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§ 1. Introduction. Let Ω be the projective limit space of a sequence of

probability space Ωn which is a certain subset of (n - 1)-dimensional sphere

with the usual uniform probability distribution on it. T. Hida [2], starting

from a sequence of finite dimensional flows {T(

t

n)} which are derived from some

one-parameter subgroups of rotations of spheres, constructed a flow {T*} on

Ω as the limit of them. Observing his method, the concept of consistency of

flows {T{

t

n)} which approximate {Tt} seems to play an essential role in his

work [2]. As will be made clear in the following sections, the concept of

consistency is closely related to the projective limiting structure of our basic

space Ω. The purpose of this paper is to determine all the flows on Ω which

can be approximated in the sense of [2] by finite dimensional flows.

In the first part of Section 2, some results in [3] which are needed for the

following discussions are summarized, and later it is proved that a sequence

of consistent flows determines a flow on Ω. Further we prove that such finite

dimensional flows derived from one-parameter subgroups of rotations will be

characterized from the standpoint both of their forms and of their spectral

sets. In Section 3, we shall consider the converse problem to construct a

sequence of flows which approximate a given one on Ω, and find a condition

that these finite dimensional flows are one-parameter subgroups of rotations.

Although it can be pointed out that T\n) converges to Tt in the sense of weak

topology introduced in the set of all automorphisms on Ωt we shall not concern

with further problems on this subject.

Finally, we would like to note that, in most places of our discussions, it

is not necessary to avail ourselves of entire spheres if we consider set trans-

formations instead of point transformations.
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encouraged him with kind discussions.

§ 2. Limit of flows on finite dimensional spheres. Let Sn be (n — 1) -sphere

with radius j~n, B(Sn) be the topological Borel field and Pn be the uniform

probabity measure on S«. Let x{n) = (x[n), • . . , xT) be a point of Sh. Then

x{n) can be expressed in the form

*ίΛ) = V~aΓΠ sin/?/,

n-1

*£n) = V n cos 0*-i Π sin 0, , 2<k<n - 1,

where O<0i<2 TΓ, 0<θi<π (2<i<n- 1). Let #* be an open subset of S« defined

by

Ωn = {xin) I Xin)&Sn, 0<0i<π, f = 2 , . . . , Λ - 1 }

and Brt be the family of Borel subsets of Ωn. We shall denote the restriction

of Pn to Bw by the same letter. Let fm,n (m<n) be a point transformation

from Ωn onto Ωm such that if the polar coordinates of x{n) e j?n are ^i, . . . , θn~\>

then those of Λ:ίm) =/Wl«(jc(n)) are Λ, . . . , ^ - i . In other words,

V

-r Xm

This /mifl determines a homomorphic mapping from the measure space (£„, Bn, PΛ)

to {Ωm, Bm, Pm). Moreover, the system l(Ωn, BΛ, Pn) fm,nl is a sequentially

maximal topological stochastic family in the sense of S. Bochner, so that we

can form a probability space (Ω, B, P) which is the projective limit of this

system ([1], [3]). By definition of projective limit, we have

//,»=//,«%,», Km<nf

fm = fm, nfn >

where fn denotes the projection from Ω onto Ωn*

Let Mf be a subset of the set M = {2, 3, . . .}. Assume that we are given

a point transformation T(/ |/) on Sw (or £„/), for each w'eM'. Then we shall

call the system {T(nΊ n'&.M1} to be consistent if, for any m', nf inM', either

the relation

(2.3) Γ w l / r , , - / » - , , . ' Γ w on Ωn;
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or the relation

(2.3)' T ^ o / ^ ^ / ^ ^ f " ' ) on Ωn> (mod 0),

holds according as each T ( o is an automorphism or an automorphism (mod 0)

on j?rt'.

Let Mf = {np p>\) be a cofinal subset of the above set M and let (.§, B, P)

be a projective limit probability space which is determined by the subsystem

t(Ώn>, Bn>, Pn>) fm>.n> I m\ vt e Λf'l Then, since 5 is a closed subset of the

weak product Π £„/, it is a Borel set of S» = Π S« (weak product).

Therefore, we can define a probability measure P* on B* (topoligical Borel

field of 5«) so as Poo(A) = P(i4Π 5), for each AeBoo. Now, let /v be the

projection from S* onto SΛ>. Then we have the following proposition.

PROPOSITION 2.1. Let {T{n'] \ nf e Λf'} te β consistent system of automorphisms

on Sn' Then the mapping defined by

(2.4) T: S<a=>x->Tx=(T(n')°pnΛx) n't=M')

gives an automorphism on S*>, and T induces an automorphism {mod 0) on Ω.

