cox–Ingersoll–Ross (CIR)
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Nonparametric estimation of time-changed Lévy models 1163

process. Roughly speaking, the rate process r controls the volatility of the process; for instance,
in time periods where r is high the ‘business time’τ runs faster, resulting in more frequent jump
times. More formally, under model (1.1) withX as in (1.3) and assuming that τ is independent
of the Lévy process Z, the realized variation (1.2) of the log returns converges to

σ 2τ(t)+
∑
s≤τ(t)

�Zs,

where σ is the variance of the Brownian component of Z. The observable volatility during a
time period [t, u] will be given by

σ 2{τ(u)− τ(t)} +
∑

τ(t)<s≤τ(u)
�Zs.

Thus, under (1.4) with a mean-reverting process {r(t)}t≥0, there will be periods [t, u] of high
volatility (which correspond to periods where the process r takes on a high level) and periods
[t, u] of low volatility (which correspond to periods where r takes on a low level).

Time-changed Lévy processes are one step further in the trend of increasingly complex
models that are aimed at incorporating the so-called stylized features of asset prices. Con-
siderably less effort has been devoted to analyzing the potential departures from the presumed
model. One recent approach to deal with the latter issue is the adoption of general nonparametric
models for the functional parameters of the underlying process, hence reducing the estimation
bias resulting from assuming an inadequate parametric model. In the case of a Lévy model Z,
this parameter could be the so-called Lévy density s(·), which dictates the jump dynamics of
the process and is the main object of interest in the present paper. The value of s at a point
x0 determines how frequently jumps of size close to x0 occur per unit time. Concretely, the
function s is such that ∫

A

s(x) dx = 1

t
E

[∑
s≤t

χ
A
(�Zs)

]

for any Borel set A and t > 0. Here, �Zt ≡ Zt − Zt− denotes the magnitude of the jump of
Z at time t , and χ

A
(x) = 1 if x ∈ A and 0 otherwise. Thus,

ν(A) :=
∫
A

s(x) dx,

called the Lévy measure of the process, is the average number of jumps (per unit time) whose
magnitudes fall in the set A. For instance, if ν((0,∞)) = 0 then Z will exhibit only jumps of
negative size. In the context of financial applications, an empirical assessment of the possible
sudden price shifts of the underlying assets is critical as these shifts play a key role in developing
appropriate risk management and investment strategies.

The challenge of devising nonparametric methods for the Lévy density s of Z lies in the fact
that the jumps are latent (unobservable) variables, since in practice only discrete observations
of the process are available. It is natural to devise statistical methodologies based on high-
frequency observations since this type of data will contain more relevant information about
the jumps of the process and, hence, about the Lévy density s. Such a high-frequency-based
statistical approach has played a central role in the recent literature on nonparametric estimation
for Lévy processes (see, e.g. [10], [13], [20], [24], and [25]). For instance, under discrete
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observations of a pure Lévy process X at times π : 0 = t0 < · · · < tn = T , Woerner [24], and
also independently Figueroa-López [10], proposed the estimators

β̂π (ϕ) := 1

tn

n∑
k=1

ϕ(Xtk −Xtk−1) (1.5)

as consistent estimators for the integral parameter

β(ϕ) :=
∫
ϕ(x)s(x) dx, (1.6)

where ϕ is a given ‘test function’. We can think of statistic (1.5) as the realized ϕ-variation
of the process X per unit time based on the sampling observations Xt0 , . . . , Xtn . In [10], the
proposed estimators were used to devise nonparametric estimators ŝ for s via Grenander’s
method of sieves. The problem of model selection was analyzed further in [13] and [15], where
it was proved that sieve estimators s̃T can match the rate of convergence of the minimax risk
of estimators ŝ. Concretely, it turns out that

lim sup
T→∞

E ‖s − s̃T ‖2

inf ŝ sups∈	 E ‖s − ŝ‖2 < ∞,

where [0, T ] is the time horizon over which we observe the process X, 	 is a certain class
of smooth functions, and the infimum in the denominator is over all estimators ŝ which are
based on the whole trajectory {Xt }t≤T . The optimal rate of the estimator s̃T is attained by
appropriately choosing the dimension of the sieve and the sampling frequency as a function of
T and the smoothness of the class of functions 	. In [11], the sieve estimators of [13] were
also used to build confidence intervals and confidence bands for the Lévy density s.

In this paper we consider the problem of making statistical inferences for model (1.3) when
we have at hand high-frequency sampling observations ofX. A recent treatment of the problem
of predicting (estimating) the business clock process τ(t) := ∫ t

0 r(u) du was given in [25]. We
concentrate here on estimating the Lévy density s of the Lévy process Z. A natural question is
the following: how does the random time τ affect the statistical properties of estimator (1.5)?
We prove that when the rate process r in (1.4) is a positive ergodic diffusion independent of
the Lévy process Z, (1.5) is still a consistent estimator for (1.6) up to a constant, provided
that the time horizon T and sampling frequency converge to infinity at suitable rates. Roughly
speaking, suppose that the following conditions hold true.

(i) ϕ is a continuous, locally bounded function such that

sup
t>0

1

t
E |ϕ(Zt )| < ∞, (1.7)

and ϕ(x) → 0 as x → 0 at an ‘appropriate rate’ (see Condition 2.1, below).

(ii) {r(t)}t≥0 is an ergodic positive solution of the stochastic differential equation

dr(t) = b(r(t)) dt + σ(r(t)) dWt,

such that r is independent of Z and

sup
t≥0

E r2(t) < ∞. (1.8)
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(iii) The time horizon T and the sampling times πT are such that T → ∞ and T δ̄2
T → 0 as

T → ∞, where δ̄T is the largest time span between consecutive observations.

Then it follows that, as T → ∞,

β̂πT (ϕ)
p−→ ζ̄ β(ϕ), E β̂πT (ϕ) → ζ̄ β(ϕ), (1.9)

where ζ̄ := ζ̄ (r) is the expectation of the invariant distribution of r . Furthermore, under the
stronger assumption that

sup
t≥0

E |r(t)|2+ε < ∞ (1.10)

for some ε > 0, the condition T δ̄2
T → 0 as T → ∞ is not needed for (1.9).

By an ergodic diffusion we mean a strong continuous Markov process {r(t)}t≥0 that takes
values on an interval I := (a, b) ⊂ R, and that is regular and recurrent (see, e.g. [17, pp. 376]).
Such a process admits a unique invariant probability measure ζ , which in turn satisfies the
ergodic property

lim
t→∞

1

t

∫ t

0
g(r(u)) du =

∫
I

g(x)ζ(dx) almost surely (a.s.) (1.11)

for any g ∈ L
1(ζ ) (cf. [17, Theorem 20.14]). A model that meets condition (ii) and that is a

typical choice in applications (cf. [6]) is the CIR process

dr(t) = α(m− r(t)) dt + v
√
r(t) dWt,

with positive α, v, and m such that αm/v2 > 1
2 . It will turn out that the consistency (1.9) is a

consequence of the ergodic property (1.11) and the consistency of the estimator (1.5) when the
underlying process X is a pure Lévy process.

Let us remark that the independence assumption between Z and r is a drawback from a
financial point of view. We could think of ad hoc treatments to incorporate certain degrees of
dependence, such as common driving factors for r and Z, but we will not explore this direction
in this work. Note also that without loss of generality we can assume that ζ̄ (r) := 1 since,
for an arbitrary Lévy process Z and a diffusion r , we can write the time-changed Lévy process
(1.3)–(1.4) as follows:

Zτ(t) = Ẑτ̂ (t),

with Ẑt := Zζ̄(r)t , τ̂ (t) := ∫ t
0 r̂(u) du, and r̂(t) := r(t)/ζ̄ (r). The process Ẑ is again a Lévy

process satisfying (1.7) with Lévy density ζ̄ (r)s. Similarly, r̂ is a positive ergodic solution of
the stochastic differential equation

dr̂(t) = b̂(r̂(t)) dt + σ̂ (r̂(t)) dWt,

with b̂(x) := ζ̄ (r)−1b(ζ̄ (r)x) and σ̂ (x) := ζ̄ (r)−1σ(ζ̄ (r)x). Clearly, r̂ satisfies (1.8) and
ζ̄ (r̂) = 1.

