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Constructing genus-3 hyperelliptic Jacobians with CM

Jennifer S. Balakrishnan, Sorina Ionica, Kristin Lauter and Christelle Vincent

Abstract

Given a sextic CM field K, we give an explicit method for finding all genus-3 hyperelliptic curves
defined over C whose Jacobians are simple and have complex multiplication by the maximal
order of this field, via an approximation of their Rosenhain invariants. Building on the work of
Weng [J. Ramanujan Math. Soc. 16 (2001) no. 4, 339–372], we give an algorithm which works
in complete generality, for any CM sextic field K, and computes minimal polynomials of the
Rosenhain invariants for any period matrix of the Jacobian. This algorithm can be used to
generate genus-3 hyperelliptic curves over a finite field Fp with a given zeta function by finding
roots of the Rosenhain minimal polynomials modulo p.

1. Introduction

We consider the problem of constructing genus-3 hyperelliptic curves defined over C with
the property that their Jacobians are simple and admit complex multiplication (CM) by the
maximal order of a sextic field. The interest in this question stems from the situation in
genera 1 and 2, where curves over a finite field with CM by a given field can be found by
first computing curves defined over number fields with CM by the field of interest and then
reducing these curves modulo a prime ideal, under some hypotheses that guarantee that the
prime splits and that the endomorphism ring does not become larger.

In genus 3, however, the situation is more interesting. Up to isomorphism over C, every simple
principally polarized abelian variety (ppav) of dimension 3 is the Jacobian of a complete smooth
projective curve of genus 3. Furthermore, if X is such a curve, then by the Riemann–Roch
theorem, X is isomorphic either to a hyperelliptic or a plane quartic curve. If A is a simple
ppav of dimension 3 that is isomorphic to the Jacobian of a hyperelliptic curve (respectively,
a plane quartic curve), we will call it a hyperelliptic Jacobian (respectively, a plane quartic
Jacobian). We note that the subspace of hyperelliptic Jacobians has codimension 1 in the
moduli space of ppavs of dimension 3.

If we are interested only in generating hyperelliptic curves whose Jacobians have CM, then
given a sextic CM field K, we consider the set of simple ppavs having CM by the maximal
order OK and ask some natural questions: Does this set contain hyperelliptic Jacobians? And
what conditions on K determine if this set contains hyperelliptic Jacobians?

Our work takes steps toward answering these questions by presenting an algorithm that,
given a CM sextic field K, first constructs a period matrix for each isomorphism class of
simple ppavs with CM by OK , then verifies computationally if the abelian variety is the
Jacobian of a hyperelliptic curve. If this is the case, it computes minimal polynomials for the
Rosenhain invariants of the hyperelliptic curve. After the computation is completed, we check
experimentally that the hyperelliptic curves we computed have CM, as explained in § 6.
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Using our implementation of the algorithm, we have carried out the computations described
above for all Galois CM sextic fields K with class number 1. Some examples of the minimal
polynomials computed can be found in § 6, along with a list of such fields K that admit a
hyperelliptic Jacobian. The code we have written is available on GitHub [1]. We conjecture
that this list is complete: there are exactly four hyperelliptic curves, up to isomorphism, with
CM by a Galois sextic field of class number 1.

In 2001, Weng [27] carried out computations similar to those presented here. She showed
that if A is a simple ppav of dimension 3 having CM by the maximal order of a sextic field K
such that Q(i) ⊂ K, then A is the Jacobian of a hyperelliptic curve. While she restricts
herself to such fields, we do not, as stated above. In other ways, however, she computes
more than we do: Weng approximates the Rosenhain coefficients and uses them to get the
Shioda invariants of the hyperelliptic curves. In addition, she provides models for several
hyperelliptic curves of genus 3 with CM by sextic fields K. In particular, she exhibits
four hyperelliptic curves with CM whose model is defined over Q. Unfortunately, Weng’s
implementation is not publicly available, and the paper contains typos and imprecisions,
which make it is hard to directly reproduce her computations. In this work, we correct these
imprecisions and give a proof of the correctness of the algorithm. See Remark 5 and § 6.1 for
further comments and comparisons with Weng’s work.

We note that so far all sextic CM fields admitting a hyperelliptic Jacobian that have been
found contain either a fourth or a seventh root of unity. It is of interest to attempt to find a
sextic CM field K admitting a hyperelliptic Jacobian but containing only the roots of unity
−1 and 1, with the aim of determining experimentally that this is not a necessary condition
for K to admit a hyperelliptic Jacobian.

For this reason and to answer the questions presented earlier, in forthcoming work we plan
to use this algorithm to explore the case of general CM sextic K. Currently the issues that
prevent us from carrying out these computations have to do with precision: we need to estimate
the tail of the infinite series giving the theta constants so that we can ensure a priori that our
results are correct to a certain precision. To obtain these estimates, we need an algorithm that
takes any period matrix Z ∈ H3 and computes a representative in the same Sp6(Z)-equivalence
class but belonging to a suitable fundamental domain. We give more details in § 6.

We particularly aim to find examples of fields K admitting both a hyperelliptic and a plane
quartic Jacobian, if they exist. This question is closely related to the construction and use
in cryptography of genus-3 hyperelliptic Jacobians defined over finite fields, with CM by a
given sextic field. Indeed, it is well known that discrete log attacks on plane quartic Jacobians
are more efficient than on genus-3 hyperelliptic Jacobians [6, 8, 14]. Consequently, evaluating
the security of a genus-3 hyperelliptic Jacobian requires a good understanding of the types of
Jacobians appearing in its isogeny class [20].

In the body of the paper we present some background and references for our algorithm, as well
as some results which were needed to carry out the computation. In particular, in Example 2
we present an example of a period matrix in a Γ2-equivalence class not previously considered
by Mumford [16], but which we must consider to make our algorithm truly applicable to any
period matrix. In § 4 we also verify, using Mumford’s [16, 17] and Poor’s work [18], that the
Thomae formulae can be used to compute hyperelliptic models starting from any period matrix,
without making a specific choice for the basis for homology. Although similar computations
have been performed before [26, 27], we were not able to find a proof of these formulae in the
literature.

This paper is organized as follows. In § 2 we present certain results needed to generate all
primitive CM types of a CM sextic field, up to equivalence. These CM types are needed to
carry out the algorithm given by Koike and Weng [13] to enumerate period matrices of simple
ppavs with CM by a fixed field K, which is presented in Appendix A for completeness. In § 3,
we introduce a set of maps denoted Ξg, first defined by Poor [18], and show how to attach such
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a map to a hyperelliptic Jacobian. In § 4, we introduce theta functions, the vanishing criterion
and a formula to compute the model of a hyperelliptic curve given the period matrix of its
Jacobian. In § 5 we give, and provide justification for, our algorithm to compute the map η
attached to a hyperelliptic Jacobian. Finally, in § 6 we present our complete algorithm, as well
as selected examples of the minimal polynomials for the Rosenhain invariants that we have
computed.