In the last part of the paper we obtain a central limit theorem for the estimators β̂πT (ϕ) in
(1.5) with scaling constant T 1/2 and centering constants

β̌πT (ϕ) := 1

tn

n∑
k=1

E[ϕ(Xtk −Xtk−1) | F X,τ
tk−1

],

where F X,τ
t = σ(Xu : u ≤ t) ∨ σ(τ(u) : u ≤ t). Concretely, using central limit theorems for

https://doi.org/10.1239/aap/1261669591 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1261669591


1166 J. E. FIGUEROA-LÓPEZ

martingale differences (see, e.g. [3, Section 18]), we show that

T 1/2(β̂πT (ϕ)− β̌πT (ϕ))
d−→ σ(ϕ)N (0, 1)

as T → ∞ and δ̄T → 0, with σ 2(ϕ) := ζ̄ β(ϕ2). Under certain conditions, the statistics
β̌πT (ϕ) themselves satisfy the central limit theorem

T 1/2(β̌πT (ϕ)− ζ̄ β(ϕ))
d−→ β(ϕ)�1/2N (0, 1)

whenever T δ̄T → 0 as n → ∞, for a certain positive constant � depending on the process r .
Such a result suggests a central limit theorem of the form

T 1/2(β̂πT (ϕ)− ζ̄ β(ϕ))
d−→ (σ 2(ϕ)+ β2(ϕ)�)1/2N (0, 1);

however, the latter limit is still under investigation and will be addressed in a future work.
The paper is structured as follows. In Section 2 we show the consistency for time-changed

Lévy models with a general random clock τ . We propose the limit

lim
n→∞ E

[
1

τ(tnn )

n∑
k=1

(�nkτ) 1{�nkτ≥t0}
]

= 0 (1.12)

for arbitrary t0 > 0, where�nkτ := τ(tnk )− τ(tnk−1), as a key assumption on the random clock τ
for consistency to hold. As an application, the case of a pure Lévy model is considered, extending
a former result by Woerner [24] to nonregular sampling schemes and simpler functions ϕ. In
Section 3 we proceed to investigate conditions under which (1.12) holds when τ is driven
by a positive ergodic diffusion {r(t)}t≥0 via (1.4). The case of general sampling schemes is
discussed in Section 4. In particular, it is proved that, under (1.10), the rate condition T δ̄2

T → 0
is not needed for consistency. Finally, the asymptotic normality of the estimators is addressed
in Section 5.

2. Estimation of integrals of the Lévy measure

We consider a time-changed Lévy model of the form (1.3), where {Zt }t≥0 is a Lévy process
with generating triplet (b, σ 2, ν) and {τ(t)}t≥0 is as in (1.4) for a general nonnegative process
r that is independent of Z. Suppose that we sample the process X over a finite time horizon
[0, Tn] at discrete times 0 = tn0 < · · · < tnn = Tn. In this section we provide conditions for the
convergence in probability of the realized ϕ-variations

β̂n(ϕ) := 1

tnn

n∑
k=1

ϕ(Xtnk
−Xtnk−1

) (2.1)

as the time-horizon Tn tends to ∞ and the largest time span between observations, δ̄n :=
maxk{tnk+1 − tnk }, tends to 0. In the case of a pure Lévy process (namely, τ(t) = t and X = Z)
and equally spaced time points, Woerner [24] (see Theorems 4.2 and 5.1 therein) considered
this problem under some additional regularity conditions that can be greatly simplified, as will
be shown here (see Theorem 2.2, below).

In order to study the behavior of (2.1), we first survey the asymptotics of the following
statistics:

β̃n(ϕ) := 1

τ(tnn )

n∑
k=1

ϕ(Zτ(tnk )
− Zτ(tnk−1)

), (2.2)
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when the time horizon Tn = tnn → ∞ and δ̄n → 0. Throughout this section, we shall write
τnk := τ(tnk ). Note that, owing to the independence of Z and τ , the convergence in probability
of β̃n(ϕ) will follow from the pure Lévy case (Z = X) if τnn → ∞ a.s. as n → ∞, and

max
k
(τnk − τnk−1) → 0 a.s. as n → ∞. (2.3)

However, condition (2.3) is rather unsatisfactory as it translates into assuming that almost all
paths t → τ(t) are uniformly continuous in all R+ since the time horizon tnn is increasing.

We first review a crucial preliminary result. It is well known that

lim
t→0

1

t
E ϕ(Xt ) =

∫
ϕ(x)ν(dx) (2.4)

for any bounded ν-continuous function ϕ vanishing in a neighborhood of the origin (cf. [21,
Corollary 8.9]). Consider the following class of locally bounded (but potentially unbounded)
functions:

S(ν) :=
{
g : R → R+ :

∫
|x|>1

g(x)ν(dx) < ∞, g(x) = p(x)q(x),

where p is subadditive and q is submultiplicative

}
. (2.5)

Building on results in [16] and [24], Figueroa-López [12] proved that the limit

β̆(ϕ) := lim
t→0

1

t
E ϕ(Xt ) (2.6)

exists provided that the following conditions hold.

Conditions 2.1. (i) ϕ is ν-continuous and locally bounded.

(ii) There exists a function g in S(ν) such that

lim sup
|x|→∞

|ϕ(x)|
g(x)

< ∞.

(iii) ϕ(x) → 0 as x → 0 under any of the following conditions:

(a) ϕ(x) = o(|x|2);
(b) ϕ(x) = O(|x|r ) for some r ∈ (1, 2) such that

∫
(|x|r ∧ 1)ν(dx) < ∞ and σ = 0;

(c) ϕ(x) = o(|x|), ∫
(|x| ∧ 1)ν(dx) < ∞, and σ = 0;

(d) ϕ(x) = O(|x|r ) for some r ∈ (0, 1) such that
∫
(|x|r ∧ 1)ν(dx) < ∞, σ = 0, and

b̄ := b − ∫
|x|≤1 xν(dx) = 0;

(e) ϕ(x) ∼ x2;

(f) ϕ(x) ∼ |x| and σ = 0.

https://doi.org/10.1239/aap/1261669591 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1261669591


1168 J. E. FIGUEROA-LÓPEZ

Moreover, (2.6) is given as follows, depending on which condition in Conditions 2.1(iii) is
satisfied:

β̆(ϕ) :=

⎧⎪⎨
⎪⎩
β(ϕ) if any (a)–(d) is true,

σ 2 + β(ϕ) if (e) is true,

|b̄| + β(ϕ) if (f) is true,

(2.7)

where, as before, β(ϕ) := ∫
ϕ(x)ν(x) dx. Note that Conditions 2.1 imply that β(|ϕ|) < ∞.

We are ready to study the asymptotic behavior of (2.2). The following result gives conditions
for asymptotic unbiasedness.

Proposition 2.1. Assume that the following statements hold:

(i) ϕ is a continuous function satisfying Conditions 2.1 and

Mϕ := sup
t>0

1

t
E |ϕ(Zt )| < ∞; (2.8)

(ii) the process {τ(t)}t≥0 is nondecreasing and càdlàg (right continuous with left limits),
independent of Z, such that τ(t) > 0 a.s. for any t > 0, and

lim
n→∞ E

[
1

τ(tnn )

n∑
k=1

(�nkτ) 1{�nkτ≥t0}
]

= 0 (2.9)

for any t0 > 0, where �nkτ := τ(tnk )− τ(tnk−1).

Then, the statistics β̃n(ϕ) in (2.2) are asymptotically unbiased estimators for the parameter
β̆(ϕ) in (2.7) as n → ∞.

Proof. Conditioning on {τnk }k≤n and using the independence between τ and X (see
Appendix B for more details), we obtain

E β̃n(ϕ) = E
1

τnn

n∑
k=1

Hϕ(�
n
kτ), (2.10)

where Hϕ(t) := E ϕ(Zt ). Then,

|Eβ̃n(ϕ)− β̆(ϕ)| ≤ E
1

τnn

n∑
k=1

∣∣∣∣Hϕ(�
n
kτ)

�nkτ
− β̆(ϕ)

∣∣∣∣�nkτ,

under the convention that 0/0 = 0. For ε > 0, let t0 := t0(ε) > 0 such that if t < t0 then
|Hϕ(t)/t − β̆(ϕ)| < ε. Then, breaking up the above summation into the ks such that�nkτ < t0
and its complement, and using the fact that

∑
k �

n
kτ = τnn , we obtain

|Eβ̃n(ϕ)− β̆(ϕ)| ≤ ε + (Mϕ + |β̆(ϕ)|)E
1

τnn

n∑
k=1

�nkτ 1{�nkτ≥t0} → ε as n → ∞.

This proves the result since ε is arbitrary.

We proceed to show that the conditions above are also sufficient for the consistency of
estimator (2.2). We first need to introduce a truncated version of (2.2) via the following lemma.
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Lemma 2.1. Let

β̃tn(ϕ) := 1

τnn

n∑
k=1

ϕ(Zτnk
− Zτnk−1

) 1{|ϕ(Zτn
k
−Zτn

k−1
)|≤τnn }, (2.11)

and assume that Proposition 2.1(i)–(ii) hold as well as

(i) τnn → ∞ a.s.

Then,
lim
n→∞ E[β̃tn(ϕ)− β̃n(ϕ)] = 0. (2.12)

Proof. For a given T0 > 0, let t0 := t0(T0) be such that if 0 < t < t0 then

E[|ϕ(Zt )| 1{|ϕ(Zt )|>T0}] ≤ 2t

(∫
|ϕ(x)| 1{|ϕ(x)|>T0} ν(dx) ∨ T −1

0

)
. (2.13)

Such a t0 > 0 exists since |ϕ(·)| 1{|ϕ(·)|>T0} satisfies Conditions 2.1 with behavior (iii)(a) and,
thus,

lim
t→0

1

t
E[|ϕ(Zt )| 1{|ϕ(Zt )|>T0}] =

∫
|ϕ(x)| 1{|ϕ(x)|>T0} ν(dx).