2. Computing period matrices

Given a CM field K, to compute ppavs with CM by the full ring of integers of K, we rely on the
CM theory of Shimura and Taniyama [19]. In genus 3, an explicit construction was presented
by Koike and Weng [13]. We use their algorithm and present here a single result needed to
complete our work, as well as the most basic facts needed to put this result in context. For
further details, we refer the reader to Lang [15] or Birkenhake and Lange [2].

We will use the term period matrix to refer to an element Z ∈ Hg, where

Hg = {M ∈Mg×g(C) : MT = M, Im(M) > 0}. (2.1)

To such a period matrix we can associate a lattice LZ generated by the columns of the matrix
(1g, Z), where 1g is the g × g identity matrix.

This lattice gives rise to an abelian variety A whose underlying torus is isomorphic to Cg/LZ .
In this paper, we focus on the case where End(A) = OK , for OK the ring of integers of a CM
field K of degree 2g. We will say that such an A has CM by K, and by this we will always
mean that the endomorphism ring of A is the full ring of integers OK .

To each abelian variety of dimension g defined over C with CM by K is attached a g-tuple
of complex embeddings of K (that is, embeddings of K into C), no two of which are complex
conjugates, called the variety’s CM type. Conversely, when constructing such an abelian variety,
we must first choose a CM type. An abelian variety over C with CM by the ring of integers
OK ⊂ K is given by A = Cg/Φ(a), where a is an ideal of OK and Φ is a CM type. This variety
is said to be of CM type (K,Φ).

We are interested only in constructing simple abelian varieties, a property which is
completely controlled by the choice of CM type. Indeed, fix (K,Φ) a CM type and let L
be the Galois closure of K over Q. Throughout, let G be the Galois group Gal(L/Q), and set
H = Gal(L/K). Define the sets

S = {σ ∈ G : σ|K = φi, for one of i = 1, . . . , g} and H ′ = {γ ∈ G : Sγ = S}.

A CM type (K,Φ) is called primitive (or simple in Lang [15]) if H = H ′. It can be shown
that an abelian variety of CM type (K,Φ) is simple if and only if its CM type is primitive.
Since we are interested in constructing complex ppavs that are simple, we will restrict our
attention to primitive CM types. Two CM types Φ1 and Φ2 are said to be equivalent if there
is an automorphism σ of K such that Φ1 = Φ2σ. We have the following result.

Proposition 1 (Streng [23, Lemmata I.5.4 and I.5.6]). Let A1 and A2 be abelian varieties
over C with CM types Φ1 and Φ2, where Φ1 and Φ2 are primitive CM types for a common
CM field K. If A1 and A2 are isomorphic, then the two CM types are equivalent. Moreover,
if two CM types Φ1 and Φ2 are equivalent, then the set of isomorphism classes of ppavs with
CM type Φ1 coincides with the set of isomorphism classes of ppavs with CM type Φ2.

Since we are interested in enumerating abelian varieties with CM by a certain field up to
isomorphism, it suffices to consider only one CM type from each equivalence class of equivalent
CM types. In our case of interest, g = 3 and K is a sextic CM field. There are thus four possible
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isomorphism classes of Galois groups G of the Galois closure L of K over Q: Z/6Z, Z/2Z×S3,
(Z/2Z)3 oZ/3Z and (Z/2Z)3 o S3. (Note that Weng [27] has a typo in the orientation of the
symbol o.) Weng determines primitive CM types for each isomorphism class of G, and with
this it is straightforward to determine the equivalence classes of equivalent CM types.

Proposition 2. Let K be a CM sextic field.
(i) If G ∼= Z/6Z, K has six primitive CM types, and they are all equivalent.
(ii) If G ∼= Z/2Z × S3, K has six primitive CM types, and three equivalence classes of

equivalent primitive CM types.
(iii) If G ∼= (Z/2Z)3 oZ/3Z or G ∼= (Z/2Z)3 oS3, K has eight primitive CM types, and four

equivalence classes of equivalent primitive CM types.

Proof. In any case, K has 23 = 8 CM types. For each case, the number and characterization
of primitive CM types follow from Weng’s work [27, Lemma 3.1]. In part (i), the fact that all
primitive CM types are equivalent follows again from Weng [27, Theorem 3.5]. For the other
parts, we use the fact that Aut(K) contains only the identity and complex multiplication.
Therefore, a primitive CM type is only equivalent to its complex conjugate.

With these results giving us a complete list of equivalence classes of equivalent primitive CM
types for a given field K, we can apply Koike and Weng’s [13] algorithm to enumerate data
for all isomorphism classes of simple ppavs with CM by K. We briefly recall this method in
Algorithm 2, presented in Appendix A, and refer the reader to [13] for full details.

3. The map η attached to a hyperelliptic period matrix

Given a hyperelliptic period matrix Z, Mumford [16] constructs a certain map η. This map is
crucial to the understanding of hyperelliptic Jacobians: first, its values control the vanishing
of certain theta functions in such a way that the hyperelliptic Jacobians can be characterized
by this vanishing property. Secondly, knowledge of a map η attached to a period matrix allows
one to recover a model for the hyperelliptic curve. These two phenomena are explained in § 4.
Here we begin by describing the set of such maps η that arise from hyperelliptic Jacobians
and showing how to construct these maps given a hyperelliptic period matrix.

Throughout this section, we will take the convention that if x ∈ C2g, then x = (x1, x2), with
xi ∈ Cg; in other words, x1 will denote the vector of the first g entries of x, and x2 will denote
the vector of the last g entries of x. For a vector x, we will write xT for the transpose, and
whenever matrix multiplication is involved, x is taken to be a column vector.

3.1. Eta maps

Throughout, we let B = {1, 2, . . . , 2g + 1,∞}. For any two subsets S1, S2 ⊆ B, we define

S1 ◦ S2 = (S1 ∪ S2)− (S1 ∩ S2),

the symmetric difference of the two sets. For S ⊆ B we also define Sc = B−S, the complement
of S in B. Then we have that the set

{S ⊆ B : #S ≡ 0 (mod 2)}/{S ∼ Sc}

is a commutative group under the operation ◦, of order 22g, with identity ∅ ∼ B. Since S◦S = ∅
for all S ⊆ B, this is a group of exponent 2. Therefore this group, which we denote GB , is
isomorphic to (Z/2Z)2g.