Note that

E |β̃tn(ϕ)− β̃n(ϕ)| ≤ E
1

τnn

n∑
k=1

|ϕ(Zτnk − Zτnk−1
)| 1{|ϕ(Zτn

k
−Zτn

k−1
)|>τnn }

≤ E
1

τnn

n∑
k=1

|ϕ(Zτnk − Zτnk−1
)| 1{τnn≤T0}

+ E
1

τnn

n∑
k=1

|ϕ(Zτnk − Zτnk−1
)| 1{|ϕ(Zτn

k
−Zτn

k−1
)|>T0} . (2.14)

Conditioning on {τnk }k≤n in the last two expectations and using the stationary increments of Z,
it is evident that E |β̃tn(ϕ)− β̃n(ϕ)| can be bounded by

E
1

τnn

n∑
k=1

H|ϕ|(�nkτ) 1{τnn≤T0} + E
1

τnn

n∑
k=1

H|ϕ| 1{|ϕ|>T0}(�
n
kτ), (2.15)

where, as before, Hϕ(t) := E ϕ(Zt ). Using the facts that Mϕ := supt>0(1/t)E |ϕ(Zt )| < ∞
and

∑n
k=1 τ

n
k = τnn , the first term in (2.15) is bounded byMϕ P(τnn ≤ T0). Similarly, using the

same identities and (2.13), the second term can be bounded as follows:

E
1

τnn

n∑
k=1

H|ϕ| 1{|ϕ|>T0}(�
n
kτ){1{�nkτ<t0} + 1{�nkτ≥t0}}

≤ 2

(∫
|ϕ(x)| 1{|ϕ(x)|>T0} ν(dx) ∨ T −1

0

)
+Mϕ E

[
1

τ(tnn )

n∑
k=1

(�nkτ) 1{�nkτ≥t0}
]
.
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Putting the previous estimates together and using (2.9) and Lemma 2.1(i),

lim sup
n→∞

|E{β̃tn(ϕ)− β̃n(ϕ)}| ≤ 2

(∫
|ϕ(x)| 1{|ϕ(x)|>T0} ν(dx) ∨ T −1

0

)
,

which can be made arbitrarily small by taking T0 large enough.

Theorem 2.1. Under the conditions of Proposition 2.1 and Lemma 2.1(i), the statistics β̃n(ϕ)
in (2.2) are consistent estimators for β̆(ϕ) in (2.7).

Proof. We apply arguments similar to the weak law of large numbers for row-wise indepen-
dent arrays described in, e.g. [7, Theorem 5.2.3]. (The results in Chung [7, pp. 112–121] are
proved for independent and identically distributed random variables, but they can be readily
extended to row-wise independent arrays.) Let ε > 0. We first note that in light of Lemma 2.1
and Proposition 2.1, there exists n0 > 0 such that

|Eβ̃tn(ϕ)− β̆(ϕ)| < ε

2
(2.16)

for any n ≥ n0. Next, assuming that (2.16) holds and noticing that β̃n(ϕ) = β̃tn(ϕ) on the event
E = {|ϕ(Zτnk − Zτnk−1

)| ≤ τnn for all k},

P(|β̃n(ϕ)− β̆(ϕ)| > ε) ≤ P(|β̃n(ϕ)− β̆(ϕ)| > ε,Ec)+ P(|β̃tn(ϕ)− β̆(ϕ)| > ε,E)

≤ P(Ec)+ P(|β̃tn(ϕ)− β̆(ϕ)| > ε)

≤ P(Ec)+ P

(
|β̃tn(ϕ)− E β̃tn(ϕ)| >

ε

2

)
.

Using Chebyshev’s inequality, we obtain, for n ≥ n0,

P(|β̃n(ϕ)− β̆(ϕ)| > ε) ≤ Bn + 4

ε2Cn, (2.17)

where

Bn :=
n∑
k=1

P(|ϕ(Zτnk − Zτnk−1
)| > τnn ), Cn := var(β̃tn(ϕ)).

We show that Bn and Cn vanish. First, using Markov’s inequality, under the convention that
0/0 = 0,

Bn ≤ E

[
1

τnn

n∑
k=1

|ϕ|(Zτnk − Zτnk−1
) 1{|ϕ|(Zτn

k
−Zτn

k−1
)>τnn }

]
,

which is the expression on the right-hand side of (2.14) and, hence, it can be proved to converge
to 0 along the same lines as in the proof of Lemma 2.1.

Next, using the law of total variance, conditioning on τn· = (τn1 , . . . , τ
n
n ),

var(β̃tn(ϕ)) = var(E[β̃tn(ϕ) | τn· ])+ E[var(β̃tn(ϕ) | τn· )]. (2.18)
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Let us denote by Dn and En the two terms on the right-hand side of (2.18). Conditioning on
τn· , the terms in (2.11) are independent, and we can write

Dn = var

(
1

τnn

n∑
k=1

E[ϕ(Zt ) 1{|ϕ(Zt )|≤s}]|t=�nkτ, s=τnn
)
, (2.19)

En ≤ E

[
1

(τnn )
2

n∑
k=1

E[ϕ2(Zt ) 1{|ϕ(Zt )|≤s}]|t=�nkτ, s=τnn
]
. (2.20)

Clearly,

Dn ≤ 2 var

(
1

τnn

n∑
k=1

E[ϕ(Zt ) 1{|ϕ(Zt )|>s}]|t=�nkτ, s=τnn
)

(2.21)

+ 2 var

(
1

τnn

n∑
k=1

Hϕ(�
n
kτ)− β̆(ϕ)

)
, (2.22)

where, as before,Hϕ(t) := E[ϕ(Zt )]. Using the inequality var(X) ≤ EX2, estimate (2.8), and
the fact that τnn = ∑n

k=1 τ
n
k , the term on the right-hand side of (2.21) can be bounded by

Mϕ E

[
1

τnn

n∑
k=1

E[|ϕ|(Zt ) 1{|ϕ(Zt )|>s}]|t=�nkτ, s=τnn
]
,

which again converges to 0 by the same arguments following (2.14) in Lemma 2.1. Again,
using var(X) ≤ EX2, (2.8), and τnn = ∑n

k=1 τ
n
k , the term in line (2.22) can be bounded as

follows for any fixed ε > 0:

(Mϕ + |β̆(ϕ)|)E
1

τnn

n∑
k=1

∣∣∣∣ 1

�nkτ
Hϕ(�

n
kτ)− β̆(ϕ)

∣∣∣∣�nkτ

≤ (Mϕ + |β̆(ϕ)|)2 E
1

τnn

n∑
k=1

�nkτ 1{�nkτ≥t0} +(Mϕ + |β̆(ϕ)|)ε,

where t0 := t0(ε) is chosen such that |Hϕ(t)/t − β̆(ϕ)| ≤ ε. In view of (2.9) and since ε > 0
is arbitrary, we conclude that term (2.22) converges to 0 and so does Dn.

We now prove that the term on the right-hand side of (2.20) converges to 0. We shall use the
inequality

E |Z|2 1{|Z|≤s} ≤ 2s
∫
(0,1)

E[|Z| 1{|Z|>us}] du, (2.23)

which can be easily deduced as follows:

E |Z|2 1{|Z|≤s} = 2
∫ s

0
v P(v < |Z| ≤ s) dv

≤ 2
∫ s

0
v P(|Z| > v) dv

≤ 2s2
∫ 1

0
uP(|Z| > us) du

≤ 2s
∫ 1

0
E[|Z| 1{|Z|>us}] du.
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Applying (2.23) to each term in (2.20), En can be bounded by

E

[
2

τnn

n∑
k=1

∫ 1

0
E[|ϕ(Zt )| 1{|ϕ(Zt )|>us}]|t=�nkτ, s=τnn du

]
≤ 2

∫ 1

0
sn(u) du, (2.24)

where

sn(u) := E

[
1

τnn

n∑
k=1

E[|ϕ(Zt )| 1{|ϕ(Zt )|>us}]|t=�nkτ, s=τnn
]
.

Note that sn(u) ≤ Mϕ for all u ∈ [0, 1]. Fix u0 ∈ (0, 1) and 0 < T0 < ∞. There exists
t0 := t0(u0, T0) such that

0 ≤ E[|ϕ(Zt )| 1{|ϕ(Zt )|>u0T0}] ≤ 2t
∫

|ϕ(x)| 1{|ϕ(x)|>u0T0} ν(dx) (2.25)

for all 0 < t < t0. Using the fact that

1{|ϕ(Zt )|>us} ≤ 1{s≤T0} + 1{|ϕ(Zt )|>u0T0}

for any u ≥ u0, we have

sn(u) ≤ 2Mϕ P(τnn ≤ T0)+ E

[
2

τnn

n∑
k=1

E[|ϕ(Zt )| 1{|ϕ(Zt )|>u0T0}]|t=�nkτ
]

for u ≥ u0. Next, by breaking up the above summation into those k for which�nk ≥ t0 and those
for which �nk < t0, and using the fact that E[|ϕ(Zt )|] ≤ Mϕt and (2.25), for any u0 ≤ u ≤ 1,

sn(u) ≤ 2Mϕ P(τnn ≤ T0)+ 2Mϕ E
1

τnn

n∑
k=1

�nkτ 1{�nkτ≥t0} + 4
∫

|ϕ| 1{|ϕ|>u0T0} dν.