We also need some functions on elements of (1/2)Z2g. Given ξ ∈ (1/2)Z2g, we continue to
write ξ = (ξ1, ξ2), as explained at the beginning of this section.
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Definition 1. For ξ ∈ (1/2)Z2g, let e∗(ξ) = exp(4πiξT1 ξ2).

Definition 2. For ξ, ζ ∈ (1/2)Z2g, let e2(ξ, ζ) = exp(4πiξTJζ), with J =
( 0 1g
−1g 0

)
.

We note that these two functions are related by the following formula: for ξi ∈ (1/2)Z2g,

e∗

( k∑
i=1

ξi

)
=
∏
i<j

e2(ξi, ξj)

k∏
i=1

e∗(ξi).

We are now ready to define the set of maps of interest.

Definition 3. Following Poor [18], we define the set Ξg to contain the maps η : P (B) →
(1/2)Z2g, where P (B) is the power set of B, satisfying the following properties.

(i) η({∞}) = 0.
(ii) For all S ⊆ B, η(S) =

∑
i∈S η({i}).

(iii) For all S ⊆ B, η(S) = η(Sc) and the induced map η : GB ∼= (1/2)Z2g/Z2g is a group
isomorphism.

(iv) For all sets S1 and S2 such that #S1, #S2 ≡ 0 (mod 2), e2(η(S1), η(S2)) = (−1)#(S1∩S2).
(v) There is Uη ⊂ B such that #Uη ≡ g + 1 (mod 4) and for all S such that #S ≡ 0

(mod 2), we have e∗(η(S)) = (−1)(g+1−#(S◦Uη))/2.

Remark 1. As noted in the proof of [18, Lemma 1.4.13], the set Uη is none other than
{i ∈ B − {∞} : e∗(η({i})) = −1} ∪ {∞}.

For ease of notation, for any map η ∈ Ξg, we will henceforth denote

η∞ = η({∞}) = 0, η1 = η({1}), . . . , η2g+1 = η({2g + 1}),

and for any set S ⊂ B, we write ηS = η(S).

Definition 4. Two maps η and θ in Ξg are said to be in the same class if they are equal
as maps to (1/2)Z2g/Z2g.

Because of property (ii) in Definition 3, any map η ∈ Ξg is determined by its values
η1, . . . , η2g+1. We have the following converse.

Proposition 3 (Poor [18, Lemma 1.4.13]). Any ordered tuple (αi) of 2g + 1 vectors in
(1/2)Z2g/Z2g gives rise to a class of maps η ∈ Ξg via ηi ≡ αi (mod Z2g) and ηS =

∑
i∈S ηi if

it satisfies the following conditions:
(i) the αi span (1/2)Z2g/Z2g as an F2-vector space;

(ii)
∑2g+1
i=1 αi = 0;

(iii) e2(αi, αj) = −1 for each pair i 6= j.
In fact, there is a bijection between the set of such tuples (αi) and the classes of maps in Ξg.

We note that an ordered tuple satisfying these three conditions is commonly called an
asygetic basis in the literature. We will avoid this technical term and simply speak of the
values η1, . . . , η2g+1 of a given class of maps η, where η is understood to be any representative
of the class, and the entries of the values ηi have all been reduced modulo Z.

3.2. Associating a map η to a hyperelliptic period matrix

In this section, let X be a smooth complete hyperelliptic curve of genus g defined over C. As
explained in the literature, for example [2], a choice of period matrix Z ∈ Hg is equivalent to
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a choice of symplectic basis, Ai, Bi, for the homology group H1(X,Z) of the curve. Indeed,
without any further choice, there exists a unique basis ωi of holomorphic differentials on X
such that ∫

Ai

ωi = 1 and

∫
Ai

ωj = 0, i 6= j.

Then Z is the matrix given by
∫
Bi
ωj . Conversely, any period matrix is obtained in this manner.

Still without any further choices, we can obtain an Abel–Jacobi map

AJ : Jac(X)→ Cg/LZ ,
s∑

k=1

Pk −
s∑

k=1

Qk 7→
( s∑
k=1

∫Pk
Qk

ωi

)
i

,

which is well defined since the value of each path integral on X is well defined up to the value
of integrating the differentials ωi along the basis elements Ai, Bi, and thus up to elements
of LZ .

We can further choose to label the 2g+2 branch points of the hyperelliptic map π : X → P1,
P1, P2, . . . , P2g+1, P∞. Given this second choice, we can give a group isomorphism (see [17,
Corollary 2.11] for details) between the 2-torsion of the Jacobian of X and the group GB in
the following manner: to each set S ⊆ B such that #S ≡ 0 (mod 2), associate the divisor
class of the divisor

eS =
∑
i∈S

Pi − (#S)P∞. (3.1)

In turn, this isomorphism gives rise to a class of maps η ∈ Ξg by sending S ⊆ B to the
unique vector ηS in (1/2)Z2g/Z2g such that AJ(eS) = (ηS)2 + Z(ηS)1. (The fact that η ∈ Ξg
is shown in [18, Proposition 1.4.9].) Since there are (2g+ 2)! different ways to label the 2g+ 2
branch points of a hyperelliptic curve X of genus g, there are several ways to assign a class
in Ξg to a matrix Z ∈ Hg.

We give here a diagram to illustrate the maps described above:

GB Jac(X)[2](C) (1/2)Z2g/Z2g

S eS ηS

labeling of branch points period matrix

where above each map we have noted the choice made to give the map. The resulting class of
maps η is given by the composition of these two isomorphisms.

Definition 5. We say that the class of the map η ∈ Ξg is associated to the period matrix
Z ∈ Hg if there is a labeling of the branch points of the hyperelliptic map such that for all
S ⊆ B with #S ≡ 0 (mod 2), we have AJ(eS) = (ηS)2 +Z(ηS)1, where the Abel–Jacobi map
is defined by the symplectic basis used to compute the period matrix Z.

Example 1 (Mumford). In [17, Chapter 5], Mumford chooses an explicit symplectic basis
for homology and computes the associated class in Ξg. For the convenience of the reader, a
drawing of his basis is given in Appendix B. He obtains the values

η̃2i−1 =

(
0 . . . 0

i︷︸︸︷
1

2
0 . . . 0

1

2︸︷︷︸
g+1

1

2
. . .

1

2
0︸︷︷︸
g+i

0 . . . 0

)
for i = 1, . . . , g + 1
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and

η̃2i =

(
0 . . . 0

i︷︸︸︷
1

2
0 . . . 0

1

2︸︷︷︸
g+1

1

2
. . .

1

2

1

2︸︷︷︸
g+i

0 . . . 0

)
for i = 1, . . . , g.

One can show using Proposition 3 that this indeed gives rise to a class of maps in Ξg, which
we denote by η̃ throughout the paper.