Breaking the integral in (2.24),

En ≤ 2u0Mϕ + 2Mϕ E
1

τnn

n∑
k=1

�nkτ 1{�nkτ≥t0} +2Mϕ P(τnn ≤ T0)

+ 4
∫

|ϕ(x)| 1{|ϕ(x)|>u0T0} ν(dx).

In view of Proposition 2.1(ii) and Lemma 2.1(i),

lim sup
n→∞

En ≤ 2u0Mϕ + 4
∫

|ϕ(x)| 1{|ϕ(x)|>u0T0} ν(dx),

which can be made arbitrarily small by taking small enough u0 and large enough T0. This
proves that the second term on the right-hand side of (2.18), and thereof (2.17), vanishes as
n → ∞.

Remark 2.1. 1. Clearly, (2.8) will be satisfied if Conditions 2.1 hold and ϕ is bounded.
Moreover, (2.8) holds as well, ifϕ has linear growth, Conditions 2.1 are satisfied, andZ has finite
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first moment. Indeed, in light of (2.6), there exists t0 > 0 such that sup0<t<t0 E |ϕ(Zt )|/t < ∞.
Suppose that |ϕ(x)| ≤ c|x|, whenever |x| > x0 for some x0 > 0. Then,

sup
t≥t0

1

t
E |ϕ(Zt )| ≤ c sup

t≥t0
1

t
E |Zt | + 1

t0
sup

|x|≤x0

|ϕ(x)|.

Hence, it remains to show that the first term on the right-hand side of the above inequality is
bounded. This follows from the inequality

E |Zt | ≤ t� E |Z1| + EZ∗
1 ,

where Z∗
1 := supt≤1 |Zt |. Here EZ∗

1 < ∞ in light of Theorem 25.18 of [21], which is actually
stated for submultiplicative moment functions g, but which can be readily modified to cover
subadditive g as well.

2. Suppose now that ϕ has quadratic growth, Conditions 2.1 are satisfied, and that Z has finite
second moment. In this case, there exist constants c1, c2 > 0 such that

E |ϕ(Zt )| ≤ c1t + c2t
2

for all t > 0. Proposition 2.1 and Lemma 2.1 hold true if we impose Lemma 2.1(i) and the
following condition instead of (2.9):

lim
n→∞ E

[
1

τ(tnn )

n∑
k=1

(�nkτ)
2 1{�nkτ≥t0}

]
= 0

for all t0 > 0. For Theorem 2.1 to hold true, Proposition 2.1(ii) suffices and, for any t0 > 0,

lim
n→∞ E

[
1

τ(tnn )

n∑
k=1

(�nkτ)
3 1{�nkτ≥t0}

]
= 0. (2.26)

More precisely, when trying to show that the different terms of (2.17) vanish, the following
limit naturally appears:

lim
n→∞ E

[
1

τ(tnn )

n∑
k=1

(�nkτ)
2 1{�nkτ≥t0}

]2

,

which can be linked to (2.26) in view of Jensen’s inequality:
(

1

τnn

n∑
k=1

ck�
n
k

)2

≤ 1

τnn

n∑
k=1

c2
k�

n
k a.s.

We complete this section with some remarks concerning the pure Lévy model where τ(t) ≡ t

andX = Z. This case was studied in [24] (see their Theorem 5.1) for regular sampling schemes
and functions ϕ satisfying certain regularity conditions. In light of the results of this section,
under the pure Lévy model, β̂n(ϕ) = β̃n(ϕ) and Proposition 2.1(ii) is satisfied whenever

δ̄n := maxk{tnk+1 − tnk } → 0. Thus, β̂n(ϕ)
p−→ β̆(ϕ), provided that Tn → ∞, δ̄n → 0, and ϕ

satisfies Proposition 2.1(i). It turns out that (2.8) is not needed, as the following result shows.
Its proof is similar to that of Theorem 2.1 and is thus omitted (see [14] for the details).

Proposition 2.2. Let X be a Lévy process with triplet (b, σ 2, ν), let ϕ be a function satisfying
Conditions 2.1, and let β̂π (ϕ) be estimator (1.5). Then, for any 0 < ε < 1, there exist T < ∞
and δ > 0 such that P(|β̂π (ϕ)− β̆(ϕ)| > ε) < ε, whenever tn > T and maxk(tk − tk−1) < δ.
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3. Random clocks driven by ergodic diffusions

In this section we consider random clocks {τ(t)}t≥0 of the form (1.4) with r(t) := g(r̃(t)),
where g is a nonnegative function and {r̃t }t≥0 is an ergodic diffusion process; that is, {r̃(t)}t≥0
is a regular recurrent strong Markov process with continuous paths taking values on an interval
I = (a, b) ⊂ R (see, e.g. [17]). As explained in the introduction, mean-reverting processes r̃
and monotone continuous functions g are especially attractive since in this case the resulting
time-changed Lévy process X(t) := Zτ(t) will exhibit the volatility clustering effect.

Proposition 3.1. Consider the model (1.3)–(1.4) under the following setting:

(a) Z is a Lévy process with Lévy triplet (σ 2, b, ν);

(b) the instantaneous rate process r is independent of Z and is given by r(t) := g(r̃(t)) for
a measurable nonnegative function g and an ergodic diffusion {r̃t }t≥0 with

m2(g) := sup
t≥0

E g2(r̃(t)) < ∞ (3.1)

and invariant measure ζ satisfying ζ̄ (g) := ∫
g(x)ζ(dx) ∈ (0,∞).

Then, the statistics

β̂n(ϕ) := 1

Tn

n∑
k=1

ϕ(Xtnk
−Xtnk−1

) (3.2)

are consistent and asymptotically unbiased estimators for ζ̄ (g)β̆(ϕ) when Tn → ∞ and δ̄n :=
maxk(tnk − tnk−1) → 0, provided that

(i) ϕ is a continuous function satisfying Conditions 2.1 and (2.8);

(ii) (2.9) holds.

Proof. Note that

β̂n(ϕ) = β̃n(ϕ)

∫ Tn
0 g(r̃(u)) du

Tn
.

By the ergodic theorem (1.11), the last factor converges a.s. to ζ̄ (g) and, hence, Lemma 2.1(i)
is satisfied. Consistency is now clear in light of Theorem 2.1. For unbiasedness, first note that
r̄(t) := ∫ t

0 r(u) du/t is uniformly integrable since

sup
t>0

E

(
1

t

∫ t

0
r(u) du

)2

≤ sup
t>0

1

t

∫ t

0
E g2(r(u)) du ≤ m2(g) < ∞.

Also, by the ergodic theorem (1.11), limt→∞ r̄(t) = ζ̄ (g) a.s., and, thus,

lim
t→∞ E |r̄(t)− ζ̄ (g)| = 0. (3.3)

Next, we write

E β̂n(ϕ) = ζ̄ (g)E β̃n(ϕ)+ E

[(
τnn

tnn
− ζ̄ (g)

)
1

τnn

n∑
k=1

Hϕ(�
n
kτ)

]
.
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The first term on the right-hand side converges to ζ̄ (g)β̆(ϕ), while the absolute value of the
second term is bounded by

Mϕ E

∣∣∣∣τ
n
n

tnn
− ζ̄ (g)

∣∣∣∣ = Mϕ E |r̄(tnn )− ζ̄ (g)| → 0 as n → ∞.

In the case that g is bounded, condition (2.9), condition (3.1), and ζ̄ (g) < ∞ hold automat-
ically, and, thus, the following two limits are true:

β̂n(ϕ)
p−→ ζ̄ β̆(ϕ), E β̂n(ϕ) → ζ̄ β(ϕ), as n → ∞.

Given that r(t) = g(r̃) plays the role of volatility, we could argue that there is no reason
to assume that the volatility will take arbitrarily large values, and, thus, the boundedness
assumption for g is not completely implausible. Nevertheless, since an upper bound for g
cannot be determined in principle, it is natural to consider the case g(x) = x 1{x≥0}. Note that
in this case, for (3.1) to hold, it suffices that

m2 := sup
t≥0

E r̃2(t) < ∞. (3.4)

The following lemma gives a useful sufficient condition for (2.9) to hold.

Lemma 3.1. Under the setting of Proposition 3.1(a)–(b) with g(x) := x 1{x≥0}, condition (2.9)
is satisfied if

lim
m→∞ lim sup

n→∞
P

(
there exists k such that sup

t∈Ink
|r̃(t)− r̃(tnk−1)| ≥ 1

2

(
t0

δnk
−m

))
= 0

for any t0,m > 0, where Ink := [tnk−1, t
n
k ] and δnk := tnk−1 − tnk .

Proof. Fixm > 0. For n ≥ 1, let Bmn := {k ∈ {1, . . . , n} : supt∈[tnk−1,t
n
k ] r(t) < m}. Clearly,

lim sup
n→∞

E
1

τnn

∑
k∈Bmn

(�nkτ) 1{�nkτ≥t0} ≤ lim sup
n→∞

E
1

τnn

∑
k∈Bmn

(�nkτ) 1{δ̄n≥t0/m} = 0,

where the last limit follows from the fact that δ̄n → 0. Next, let

Cmn :=
{
k ∈ {1, . . . , n} : inf

t∈[tnk−1,t
n
k ]
r̃(t) ≥ m

}
.

Then,

lim sup
n→∞

E
1

τnn

∑
k∈Cmn

(�nkτ) 1{�nkτ≥t0} ≤ lim sup
n→∞

E

∫ Tn
0 r̃(u) 1{r̃(u)≥m} du∫ Tn
0 r̃(u) 1{r̃(u)≥0} du

,

=
∫ ∞
m
xζ(dx)∫ ∞

0 xζ(dx)
,

by the dominated convergence theorem and the ergodic theorem (1.11). Next, let Dmn := {k ∈
{1, . . . , n} : there exist u, v ∈ [tnk−1, t

n
k ] with r̃(u) < m < r̃(v)}. Now, if k ∈ Dmn is such that

�nkτ > t0 then supt∈[tnk−1,t
n
k ] r̃(t) ≥ t0/δ

n
k , and, thus, the following inequalities must be true:

sup
t∈[tnk−1,t

n
k ]

|r̃(t)− r̃(tnk−1)| ≥ 1

2

(
t0

δnk
−m

)
.
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If �mn denotes the event that there exists a k satisfying the above inequality then

lim sup
n→∞

E
1

τnn

∑
k∈Dmn

(�nkτ) 1{�nkτ≥t0} ≤ lim sup
n→∞

P(�mn ).

Putting together the previous estimates, for each m > 0,

lim sup
n→∞

E
1

τnn

n∑
k=1

(�nkτ) 1{�nkτ≥t0} ≤
∫ ∞
m
xζ(dx)∫ ∞

0 xζ(dx)
+ lim sup

n→∞
P(�mn ).

We finally make m → ∞.

The most well-known examples of diffusions are solutions to stochastic differential equations
of the form

dr̃(t) = b(r̃(t)) dt + σ(r̃(t)) dWt. (3.5)

Two important instances of mean-reverting diffusions of this kind are the Ornstein–Uhlenbeck
process and CIR processes (see Examples 3.1 and 3.2, below). Conditions for the solution of
(3.5) to be ergodic can be found in, e.g. [23]. We will make use of moment estimates for (3.5)
in order to conclude the sufficient conditions of Lemma 3.1. Under a linear growth condition
of the form

|b(x)| + |σ(x)| ≤ K(1 + |x|) (3.6)

for all x and a certain constant K < ∞, it turns out that

E
[

sup
0≤s≤h

|r̃(s0 + s)− r̃(s0)|2m
]

≤ kmh
m(1 + E |r̃(s0)|2m)ekmh (3.7)

for any s0 ≥ 0, 0 < h ≤ 1, and m ≥ 1, where km is a constant depending only on m and K .
We present the proof of the above estimate in Appendix A for the sake of completeness. We
are now ready to establish the consistency of the estimators in (3.2).

Proposition 3.2. Under the setting of Proposition 3.1(a)–(b) with g(x) := x 1{x≥0}, suppose
also that

(b′) r̃ satisfies (3.5) with the linear growth condition (3.6).

Then, the statistics β̂n(ϕ) in (3.2) are both consistent and asymptotically unbiased estimators
for the parameter ζ̄ β̆(ϕ) with ζ̄ := ∫ ∞

0 xζ(dx), provided that Proposition 3.1(i) holds and also
that Tn → ∞ and Tn(δ̄n)2 → 0 as n → ∞.

Proof. From Propositions 3.1 and Lemma 3.1, it suffices to prove that, for all t0,m > 0,

lim
n→∞

n∑
k=1

P

(
sup
t∈Ink

|r̃(t)− r̃(tnk−1)| ≥ 1

2

(
t0

�nk
−m

))
= 0.

Let n be large enough such that δ̄n < t0/(2m), and write cnk = (t0 − mδnk )/2 and κ = 4/t20 .
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Using the bound in (3.7), we can find a constant K such that

n∑
k=1

P

(
sup
t∈Ink

|r̃(t)− r̃(tnk−1)| ≥ cnk

δnk

)
≤ κ

n∑
k=1

(δnk )
2 E

[
sup
t∈Ink

|r̃(t)− r̃(tnk−1)|2
]

≤ (κ)(k2)

n∑
k=1

(δnk )
3(1 + E r̃2(tnk−1))e

k2δ
n
k

≤ K

n∑
k=1

(δnk )
3 ≤ K(δ̄n)2Tn → 0 as n → ∞.

Example 3.1. For positive α, v, and m, consider the mean-reverting CIR process

dr(t) = α(m− r(t)) dt + v
√
r(t)dWt,

where {Wt }t≥0 is a standard Brownian motion independent of the Lévy process X and
αm/v2 > 1

2 . The equation above has a weak nonnegative solution with unique positive
stationary distribution �(2mα/v2, v2/2α). Also, the conditional mean and variance given
r(0) are determined by

E[r(t) | r(0)] = r(0)e−αt +m(1 − e−αt ),

var(r(t) | r(0)) = r(0)
v2

α
(e−αt − e−2αt )+m

v2

2α
(1 − e−αt )2.

Clearly, this equation satisfies the linear growth condition (3.6) and all the conditions of
Proposition 3.2. Then, β̃n(ϕ) is an asymptotically unbiased estimator of β̆(ϕ), and the β̂n(ϕ)
in (3.2) are asymptotically consistent and unbiased estimators of mβ̆.

Example 3.2. Consider the mean-reverting Ornstein–Uhlenbeck process determined by the
stochastic differential equation

dr̃(t) = α(m− r̃(t)) dt + v
√

2α dWt, (3.8)

where {Wt }t≥0 is a standard Brownian motion independent of the Lévy processX. The solution
to (3.8) is

r̃(t) = m+ (r̃(0)−m)e−αt + v
√

2α
∫ t

0
e−α(t−s) dWs,

and, thus, given r̃(0), r̃(t)− r̃(0)e−αt ∼ N (m(1 − e−αt ), v2(1 − e−2αt )). Note that

lim
t→∞ E r̃2(t) = v2 +m2,

and the invariant distribution of r̃ is N (m, v2). Let b(x) := α(m − x) be the drift, and let
σ := v

√
2α be the diffusion of (3.8). Clearly, this equation satisfies the linear growth condition

(3.6) and all the conditions of Proposition 3.2. Then, β̃n(ϕ) is an asymptotically unbiased
estimator of β̆(ϕ), and the β̂n(ϕ) in (3.2) are asymptotically consistent and unbiased estimators
of µβ̆, where µ := E(vZ +m)+.
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4. Consistency of the estimators for general sampling schemes

A rather relevant question is whether the conditionTn(δ̄n)2 → 0 asn → ∞of Proposition 3.2
is actually necessary. This condition came from the path of proof we chose in working with the
modified estimator (2.2). It is of interest to know whether or not we could directly apply the
same reasonings to (3.2). We will discuss this point here. In short, we find that the following
condition plays a similar role to (2.9) in this direction of proof:

lim
n→∞ E

(
1

tnn

n∑
k=1

(�nkτ) 1{�nkτ≥t0}
)2

= 0. (4.1)

We will show that, under the condition

m2+ε(g) := sup
t≥0

E |g(r̃(t))|2+ε < ∞ (4.2)

for some ε > 0, the rate Tn(δ̄n)2 → 0 as n → ∞ is not needed.

Theorem 4.1. Consider the model (1.3)–(1.4) under the setting of Proposition 3.1(a)–(b) and
also assuming that (4.2) holds for some ε > 0. Then, the estimators in (3.2) are consistent
and asymptotically unbiased for ζ̄ (g)β̆(ϕ) when Tn → ∞ and δ̄n → 0, provided that
Proposition 3.1(i) is satisfied.