The set Uη̃ associated to this map is {2, 4, . . . , 2g,∞}. He also computes

η̃Uη̃ =

(
1

2
. . .

1

2

g

2

g − 1

2
. . .

3

2
1

1

2

)
.

We denote by Sp2g(Z) the group of 2g× 2g matrices symplectic with respect to the bilinear

form A(x, y) = xT1 y2−xT2 y1 and with coefficients in Z. There is an action of the group Sp2g(Z)
on the set Ξg given by matrix multiplication on the left on the codomain of a map η. We also
define

Γ2 = {γ ∈ Sp2g(Z) : γ ≡ 12g (mod 2)},
the principal congruence subgroup of level 2.

We have the following result.

Proposition 4 (Igusa [12, Chapter V, § 6]). The quotient group Sp2g(Z)/Γ2 acts freely
and transitively on the classes in Ξg.

Proof. Using the isomorphism (1/2)Z2g/Z2g ∼= F2g
2 , then Sp2g(Z)/Γ2

∼= Sp2g(F2) is exactly
the group of symplectic matrices for the non-degenerate bilinear mapping given by e(x, y) =

(−1)x
T
1 y2−xT2 y1 for x, y ∈ F2g

2 .

Thanks to this action, to obtain a representative from each class we need only one example
of a class of maps η ∈ Ξg, which is given to us by Mumford’s explicit computation.

4. The vanishing criterion and Thomae’s formulae

4.1. Theta functions, theta characteristics, and theta constants

For ω ∈ Cg and Z ∈ Hg, we define the following important theta series:

ϑ(ω,Z) =
∑
n∈Zg

exp(πinTZn+ 2πinTω). (4.1)

Recall that, given a period matrix Z ∈ Hg, we denote by LZ the lattice that is generated by
the columns of the matrix (1g, Z). This gives a set of coordinates on the torus Cg/LZ in the
following way: a vector x ∈ [0, 1]2g gives the point x2 +Zx1 ∈ C/LZ , where, as in the previous
section, x1 denotes the first g entries and x2 denotes the last g entries of a vector of length 2g.

Of interest to us will be the values of ϑ(ω,Z) at points ω ∈ Cg that, under the natural
quotient map Cg → Cg/LZ , map to 2-torsion points. These points are of the form ω = ξ2 +Zξ1
for ξ ∈ (1/2)Z2g. This motivates the following definition:

ϑ[ξ](Z) = exp(πiξT1 Zξ1 + 2πiξT1 ξ2)ϑ(ξ2 + Zξ1, Z).

In this context, ξ is customarily called a characteristic or theta characteristic. The value
ϑ[ξ](Z) is called a theta constant. It is the special value ϑ[ξ](0, Z) of the theta function with
characteristic ξ, which is defined in [16, p. 123].
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Definition 6. We say that a characteristic ξ ∈ (1/2)Z2g is even if e∗(ξ) = 1 and odd if
e∗(ξ) = −1. If ξ is even we call ϑ[ξ](Z) an even theta constant, and if ξ is odd we call ϑ[ξ](Z)
an odd theta constant.

We have the following fact about the series ϑ[ξ](ω,Z) [16, Chapter II, Proposition 3.14]: for
ξ ∈ (1/2)Z2g,

ϑ[ξ](−ω,Z) = e∗(ξ)ϑ[ξ](ω,Z).

From this we conclude that all odd theta constants vanish.
Finally, we will most often only be concerned about the vanishing or non-vanishing of certain

values ϑ[ξ](Z) for ξ even. In this case, because when n ∈ Z2g we have

ϑ[ξ + n](Z) = exp(2πiξT1 n2)ϑ[ξ](Z),

we note that the vanishing depends only on the equivalence class of ξ in (1/2)Z2g/Z2g.

4.2. The vanishing criterion

We are finally in a position to state the Mumford–Poor vanishing criterion.

Theorem 1 (Poor [18, Main Theorem 2.6.1]). Let Z ∈ Hg and η ∈ Ξg. Then the following
statements are equivalent:

– Z is the period matrix of a symplectically irreducible abelian variety and satisfies the
following equations for a map η ∈ Ξg:

for S ⊆ B with #S ≡ 0 mod 2, ϑ[ηS ](Z) = 0 if and only if #(S ◦ Uη) 6= g + 1. (4.2)

– There is a hyperelliptic curve of genus g whose Jacobian has period matrix Z and η is
one of the maps associated to Z.

Remark 2. Poor defines the term symplectically irreducible on [18, p. 831]. His condition is
equivalent to requiring that the abelian variety is not isomorphic as a polarized abelian variety
to a product of lower-dimensional polarized abelian varieties. In this work, our period matrices
are constructed to be simple, that is, not isogenous to a product of lower-dimensional polarized
abelian varieties. Since isomorphism is stronger than isogeny, all of the period matrices we
construct are symplectically irreducible, and we may apply the theorem.

We note that the original idea behind the vanishing criterion is due to Mumford [17]. There,
in Chapter 3, Corollary 6.7, Mumford shows that with his specific choice of symplectic basis
for the homology group of the hyperelliptic curve, the period matrix obtained satisfies the
vanishing criterion (4.2) above. In Theorem 9.1, he then presents a partial converse and states
that if there is a map η whose distinguished set Uη has g + 1 elements such that Z satisfies
the vanishing criterion (4.2) for the map η, then Z is a hyperelliptic period matrix.

We state Poor’s result above because [17, Theorem 9.1] does not cover every hyperelliptic
period matrix, as shown by the following example.

Example 2. Consider Mumford’s choice of symplectic basis and his choice of labeling for
the branch points of the hyperelliptic curve, exhibited at the beginning of [17, Chapter 5] and
reproduced in Appendix B below. Act on this basis by the symplectic matrix
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γ̄ =


1 1 1 −1 1 1
0 1 0 0 −1 0
0 1 0 −1 1 1
−1 −1 −1 2 −1 −1
0 0 −1 1 −1 −1
0 −1 −1 −1 1 0

 , (4.3)

without changing the labeling of the points. As computed by Poor [18], if γ =
(
A B
C D

)
∈ Sp2g(Z)

acts on a symplectic basis with associated map η̃, then after the change of basis, if the branch
points are not relabeled, the map associated to the new basis will be given by γ∗η̃, where
γ∗ =

(
A −B
−C D

)
. In our particular case, after performing this action, the class of the new map

η̄ = γ∗η̃ is given by the values

η̄1 =
(

1
2 0 0 1

2 0 0
)
, η̄2 =

(
0 0 1

2
1
2

1
2

1
2

)
,

η̄3 =
(
0 1

2 0 1
2

1
2 0

)
, η̄4 =

(
1
2 0 1

2 0 0 1
2

)
,

η̄5 =
(

1
2

1
2 0 0 1

2
1
2

)
, η̄6 =

(
0 1

2
1
2

1
2 0 1

2

)
,

η̄7 =
(

1
2

1
2

1
2 0 1

2 0
)
,

where each entry is reduced modulo Z. The map η̄ given by these values has distinguished set
Uη̄ equal to all of B, which does not have cardinality g + 1 = 4. Furthermore, we will show in
Lemma 1 that if a period matrix is associated to η̄, then it will only be associated to maps η
with #Uη = 8.