Proof. Let us assume for now that (4.1) is true. We shall see at the end of the proof that (4.2)
implies (4.1) whenever Tn → ∞ and δ̄n → 0. The proof is quite similar to that of Theorem 2.1
working with β̂n instead of β̃n(ϕ) and with

β̂tn(ϕ) := 1

tnn

n∑
k=1

ϕ(Zτ(tnk )
− Zτ(tnk−1)

) 1{|ϕ(Zτ(tn
k
)−Zτ(tn

k−1)
)|≤tnn }

instead of β̃tn. We will outline the general steps. First, we check that β̂n(ϕ) is asymptotically
unbiased. This will follow because, conditioning on {τnk }k≤n,

|Eβ̂n(ϕ)− ζ̄ β̆(ϕ)| ≤ 1

tnn
E

n∑
k=1

�nkτ

∣∣∣∣ 1

�nkτ
Hϕ(�

n
kτ)− β̆(ϕ)

∣∣∣∣

+ β̆(ϕ)

∣∣∣∣ 1

tnn
E

∫ tnn

0
g(r̃(u)) du− ζ̄ (g)

∣∣∣∣.
The second term on the right-hand side vanishes as n → ∞ because of the ergodicity of r̃ and
(3.1), similar to the verification of (3.3). The first term on the right-hand side can be bounded
by

ε
1

tnn
E

∫ tnn

0
g(r̃(u)) du+ c

tnn
E

n∑
k=1

(�nkτ) 1{�nkτ≥t0}

for any ε > 0 and some t0 = t0(ε) such that |Hϕ(t)/t − β̆(ϕ)| < ε for any 0 < t < t0. The
limit of the second term above converges to 0 in light of (4.1), while the first term converges
to εζ̄ (g), which is arbitrarily small. The second step is to show that E[β̂n{ϕ) − β̂tn(ϕ)] = 0,
which can be done almost identically to the proof of (2.12). The next step will be to bound
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P(|β̂n(ϕ) − ζ̄ β̆(ϕ)| > ε) as in (2.17) with τnn and β̃tn replaced by tnn and β̂tn(ϕ), respectively,
in the definition of Bn and Cn. The limit of Bn can be treated as before. For Cn, we use a
decomposition similar to (2.18) withDn andEn being defined and bounded as in (2.19)–(2.20)
with τnn replaced by tnn . The convergence of En to 0 can be proved in a similar manner to the
proof of Theorem 2.1. The term

Dn := var

(
1

tnn

n∑
k=1

E[ϕ(Zt ) 1{|ϕ(Zt )|≤tnn }]|t=�nkτ
)

requires some care. As before,

Dn ≤ 2 E

(
1

tnn

n∑
k=1

E[|ϕ|(Zt ) 1{|ϕ(Zt )|>tnn }]|t=�nkτ
)2

(4.3)

+ 2 var

(
1

tnn

n∑
k=1

Hϕ(�
n
kτ)− ζ̄ (g)β̆(ϕ)

)
. (4.4)

Fix T0 > 0, and let t0 > 0 (depending on T0) such that

E[|ϕ|(Zt ) 1{|ϕ(Zt )|>T0}] ≤ t

(
2

∫
|ϕ| 1|ϕ|≥T0 dν ∨ T −1

0

)

for any 0 < t < t0. Then, when tnn > T0, the term in (4.3) can be bounded by

c E

(
1

tnn

∫ tnn

0
r(u) du

)2(∫
|ϕ| 1|ϕ|≥T0 dν ∨ T −1

0

)2

+ c′Mϕ E

(
1

tnn

n∑
k=1

�nkτ 1{�nkτ≥t0}
)2

for some constants c, c′ > 0. The above bound converges to

cζ̄ 2(g)

(∫
|ϕ| 1|ϕ|≥T0 dν ∨ T −1

0

)2

,

in view of (4.1), the ergodicity of r̃ , and (4.2). Making T0 → ∞, we conclude that the term
in (4.3) vanishes. The term in (4.4), which we denote by Fn, can be bounded in the following
manner:

Fn ≤ 2 E

(
1

tnn

n∑
k=1

�nkτ

(
1

�nkτ
Hϕ(�

n
kτ)− β̆(ϕ)

))2

+ 2β̆(ϕ)2 E

(
1

tnn

∫ tnn

0
r(u) du− ζ̄ (g)

)2

.

The second term on the right-hand side above converges to 0 because of the ergodicity of r̃ and
(4.2). For a fixed ε, the first term can be decomposed into two sums, when�nkτ < t0 and when
�nkτ ≥ t0, where t0 = t0(ε) is such that |Hϕ(t)/t − β̆(ϕ)| < ε whenever 0 < t < t0. We then
take the limits when n → ∞ and use the fact that ε > 0 is arbitrary.
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It only remains to check that (4.2) implies (4.1) whenever δ̄n → 0. Indeed, by Jensen’s
inequality,

(4.5)E

(
1

tnn

n∑
k=1

�nkτ 1{�nkτ≥t0}
)2

≤ 1

tε0
E

(
1

tnn

n∑
k=1

(�nkτ)
1+ε/2

)2

≤ 1

tε0
E

(
1

tnn

n∑
k=1

(tnk − tnk−1)
ε

∫ tnk

tnk−1

|r(u)|2+ε du

)

≤ m2+ε(g)
tε0

(δ̄n)ε, (4.6)

which converges to 0.

5. Central limit theorems

In this section we investigate conditions for the asymptotic normality of the estimators (1.5).
In the case of a true Lévy process, Figueroa-López [13] proved this result assuming that ϕ is
bounded, ν continuous, and such that ϕ(x) = o(|x|) as x → 0. The random clock case is more
challenging, as in this case β̂n is not the sum of independent random variables. We use the
central limit theorems for martingale differences (see, e.g. [3, Theorem 18.1]). Specifically,
given a filtration {F n

k }k≥0 for each n ≥ 0, if ξk,n is F n
k -measurable and E[ξk,n | F n

k−1] = 0,
then

Sn :=
∞∑
k=1

ξk,n
d−→ σN (0, 1) (5.1)

for a constant σ ≥ 0, provided that the two conditions below are satisfied as n → ∞ for any
ε > 0:

∞∑
k=1

E[ξ2
k,n | F n

k−1] p−→ σ 2,

∞∑
k=1

E[ξ2
k,n 1|ξk,n|≥ε] → 0. (5.2)

In this section we take

F n
k := σ(Xu : u ≤ tnk ) ∨ σ(τ(u) : u ≤ tnk ) (5.3)

for given sampling points 0 = tn0 < · · · < tnn := Tn. We consider the following martingale
difference sequence:

ξk,n := T
−1/2
n (ϕ(Xtnk

−Xtnk−1
)− E[ϕ(Xtnk −Xtnk−1

) | F n
k−1]) (5.4)

for 1 ≤ k ≤ n, and ξk,n = 0 otherwise. Define F Z
t := σ(Zu : u ≤ t) and F τ

t := σ(τu : u ≤ t).
Note that if ϕ satisfies Proposition 3.1(i) and E τ(t) < ∞ for all t ≥ 0, then E |Hϕ(�nkτ)| < ∞
and

E[ϕ(Xtnk −Xtnk−1
) | F n

k−1] = E[Hϕ(�nkτ) | F τ
tk−1

], (5.5)

where we recall that�nkτ := τ(tnk )− τ(tnk−1) andHϕ(t) := E ϕ(Zt ) (see the end ofAppendix B
for more details on (5.5)). We can then write (5.4) as

ξk,n := T
−1/2
n (ϕ(Xtnk

−Xtnk−1
)− E[Hϕ(�nkτ) | F τ

tk−1
]). (5.6)
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Also, we have

Sn :=
∞∑
k=1

ξk,n = T
1/2
n (β̂n(ϕ)− β̌n(ϕ)),

where

β̌n(ϕ) := 1

Tn

n∑
k=1

E[Hϕ(�nkτ) | F τ
tk−1

].

Our first task is to find conditions for

β̌n(ϕ)
p−→ ζ̄ (g)β̆(ϕ) as n → ∞. (5.7)

Lemma 5.1. Consider the model (1.3)–(1.4) under the setting of Proposition 3.1(a), (b), and (i).
Also, assume that g is Lipschitz on R, satisfying (4.2) for some ε > 0, and that r̃ satisfies (3.4)
and Proposition 3.2(b’). Then, (5.7) holds whenever Tn ↗ ∞ and δ̄n → 0.

Proof. Since E β̌n(ϕ) = E βn(ϕ), it follows that limn→∞ E β̌n(ϕ) = ζ̄ (g)β̆(ϕ) in light of
Theorem 4.1. Hence, it suffices to show that

lim
n→∞ var(β̌n(ϕ)) = 0. (5.8)

For a given ε > 0, let t0 := t0(ε) be such that |Hϕ(t)/t − β̆(ϕ)| < ε, whenever 0 < t < t0.
Next, decomposing Hϕ(�nkτ) as

(
1

�nkτ
Hϕ(�

n
kτ)− β̆(ϕ)

)
�nkτ(1{�nkτ<t0} + 1{�nkτ≥t0})+ β̆(ϕ)�nkτ,

with the convention that 0/0 = 0, and using (2.8), it follows that

var(β̌n(ϕ)) ≤ 4ε2 E[ρ2
n,1] + 4(Mϕ + |β̆(ϕ)|)E[ρ2

n,2] + 4β̆(ϕ)2 var(ρn,1), (5.9)

where

ρn,1 := 1

Tn

n∑
k=1

E[�nkτ | F τ
tk−1

], ρn,2 := 1

Tn

n∑
k=1

E[�nkτ 1{�nkτ≥t0} | F τ
tk−1

].

First, we note that (4.2) implies (3.1) and, by Jensen’s inequality,

E ρ2
n,1 ≤ 1

Tn

n∑
k=1

∫ tk

tk−1

E r2(u) du ≤ m2(g).

Let Ink := [tnk−1, t
n
k ] and δnk := tnk − tnk−1. Following a procedure similar to (4.6), we obtain

ρ2
n,2 ≤ t−ε0

Tn

∑
(δnk )

ε E

[∫ tnk

tnk−1

|rg(r̃(u))|2+ε du

∣∣∣∣ F τ
tk−1

]
.

Then, using (4.2), E ρ2
n,2 ≤ t−ε0 (δ̄n)εm2+ε(g) → 0. Let us analyze the last term in (5.9). First,

var(ρn,1) ≤ 2 var

(
ρn,1 − 1

Tn
τ(Tn)

)
+ 2 var

(
1

Tn
τ(Tn)

)
. (5.10)
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Using Jensen’s inequality and the fact that

E(E[r(u) | F τ
tnk−1

] − r(u))2 ≤ E(r(tnk−1)− r(u))2,

the first term on the right-hand side of (5.10) can be bounded as follows:

1

Tn

n∑
k=1

∫ tnk

tnk−1

E(r(tnk−1)− r(u))2 du ≤ K

Tn

n∑
k=1

δnk E sup
u∈Ink

|r̃(u)− r̃(tnk−1)|2,

where K is the Lipschitz constant of g. This converges to 0 in light of (3.7) and (3.4). The
second term on the right-hand side of (5.10) converges to 0 since

var

(
1

Tn
τ(Tn)

)
≤ E

(
1

Tn

∫ Tn

0
r(u) du− ζ̄ (g)

)2

→ 0 as n → ∞.

The above limit is a consequence of the ergodic theorem (1.11) and the fact that

(
1

Tn

∫ Tn

0
r(u) du

)2

is uniformly integrable, which in turn is guaranteed by (4.2). We finally conclude that

lim sup
n→∞

var(β̌n(ϕ)) ≤ 4m2(g)ε
2,

and since ε is arbitrary, (5.8) follows.

Proposition 5.1. Suppose that the conditions of Lemma 5.1 hold true and also that ϕ2 satisfies
Conditions 2.1 and (2.8). Then, when Tn ↗ ∞ and δ̄n → 0,

T
1/2
n (β̂n(ϕ)− β̌n(ϕ))

d−→ σ(ϕ)N (0, 1), (5.11)

with σ 2(ϕ) := ζ̄ (g)β̆(ϕ2)

Proof. We need to check that (5.2) holds for (5.3) and (5.6). First,

σ 2
n :=

∞∑
k=1

E[ξ2
k,n | F n

k−1] = β̌n(ϕ
2)− 1

Tn

n∑
k=1

(E[Hϕ(�nkτ) | F τ
tk−1

])2.

In light of Lemma 5.1, β̌n(ϕ2)
p−→ σ 2(ϕ). The second term on the right-hand side, which we

denote by An, converges in probability to 0 since

P(|An| ≥ ε) ≤ 1

εTn
E

n∑
k=1

(E[Hϕ(�nkτ) | F τ
tk−1

])2

≤ M2
ϕm2(g)

ε

1

Tn

n∑
k=1

(tnk − tnk−1)
2

→ 0 as n → ∞.
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Now consider

Bn := 1

Tn

n∑
k=1

E[ϕ2(Xtk −Xtk−1) 1{|ϕ(Xtk−Xtk−1 )|≥T 1/2
n ε/2}].

Fix a T0 > 0, and let t0 > 0 be such that |Hϕ2 1{|ϕ|≥T0}(t)| ≤ 2tβ(ϕ2 1{|ϕ|≥T0}) for all 0 < t < t0.
Then, conditioning on {τnk }nk=1, for large enough n,

Bn ≤ 2β(ϕ2 1{|ϕ|≥T0})
1

Tn

n∑
k=1

E�nkτ +Mϕ2
1

Tn

n∑
k=1

E[�nkτ 1{�nkτ>t0}],

where limsup is bounded by 2β(ϕ2 1{|ϕ|≥T0}) since (1/Tn)
∑n
k=1 E�nkτ ≤ m

1/2
2 and (4.2)

implies (4.1) (see the last part in the proof of Theorem 4.1), which in turn implies that the
second term on the right-hand side above vanishes. Since T0 can be made arbitrarily large,
lim supn→∞ Bn = 0. Next, conditioning on F n

k−1,

Cn := 1

Tn

n∑
k=1

E[ϕ2(Xtk −Xtk−1) 1{| E[Hϕ(�nkτ) | F τ
tk−1

]|≥T 1/2
n ε/2}]

≤ Mϕ2
1

Tn

n∑
k=1

E[E[�nkτ | F τ
tk−1

] 1{| E[�nkτ | F τ
tk−1

]|≥M−1
ϕ T

1/2
n ε/2}],

≤ Mϕ2Mϕε
−1 1

T
3/2
n

n∑
k=1

E[E[�nkτ | F τ
tk−1

]2],

which can be shown to converge to 0 as Dn below converges to 0. Using Jensen’s inequality,

Dn := 1

Tn

n∑
k=1

E[E[Hϕ(�nkτ) | F τ
tk−1

]2] ≤ M2
ϕ

Tn

n∑
k=1

(tnk − tnk−1)

∫ tnk

tnk−1

E r2(u) du,

which clearly converges to 0 in light of (4.2). Thus, we obtain the second limit in (5.2) because

∞∑
k=0

E[ξ2
k,n 1{|ξk,n|≥ε}] ≤ 2Bn + 2Cn +Dn.

In light of the central limit theorem for martingale differences stated at the beginning of this
section, we obtain (5.11).

We proceed to show a central limit theorem for β̌n(ϕ) of the form

T
1/2
n (β̌n(ϕ)− ζ̄ (g)β̆(ϕ))

d−→ β̆(ϕ)�1/2(g)N (0, 1) (5.12)

for a certain positive constant �(g). This result suggests a central limit theorem of the form

T
1/2
n (β̂n(ϕ)− ζ̄ (g)β̆(ϕ))

d−→ (σ 2(ϕ)+ β̆(ϕ)2�(g))1/2N (0, 1). (5.13)

However, we have not been able to obtain such a result and we expect to address this issue in a
future work. We shall need an additional assumption on the rate of convergence in (2.6).
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Condition 5.1. There exists a t0 > 0 such that∣∣∣∣1

t
E ϕ(Xt )− β̆(ϕ)

∣∣∣∣ ≤ k0t (5.14)

for any 0 < t < t0 and a constant k0 independent of t .

Remark 5.1. Condition 5.1 turns out to hold for a wide class of functions ϕ, such as the
following:

1. ϕ is supported on an interval [c, d] ⊂ R\{0}, where ϕ is continuous with continuous
derivative (cf. [11]);

2. ϕ ∈ C2 vanishes in a neighborhood of the origin and, for each i = 0, 1, 2, |ϕ(i)| is
bounded by an element gi in the class S(ν) of (2.5) (cf. [12]).

Proposition 5.2. Suppose that Condition 5.1 holds as well as the conditions of Proposition 5.1.
Then, (5.12) holds true provided that Tn → ∞ and Tnδ̄n → 0 as n → ∞.

Proof. We recall that, under the stated conditions, the diffusion {r̃(t)}t≥0 obeys the central
limit theorem

√
t

(
1

t

∫ t

0
g(r̃(u)) du−

∫
g(x)ζ(dx)

)
d−→ N (0, �(g)) (5.15)

for a certain constant �(g) ≥ 0 (see [22] for an explicit formula for �(g) and the references
therein for a proof). Also,

T
1/2
n (β̌n(ϕ)− ζ̄ (g)β̆(ϕ)) = β̆(ϕ)T

−1/2
n

∫ Tn

0
(g(r̃(u))− ζ̄ (g)) du+ Rn,

where

Rn := T
−1/2
n

n∑
k=1

E

[(
1

�nk
Hϕ(�

n
kτ)− β̆(ϕ)

)
�nkτ

∣∣∣∣ F τ
tk−1

]
(5.16)

+ β̆(ϕ)T
1/2
n

(
1

Tn

n∑
k=1

E[�nkτ | F τ
tk−1

] − 1

Tn

∫ Tn

0
r(u) du

)
. (5.17)

Thus, to show (5.12) it suffices that Rn converges to 0 in probability. Denote by An the term
on the right-hand side of (5.16). Note that without loss of generality we can assume that (5.14)
holds for all t > 0. Then,

P(|An| ≥ ε) ≤ k0

ε
T

−1/2
n

n∑
k=1

E(�nkτ)
2

≤ k0

ε
T

−1/2
n

n∑
k=1

(tnk − tnk−1)E
∫ tnk

tnk−1

r2(u) du

≤ m2(g)k0

ε
T

1/2
n δ̄n,

which converges to 0. For (5.17), we proceed as before when proving that the first term on
the right-hand side of (5.10) converges to 0. Indeed, denoting by Bn the term on the left-hand
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side of (5.17) and using Markov’s inequality, the Lipschitz condition of g, (3.4), and (3.7), we
obtain

P(|Bn| ≥ ε) ≤ 1

ε2

n∑
k=1

δnk E sup
u∈Ink

|r(u)− r(tnk−1)|2 ≤ K

ε2 Tnδ̄
n → 0 as n → ∞.