4.3. Takase’s modified formula

Given a hyperelliptic period matrix Z and one of its associated maps η, we can construct a
model for the hyperelliptic curve via Thomae’s formulae. To state the formulae, we set up some
notation. If Z is a symplectically irreducible period matrix satisfying the vanishing criterion
(4.2) for some map η ∈ Ξg, then Z is the period matrix of a hyperelliptic Jacobian. Further,
the map η comes equipped with a labeling of the branch points of the hyperelliptic map
π : X → P1, P1, . . . , P2g+1, P∞. Let x be a choice of x-coordinate such that the hyperelliptic
curve has a model of the form y2 = f(x), for f of degree 2g + 1, with x(P∞) = ∞. Then we
write ai = x(Pi) for i = 1, . . . , 2g + 1, and these are all finite values in C.

Theorem 2 (Thomae [17, Chapter III, Theorem 8.1]). Let Z satisfy the vanishing criterion
for a map η ∈ Ξg. Then for all sets S ⊆ B−{∞}, #S even, and with notation as above, there
is a constant c independent of S such that

ϑ[ηS ](Z)4 =


0 if #(S ◦ Uη) 6= g + 1,

c · (−1)(#S∩Uη) ·
∏

i∈S◦Uη,
j∈B−S◦Uη−{∞}

(ai − aj)−1 if #(S ◦ Uη) = g + 1.

Proof. We note here the slight modifications to Mumford’s proof that are necessary to ensure
that the proof applies to any period matrix, and not only those considered by Mumford (see the
remarks immediately above Example 2 for more details).

The proof of Mumford’s Theorem 8.1 logically relies on Proposition 6.3, which we assume
here to be true about any map η, and Theorem 7.6. Theorem 7.6 in turn relies on Part 3
of Theorem 5.3 and Corollary 7.4. The proof of part 3 of Theorem 5.3 is valid, as long as δ
is replaced with the vector ηUη for a map η associated with the period matrix Z and ηk is
as in our definitions. The argument of Corollary 7.4 relies only on the generalized Frobenius
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theta formula (Theorem 7.1), which Mumford shows only for maps η with #Uη = g + 1, but
which is shown in full generality by Poor [18, Proposition 1.6.10]. Therefore we conclude that
the Thomae formulae are valid for any period matrix, since the generalized Frobenius theta
formula is.

Then we have the following theorem.

Theorem 3 (Takase [24]). Let Z a period matrix and η ∈ Ξg be such that the vanishing
criterion (4.2) is satisfied. Then, again with notation as above, for any disjoint decomposition
B − {∞} = V tW t {k, l,m} with #V = #W = g − 1, we have

ak − al
ak − am

= ε(k, l,m)

(
ϑ[Uη ◦ (V ∪ {k, l})] · ϑ[Uη ◦ (W ∪ {k, l})]
ϑ[Uη ◦ (V ∪ {k,m})] · ϑ[Uη ◦ (W ∪ {k,m})]

)2

,

with

ε(k, l,m) =

{
1 if k < l,m or l,m < k,

−1 if l < k < m or m < k < l,

and where to lighten the notation we denote ϑ[ηS ](Z) by ϑ[S].

Proof. The proof follows as in [24] for any period matrix Z, once we replace Mumford’s η̃
with any η associated to our period matrix Z and U with the set Uη.

Remark 3. Note that in genus 2, all vanishing theta constants correspond to odd
characteristics, and the conditions in Theorem 1 for a given period matrix Z are trivially
verified for any map η ∈ Ξ2. Therefore it is possible to give a formula for the Rosenhain
invariants of a genus-2 period matrix that is valid for any period matrix. In consequence, the
issues considered in this paper, where we are concerned with defining the set Ξg and computing
an element of it corresponding to a given period matrix, do not arise.

Finally, to fix a model for our hyperelliptic curve of genus 3, we require that x(P1) = 0 and
x(P2) = 1 and compute the Rosenhain model

y2 = x(x− 1)(x− a3)(x− a4)(x− a5)(x− a6)(x− a7)

of the curve. This allows us to compute ai, i = 3, . . . , 7, directly using the formula above, with
the choice k = 1 and m = 2 for each i.

5. Computing the map η

We now show how to give a map η associated with a period matrix given only the values of
the even theta constants. We note that throughout this section, we will be concerned with
computing the class of a map η associated to Z. To apply Theorem 3, we then lift each value
ηi (mod Z6) to a value in (1/2)Z6 in the naive way, and then use these values to compute ηS
for the other S ⊆ B using property (ii) of Definition 3.

We have already remarked that with Mumford’s map η̃ and the transitive action of Sp2g(F2)
on the classes of Ξg, we can compute a representative of each class. It would suffice then to
verify if Z satisfies the vanishing criterion for each class of maps until we find one that works.
Unfortunately, the size of the group Sp2g(F2) grows quickly as g grows, which makes this
unmanageable. For this reason, in this section we provide a faster way to construct a map
η attached to a period matrix for the case g = 3. Throughout, we will need the group Γ1,2,
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where for Q the quadratic form Q(x) = xT1 x2,

Γ1,2 = {γ ∈ Sp2g(Z) : Q(γx) ≡ Q(x) (mod 2)}.

We note that the quotient Γ1,2/Γ2 is isomorphic to the special orthogonal group of matrices
that preserve the 2g-ary positive definite quadratic form of Arf invariant 0 over F2. (See [10,
equation (1.10)] for the definition of Arf invariant, as well as a discussion of the relationship
between quadratic forms and theta characteristics.)

5.1. Characterizing hyperelliptic Jacobians when g = 3

To recognize hyperelliptic Jacobians in our situation, we use the following theorem.

Theorem 4 (Igusa [11, Lemmata 10 and 11]). When g = 3, the vanishing criterion (4.2)
reduces to the following: if Z is the period matrix of a simple ppav of dimension 3, then Z
is the period matrix of a hyperelliptic Jacobian if and only if ϑ[ξ](Z) vanishes for a single
equivalence class ξ ∈ (1/2)Z6/Z6 with e∗(ξ) = 1.