This concludes the proof.

Note that T 1/2
n (β̂n(ϕ)− ζ̄ (g)β̆(ϕ)) can be decomposed as follows:

T
1/2
n (β̂n(ϕ)− β̌n(ϕ))+ β̆(ϕ)T

−1/2
n

∫ Tn

0
(g(r̃(u))− ζ̄ (g)) du+ Rn,

whereRn is defined as in (5.16). In the proof of Proposition 5.2, it was shown thatRn converges
to 0 in probability, while each of the first two terms converge to a normal distribution in light of
(5.11) and (5.15). To conclude (5.13), it will suffice to show that the first two terms converge
jointly in distribution, an issue that we are currently pursuing.

Appendix A. A moment estimate for diffusions

In this appendix we prove the moment estimate (3.7) for the solution r̃ of the stochastic
differential equation (3.5) under the linear growth condition (3.6). The ideas are classical (see,
e.g. the solution to Problem 5.3.15 of [18]). Below, km stands for a generic constant depending
on m. First, note that

|r̃(s0 + s)− r̃(s0)|2m ≤ km

(∣∣∣∣
∫ s0+s

s0

b(r̃(u)) du

∣∣∣∣
2m

+
∣∣∣∣
∫ s0+s

s0

σ(r̃(u)) dWu

∣∣∣∣
2m)

.

By Jensen’s inequality and (3.6), | ∫ s0+s
s0

b(r̃(u)) du|2m can be bounded as follows:

s2m−1
∫ s0+s

s0

|b(r̃(u))|2m du

≤ kms
2m−1

∫ s0+s

s0

(1 + |r̃(u)|2m) du

≤ kms
2m−1

(
s + s|r̃(s0)|2m +

∫ s0+s

s0

|r̃(u)− r̃(s0)|2m du

)
.

Let τk := inf{s ≥ 0 : |r̃(s + s0)| ≥ k}. By the Davis–Burkhölder–Gundy inequality,

E sup
s≤h∧τk

∣∣∣∣
∫ s0+s

s0

σ(r̃(u)) dWu

∣∣∣∣
2m

≤ km E

∣∣∣∣
∫ s0+h∧τk

s0

σ 2(r̃(u)) du

∣∣∣∣
m

≤ kmh
m−1 E

∫ s0+h∧τk

s0

σ 2m(r̃(u)) du.

As with b(·), we have the following bound for any s ≥ 0:

∫ s0+s

s0

σ 2m(r̃(u)) du ≤ km

(
s + s|r̃(s0)|2m +

∫ s0+s

s0

|r̃(u)− r̃(s0)|2m du

)
.
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Then, using 0 < h ≤ 1, E sups≤h∧τk |r̃(s0 + s)− r̃(s0)|2m can be upper bounded by

km E sup
s≤h∧τk

∣∣∣∣
∫ s0+s

s0

b(r̃(u)) du

∣∣∣∣
2m

+ km E sup
s≤h∧τk

∣∣∣∣
∫ s0+s

s0

σ(r̃(u)) dWu

∣∣∣∣
2m

≤ kmh
m + kmh

m E |r̃(s0)|2m + kmh
m−1

∫ h

0
E sup
s≤u∧τk

|r̃(s0 + s)− r̃(s0)|2m du.

Defining γk(h) := E sups≤h∧τk |r̃(s0 + s)− r̃(s0)|2m, we obtain the inequality

γk(h) ≤ kmh
m(1 + E |r̃(s0)|2m)+ km

∫ h

0
γk(u) du.

Finally, by Gronwall’s inequality (see [18]), γk(h) ≤ kmh
m(1 + E |r̃(s0)|2m)ekmh. Inequality

(3.7) will follow by letting k → ∞.

Appendix B. Conditional expectation given the random clock

On several occasions we used conditional expectations of the time-changed Lévy model
Xt := Zτ(t) given the random clock τ and/or past evolution of X. In this appendix we intend
to formalize this procedure under the assumption that Z and τ are independent.

(i) Let 0 ≤ t0 < · · · < tn < ∞, and let τk := τ(tk). For given 0 ≤ s0 ≤ · · · ≤ sn < ∞,
we first show that the distribution of Zτ1 − Zτ0 , . . . , Zτn − Zτn−1 given τ0 = s0, . . . , τn = sn
is the same as that of Zs1 − Zs0 , . . . , Zsn − Zsn−1 . Let

Ms0,...,sn(u1, . . . , un) = E
n∏
k=1

exp(iuk(Zsk − Zsk−1)),

let A ∈ σ(τ0, . . . , τn), and let κm(t) = ∑m2

j=1(j/m) 1[(j−1)/m,j/m)(t)+m1[m,∞)(t). First, by
the right continuity of Z and the dominated convergence theorem,

E
n∏
k=1

exp(iuk(Zτk − Zτk−1))χA = lim
m→∞ E

n∏
k=1

exp(iuk(Zκm(τk) − Zκm(τk−1)))χA.

Using the independence of Z and τ , the expectation after the limit in the previous equation can
be expressed as follows:

∑
1≤j0≤···≤jn≤m2

E
n∏
k=1

exp(iuk(Zjk/m − Zjk−1/m))

n∏
k=0

1[(jk−1)/m,jk/m)(τk)χA

=
∑

j0≤···≤jn
Mj0/m,...,jn/m(u1, . . . , un)E

n∏
k=0

1[(jk−1)/m,jk/m)(τk)χA

= EMκm(τ0),...,κm(τn)(u1, . . . , un)χA.

Using dominated convergence and right continuity of Z, the last expression converges to
EMτ0,...,τn(u1, . . . , un)χA as m → ∞. Thus, we can conclude that

E

[ n∏
k=1

exp(iuk(Zτk − Zτk−1))

∣∣∣∣ τ0, . . . , τn

]
= Mτ0,...,τn(u1, . . . , un).
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We could similarly show that the distribution of Zτ1 − Zτ0 , . . . , Zτn − Zτn−1 given

F τ := σ(τ(t) : t ≥ 0)

is the same distribution as that of Zs1 − Zs0 , . . . , Zsn − Zsn−1 at s0 = τ0, . . . , sn = τn.
(ii) As a consequence of the previous result, if g : R

n → R+ is such that

E g(Zτ1 − Zτ0 , . . . , Zτn − Zτn−1) < ∞ (B.1)

then
E g(Zτ1 − Zτ0 , . . . , Zτn − Zτn−1) = EG(τ0, . . . , τn), (B.2)

whereG(s0, . . . , sn) := E g(Zs1 −Zs0 , . . . , Zsn−Zsn−1). Furthermore, if g : R
n → R+ is con-

tinuous and there exists anM < ∞ such thatG(s0, . . . , sn) ≤ M whenever 0 ≤ s0 ≤ · · · ≤ sn,
then (B.1) holds and, hence, (B.2) holds too. Indeed, by Fatou’s lemma,

E g(Zτ1 − Zτ0 , . . . , Zτn − Zτn−1)

≤ lim inf
m→∞ E g(Zκm(τ1) − Zκm(τ0), . . . , Zκm(τn) − Zκm(τn−1))

≤ lim inf
m→∞ EG(κm(τ0), . . . , κm(τn))

≤ M.

The above reasoning was used, for instance, to show (2.10) since, under assumption (2.8),
G(s0, . . . , sn) := (1/sn)

∑n
k=1H|ϕ|(sk − sk−1) ≤ Mϕ .

(iii) Let us show identity (5.5). Let ϕk, ψk : R → R+, k = 1, . . . , n, be continuous bounded
functions, and let 0 = t0 ≤ t1 < · · · < tn ≤ t < u < ∞. Again, we write τk := τ(tk). Then,
conditioning on F τ ,

E

[
ϕ(Zτ(u) − Zτ(t))

n∏
k=1

ϕk(Zτk )ψk(τk)

]
= E[Hϕ(τ(u)− τ(t))m(τ1, . . . , τn)], (B.3)

where Hϕ(t) := E ϕ(Zt ), and m(s1, . . . , sn) = E
∏n
k=1 ϕk(Zsk )ψk(sk). Since

m(τ1, . . . , τn) = E

[ n∏
k=1

ϕk(Zτk )ψk(τk)

∣∣∣∣ F τ
t

]
,

the right-hand side of (B.3) can be written as follows:

E

[
E[Hϕ(τ(u)− τ(t)) | F τ

t ]
n∏
k=1

ϕk(Zτk )ψk(τk)

]
.

Since F τ
t ⊂ F X

t ∨ F τ
t , we conclude that

E[ϕ(Xu −Xt) | F X
t ∨ F τ

t ] = E[Hϕ(τ(u)− τ(t)) | F τ
t ].
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