Proof. Let ξi ∈ (1/2)Z6/Z6 be an ordered set of representatives of the equivalence classes
of even vectors ξ ∈ (1/2)Z6, where the ordering is arbitrary. We note that up to equivalence
modulo Z6, there are 36 even theta characteristics.

In [11], Igusa defines two distinguished Siegel modular forms of genus 3,

Σ140(Z) =

36∑
i=1

∏
j 6=i

ϑ[ξj ](Z)8,

and

χ18(Z) =

36∏
i=1

ϑ[ξi](Z),

and shows that Σ140(Z) vanishes exactly on the locus of period matrices Z that are
symplectically reducible (this is equivalent to requiring that the associated polarized abelian
variety is isomorphic to a product of lower-dimensional polarized abelian varieties), and χ18(Z)
vanishes on the locus of period matrices Z that are symplectically reducible or whose associated
ppav is isomorphic to the Jacobian of a hyperelliptic curve.

It now suffices to notice that if Z is the period matrix of a simple ppav of dimension 3, then
Σ140(Z) 6= 0, so at most one even theta constant vanishes. But in this case, Z is hyperelliptic if
and only if χ18(Z) vanishes, which implies that at least one even theta constant vanishes.

Definition 7. Let Z be the period matrix of a simple genus-3 hyperelliptic Jacobian. Then
we denote by δ the unique vector in (1/2)Z6/Z6 such that ϑ[δ](Z) = 0 and e∗(δ) = 1, and call
it the vanishing even characteristic.

Proposition 5. Suppose that Z is the period matrix of a simple hyperelliptic Jacobian
and g = 3. Then for any η associated to Z, the vanishing even characteristic of Z is ηUη .
Conversely, if Z has vanishing even characteristic δ and δ = ηUη for some map η, then Z
satisfies the vanishing criterion (4.2) for the map η.

Proof. Let η be a map associated to Z, with distinguished set Uη. Because #(Uη ◦Uη) = 0,
by part (v) of Definition 3, e∗(ηUη ) = (−1)4/2 = 1 and ηUη is an even characteristic. We also
have that #Uη = 4 or 8 and #(Uη ◦ Uη) 6= 4 so ϑ[ηUη ](Z) = 0 by the vanishing criterion.
Therefore ηUη is the unique vanishing even theta constant.
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Now for the converse, suppose that there is a map η with ηUη = δ, where δ is the unique
vanishing even characteristic of Z. Then we need to show that for any S of even cardinality
such that #(S ◦ Uη) 6= g + 1 = 4, ϑ[ηS ](Z) = 0.

Because #(S ◦ Uη) = #Uη + #S − 2#(S ∩ Uη), the possibilities for #(S ◦ Uη), excluding
#(S ◦ Uη) = 4, are 0, 2, 6 or 8. If #(S ◦ Uη) = 2 or 6, then e∗(ηS) = (−1)(4−#(Uη◦S))/2 = −1
by property (v) of Definition 3, and so ϑ[ηS ](Z) = 0 because it is an odd theta constant.

In the case where #(S ◦Uη) = 0 or 8, we must have S = Uη or S = U cη , respectively. In that
case ηS = ηUη = δ and ϑ[ηS ](Z) = 0 by assumption.

5.2. Computing the maps η

There are two cases to this computation. We first consider the case where δ 6= 0, and then the
case where δ = 0.

Lemma 1. Let Z be the period matrix of a simple genus-3 hyperelliptic Jacobian. Then
ϑ[0](Z) = 0 if and only if for every map η associated to Z, #Uη = 8.

Proof. For ξ even and any map η associated to Z, ϑ[ξ](Z) = 0 if and only if ξ = ηUη . In
turn, ηS1

= ηS2
if and only if S1 = S2 or S1 = Sc2, and η∅ = 0. This forces #Uη = 0 or 8, but

since ∞ ∈ Uη, #Uη = 8.

Remark 4. This shows that when the map η̄ from Example 2 is associated to a period
matrix Z, the vanishing even characteristic of Z will be δ = 0, which forces every other map η
associated to Z to have #Uη = 8.

Proposition 6. Suppose that Z ∈ H3 is the period matrix of a simple genus-3 hyperelliptic
Jacobian and satisfies ϑ[δ](Z) = 0 for exactly one even characteristic, and δ 6= 0. Then there
is γ ∈ Γ1,2 such that Z satisfies the Vanishing Condition for the map η = γη̃. Furthermore,
this γ can be taken to be any such that γ( 1

2
1
2

1
2

1
2 0 1

2 ) = δ (mod Z6).

Proof. Since Z is the period matrix of a hyperelliptic Jacobian, there are several maps in
Ξg such that Z satisfies the Vanishing Condition for these maps. Choose any such and denote
it by η∗. Then the cardinality of the distinguished set Uη∗ is 4 by Lemma 1.

Recall that η∗i = AJ(Pi − P∞), by equation (3.1). Relabel the points {P1, . . . , P7} so that
if e∗(AJ(Pi − P∞)) = 1 then i ∈ {1, 3, 5, 7}, and if e∗(AJ(Pi − P∞)) = −1 then i ∈ {2, 4, 6}.
This is possible because exactly three values of i ∈ {1, . . . , 7} are such that e∗(η

∗
i ) = −1. This

relabeling gives rise to a different map η which is still associated to Z.
We now have e∗(ηi) = e∗(η̃i) for each i, and there is γ ∈ Sp6(F2) with γη̃ = η (mod Z6).

We show that in fact γ ∈ Γ1,2/Γ2 by showing that for all ξ ∈ (1/2)Z6/Z6, e∗(γξ) = e∗(ξ).
For any class η ∈ Ξ3, the values ηi for i = 1, . . . , 6 form a basis of the F2-vector space

(1/2)Z6/Z6. Therefore any ξ ∈ (1/2)Z6/Z6 can be written as a sum of elements in this basis,
say ξ =

∑
k∈S η̃k, and since e2(η̃i, η̃j) = −1 whenever i 6= j,

e∗(ξ) = (−1)(
#S
2 )
∏
k∈S

e∗(η̃k).

On the other hand, γξ = γ
∑
k∈S η̃k =

∑
k∈S γη̃k and applying the same argument to the

map η, we have

e∗(γξ) = (−1)(
#S
2 )
∏
k∈S

e∗(γη̃k).

But e∗(γη̃k) = e∗(ηk) = e∗(η̃k) by assumption and so e∗(γξ) = e∗(ξ) and γ ∈ Γ1,2.
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We also have

ηU =
∑
i∈Uη

ηi =
∑
i∈Uη̃

γη̃i = γ
∑
i∈Uη̃

η̃i = γ

(
1

2

1

2

1

2

1

2
0

1

2

)
= δ,

which completes the proof.

Proposition 7. Suppose that Z ∈ H3 is irreducible and satisfies ϑ[0](Z) = 0. Then Z
satisfies the vanishing criterion for η̄ defined in Example 2.

Proof. By Proposition 5, it suffices to show that for the map η̄, η̄Uη̄ = 0. This follows since
Uη̄ = B, and

∑
i∈B η̄i = 0.

Remark 5. In [27], Weng computes the Rosenhain invariants of hyperelliptic curves
using formulae similar to those of Takase. In particular, her formulae also depend on the
Γ2-equivalence class of the period matrix. In this article, we give this dependence in terms of a
map η associated to the period matrix, which is computed as η = γη̃ for a matrix γ ∈ Sp6(Z)
that depends on the vanishing even theta constant of the period matrix. Weng instead gives
an explicit table [27, Table 1] of how her formulae should be modified to account for the
vanishing even theta constant. This table enumerates the specific theta constants that must
be substituted into the formulae giving each of the five Rosenhain invariants, for each of the
36 possible vanishing even theta constants. Although no mention is given in her paper of how
this table was obtained, we believe that she uses the approach given by Weber [26].

We were unable to use this table in our computations for two reasons. The first is that both
Weber and Weng define the set U to be {1, 3, 5, 7}, without mention of its dependence on
the map η. (We note that since ηS = ηSc , this is equivalent to U = {2, 4, 6,∞}, which is the
convention that we have adopted in this paper.) As is shown in the proof of Proposition 6,
often η can be chosen such that Uη = {1, 3, 5, 7}, but there is no mention by Weber that
the asygetic system used in the computation has this property. Secondly, this is not always
possible, as demonstrated in Example 2. It may be that these considerations were taken into
account in the computation of the table given by Weng, and that this was simply omitted in the
text. However, since we could not be sure of it, using the table would have involved verifying
each of its 540 entries. Instead, we chose to provide the reader with a proof of correctness for
the whole method.

6. Implementation, examples and results

We implemented the algorithms described here in Sage and PARI/GP; our code is available
at [1]. Our search for hyperelliptic curves and their construction uses Algorithm 1.

The software implements the different steps in Algorithm 1 as follows.
– Algorithm 2 is implemented in Sage [22] and all computations are done symbolically.

The running time of this step is negligible compared to the following steps.
– The computation of theta constants is performed by a PARI/GP program. This is the

most time-consuming part of the algorithm. Indeed, in order to compute a theta constant,
we approximate θ[ξ](Z) by

Sξ,B =
∑

n∈[−B,B]3

exp(πi((n+ ξ1)TZ(n+ ξ1) + 2(n+ ξ1)T ξ2)),

with B > 0. To ensure that our computation is correct up to N bits of precision, we
would need to estimate the error bound as a function of B and N . In genera 1 and 2,
this was previously done by computing with period matrices in the fundamental domain
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Algorithm 1 Computing Rosenhain coefficients

INPUT: A sextic CM field K, and precision prec.
OUTPUT: Rosenhain coefficients for all hyperelliptic curves with CM by K, if any exist.

1: Compute all period matrices Z having CM by K (with precision prec) using Algorithm 2.
2: for each period matrix Z do
3: Compute all even theta constants and the set T of characteristics for which the theta

constants are 6 10prec.
4: if T has exactly one element δ then
5: if δ 6= 0 then
6: Compute γ ∈ Γ1,2 such that δ = γ( 1

2
1
2

1
2

1
2 0 1

2 ). This can be computed once
and for all and stored for each of the 35 possible δs.

7: else if δ = 0 then
8: Let γ = γ̄ from equation (4.3).
9: end if

10: Compute the Rosenhain coefficients with precision prec using the formulae from
Theorem 3, and ηi = γη̃i, for all i ∈ {3, . . . , 7}.

11: end if
12: end for

(see [7, 9]). In genus 3, no method for computing matrices in the fundamental domain
is known. To make sure we computed correctly with precision t, we computed Sξ,B for
several values of B until we obtained |Sξ,B′ − Sξ,B | < 2−t for two consecutive values
B′ > B.

– To recognize the values of the Rosenhain coefficients ai as algebraic integers we use the
algebraic dependence testing algorithm [3], implemented in PARI/GP by the function
algdep. We obtain a conjectured minimal polynomial λi for each coefficient ai. Note that
the amount of precision needed for this computation to end successfully depends on the
dimension of the lattice fed to algdep, that is, on the degree of the minimal polynomial
of the Rosenhain coefficients. This degree depends on the class number of K (see [5]
for details). In practice, since we only computed with sextic fields of class number 1, 53
bits of precision sufficed, and the degrees of the polynomials were at most 12. However,
we expect the amount of precision needed for this computation to increase dramatically
once the class number of K is increased.

– In order to heuristically check the correctness of our Rosenhain minimal polynomials, we
choose a prime p such that there is an unramified prime ideal p of degree 1 over p in OKr

(the ring of integers of the reflex field) and such that there is π ∈ K with ππ̄ = p. By a
theorem of Shimura [19, Theorem 2 in § 13], the reduction of an abelian variety with CM
by OK is an abelian variety over Fp with maximal complex multiplication. We compute
Weil numbers π which correspond to the Frobenius endomorphism on a curve defined
over Fp whose Jacobian has CM by OK . The Rosenhain invariants of such a hyperelliptic
curve should be roots of the polynomials we have computed (modulo p). So we loop
through all roots of the 5 minimal polynomials until we find a curve whose Jacobian has
the right number of points. Specifically, let n be the degree of the Rosenhain polynomials
(in all our class number 1 computations this was 3, 6 or 12). We construct all n5 curves
obtained in this way and check whether the Jacobian of the curve has cardinality equal
to NK/Q(1−π). For a higher degree of certainty one can compute the zeta function, but
when p is large enough the heuristic check we use is unlikely to coincidentally give the
correct cardinality unless the minimal polynomials of the Rosenhain invariants that we
have computed are correct.
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6.1. Galois CM sextic fields with class number 1 giving hyperelliptic curves

There are 17 sextic CM fields K with class number 1 that are Galois over Q. Of these, four
admit a hyperelliptic Jacobian. They are as follows:

(1) K = Q(ζ7);
(2) K = Q[X]/(X6 + 5X4 + 6X2 + 1);
(3) K = Q[X]/(X6 + 6X4 + 9X2 + 1);
(4) K = Q[X]/(X6 + 13X4 + 50X2 + 49).
For each of these fields, there is a single isomorphism class of ppavs with CM by K. All of

these examples were found by Weng [27] or, in the case of Q(ζ7), have long been known. We
conjecture that these four examples are all of the hyperelliptic curves with CM by a Galois
sextic field having class number 1.

Example 3. Let K be field number (2) above. The tuple (λ3(x), λ4(x), λ5(x), λ6(x), λ7(x))
of minimal polynomials for the Rosenhain coefficients is:

(x3 + 22x2 − 16x− 8, x3 − 4x2 + 3x+ 1,−8x3 + 8x2 + 2x− 1,

x3 − 9x2 − x+ 1, x3 + 2x2 − x− 1).

For this field, Weng computed the minimal polynomials of the Shioda invariants (the class
polynomials) (h1(x), h2(x), h3(x), h4(x), h5(x)). These polynomials have degree 1, but their
coefficients are larger than those of the minimal polynomials of the Rosenhain invariants:

(1048576x− 2187, 131072x− 24373629, 16384x+ 11632436487,

16384000000000x+ 2952169653573, 2048000000000000x− 1168038669244419).

This is an example of a phenomenon that is well understood in genus 2. Indeed, as noted
in [5] when K is a quartic CM field, the Rosenhain invariants of an abelian surface with
CM by K are defined over CMK(2), the class field corresponding to the quotient group of
fractional ideals of the reflex field Kr which are prime to 2, modulo fractional ideals b, with
the property that NΦ(b) = αOK , α ≡ 1 (mod 2), αᾱ = NKr/Q(b) (where NΦ is the typenorm
corresponding to the CM type Φ). The Igusa invariants, on the other hand, are defined over a
class field CMK(1) of modulus 1. An analysis of the exact numerical relationship between the
degrees of these extension fields in this setting is given in [5].

As supported by the data of Example 3, we expect that similarly in the sextic case the
degrees of the Rosenhain polynomials are larger than those of the Shioda polynomials, but
that their coefficients are smaller. This is, however, beyond the scope of this paper.

Example 4. Let K = Q(ζ7). This example is classical: one can compute that there is a
single ppav which is simple over C and with CM by the full ring of integers of Q(ζ7), up
to isomorphism over C. This abelian variety is a hyperelliptic Jacobian, and a model for the
hyperelliptic curve is given in [19].

We obtain the tuple of Rosenhain minimal polynomials

(x6 − 5x5 + 11x4 − 13x3 + 9x2 − 3x+ 1, x6 − 2x5 + 4x4 − 8x3 + 9x2 − 4x+ 1,

x6 − x5 + x4 − x3 + x2 − x+ 1, x6 − 3x5 + 9x4 − 13x3 + 11x2 − 5x+ 1,

x6 − 4x5 + 9x4 − 8x3 + 4x2 − 2x+ 1).

Despite our focus in this work on K Galois of class number 1, our algorithm works for K with
Galois closure L with any Gal(L/Q), and K of any class number. Here we show an example
with Gal(L/Q) ∼= Z/2Z× S3 and K of class number 1.
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Example 5. Let K = Q[X]/(X6 + 9X4 + 18X2 + 1). Then Gal(L/Q) ∼= Z/2Z × S3. We
obtain the following tuple of minimal polynomials for the Rosenhain coefficients:

(x3 − 69x2 + 198x− 49, 8x3 − 448x2 − 2042x+ 2401, x3 − 43x2 − 606x− 441,

x3 − 169x2 + 6479x+ 2401, x3 − 58x2 − 96x+ 72).

Appendix A. An algorithm for computing period matrices of abelian varieties with CM

It is well known that all abelian varieties with CM by a given field K have complex points
given by Cg/Φ(a), for a a fractional ideal of K and Φ a CM type. To identify which ones
are principally polarizable, we must verify if the lattice Φ(a) admits a principal polarization.
Spallek [21], based on the work of Shimura and Taniyama, shows that this is the case if
and only if there is ξ ∈ K such that −ξ2 is totally positive in K0, the totally real subfield
of K of degree g, Im(φi(ξ)) > 0 for i = 1, . . . , g, and the ideal (DK/Qaā)−1, for DK/Q the
different of K, is principal and generated by ξ.

Let UK denote the group of units of K, let U+ be the subgroup of totally positive units of
the group of units of the totally real subfield K0, and let U1 be the subgroup of U+ containing
only units of the form εε̄ for ε ∈ O×K . Then to find a suitable ξ, given an ideal a such that
(DK/Qaā)−1 is principal and a generator b of this principal ideal, it is enough to multiply b
by a set of coset representatives of UK/U

+. If we can find one such suitable ξ, all different
possibilities, each giving a different principal polarization, differ from this first element by
an element of the quotient U+/U1, by a theorem of van Wamelen [25, Theorem 5]. In their
paper, Koike and Weng [13] give a procedure to compute representatives for the quotient
groups UK/U

+ and U+/U1, which we also use.
For completeness, we include this algorithm here since it is part of the code used to obtain

the results of this paper.
From the data (Φ, a, ξ), we obtain a period matrix for the ppav by asking Sage for a basis

of a that is symplectic under the polarization Eξ, which is given explicitly in terms of ξ in
[15, p. 19]. A matrix [Ω1,Ω2] of size 3 × 6 is created by embedding the six elements of this
symplectic basis into C using the three embeddings contained in Φ. The period matrix Z is
then Ω−1

2 Ω1.

Algorithm 2 Generating data for period matrices

INPUT: A sextic CM field K.
OUTPUT: A list of tuples (Φ, a, ξ) for each isomorphism class of simple ppav with CM by K.

1: Compute a representative Φ for each equivalence class of equivalent primitive CM types
of K.

2: Run through the ideal class group of K and compute a representative a for each ideal class
such that (aāDK/Q)−1 is principal, and a generator b of the ideal (aāDK/Q)−1.

3: for each triple (Φ, a, b) do
4: Running through representatives {u1, . . . , ue} of the finite quotient UK/U

+, check if
ujb satisfies the conditions for ξ = ujb to give a principal polarization for any j.

5: if such a uj can be found, write ξ = ujb then
6: Output the pairs (Φ(a), εiξ) for εi running through representatives of the finite

quotient U+/U1. These are the data of all of the non-isomorphic ppavs with underlying
torus Cg/Φ(a).

7: else if none is found then
8: There is no ppav with underlying torus Cg/Φ(a).
9: end if

10: end for
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Appendix B. Mumford’s choice of symplectic basis and labeling of the branch points

We give here a representation of the symplectic basis and labeling of the branch points used
by Mumford to carry out his computations. The image is a projection of the paths to P1(C)
under the map (x, y) 7→ x. The branch points are labeled a1, a2, . . . , a2g+1,∞, the paths giving
the symplectic basis for homology are labeled Ai, Bi, and the γi are the branch cuts of the
projection. This image was created by Cosset for his PhD thesis [4].
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4. R. Cosset, ‘Applications des fonctions thêta à la cryptographie sur les courbes hyperelliptiques’, PhD
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