If T{nΊ is an automorphism (mod 0) on Ωn>, then the transformation defined by

(2.4)' T : Ω^x-^Tx=(T{nΊofn/(χ) n'eMO

determines an automorphism {mod 0) on Ω.

Proof. We need to prove only the first part of the proposition. By defini-

tion of T, it is a one-to-one mapping from S« onto 5». Since each Tίnt) is an

automorphism on Sn>, there exists a subset 52' of Ωn such that T { π ' } is an

automorphism on Q°n*. Now, put Ω° = Π /^(iKO. If Λτei?°, then, in view

of (2.2) and (2.3)', we have

Γ W ) o / w W = Γ W l / w ; β , » Λ W = / W l ^ T W l ^ ( * ) , for m'<^'.

This shows that the point CΓ(M/> <>/„,(#) » 'e j | fθ is in j?°, so that 71 maps i?°

into Ω°. Moreover, it is easy to show that T is a one to one onto mapping.

Let A be a Borel set of Ω'J Π f»}(Bn ) , then (2.3)' implies TA = /Jί« Tίn#) %,(Λ),

so that we have

P(TA) = P(fJoT<»'> 0fn,{A)) = PnΛT(nΊ°fn.(A)) = Pn,{fnΛA)) = P(A).

T is therefore, measure preserving on i?°, since V /^(B r t ') = B Π Ω°. By the
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same arguments as above, T"1 is also measure preserving. Thus T is an

automorphism on Ω°, therefore it is automorphic on S*. To conclude the

proof, it is enough to show that Ω° is isomorphic (mod 0) to Ω. This fact is,

however, a direct consequence of sequential maximal property of {/m,«}.

By using the same notations as above, we have the following theorem.

THEOREM 2.1. Let {T(

t

n/)} be a measurable flow on Sn> and let {T{

t

n>) n'^M1}

be consistent for each t. Then, there, exists a measurable flow {Tt) on S» such that

(2.5) pnioTt^T{tn>)opn: on:S».

Proof. Define Tt by (2.4), then it is an automorphism on S*. It is easy

to see that the group property TsTt = Ts+t holds. To prove the theorem, it is

enough to show that {Tt} is measurable. Let fix) be a tame function on S»

such that f(x) = Π <Pn'°pn>(x), where Nf is a finite subset of Mf, and every

φn> is a continuous function on Sw*. Then, f(Tix)— Π <fn>°pn>(Ttx) =

Π <Pn'(Ttn')opn'(x)) is (t, x) measurable, since {T(

t

n']} is measurable. It is

known that the set of all continuous tame functions on S& is dense in the set

of all contiuous functions on SΌc in the sense of uniform convergence, so that

Ttx is U, x) measurable. This proves the theorem.

Now we shall consider a measurable flow which is derived from a one-

parameter subgroup of SO(n). To discuss the consistency condition (2.3) 'we

prepare lemmas.

LEMMA 2.1. Let Tim) and T{n) be automorphisms on measure spaces Sm and

Sn which are derived from rotations of spheres Sm and Sn respectively. Provided

that n<2 m, if they form consistent system, then Tin) is expressed in the following

form:

(2.6) Γ -

Converslyf if T{n) is of the above form, then T(m) and T{n) are consistent.

Proof 1°. Let x{m = (x[n\ . . . , χ%yί 0, . . . ,0) be a poiiit of Ωn such that

y w ) = τιn)x{n) e Ωn and that (2.3)' holds. Putting T{n) = (<*//)/./=,,... \n, f{m) =

(aij)ij=ι....,m> and by using (2.1), the relation (2.3)' can be written in the

form
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4 m
Xi

Xrn

V m
Tyln}Γ mr T (m)

X\

so that we have

*!!">

where p = p(χ[n\ . . . , *£>) = Zy[n)2+ +^m)2]1/2C^iW)2+ + Xm)2Tv\ This

shows that p is an eigenvalue of jι(WIJ-1:f(w> and that (A:ίW;, . . . , ώM)) is an

eigenvector corresponding to p. Since sufficiently many points of Ωn satisfy

this relation, p should be a constant such that 0 < p< 1, and we have Tlm) = pT{tn).

Here note that T{n) is expressed in the following form

(2.7)

where 4̂, ̂  and C are some matrices and μf = ± p, a, a' ~ ± V 1 — p2.

2°. Now assume that »<2 m, If p<l, then, since both Γ ( m ) and Γ{M> are

orthogonal matrices, the column vectors of σA span m-dimensional subspace of

Rn~m. But this is impossible since n — m<m, so that ρ = l .

LEMMA 2.2. Let {T\m)) and {T{

t

n)} be flows on Sm and Sn which are derived

from one-parameter subgroups of SO(m), SOin) respectively. . When n<,2 m, they

form consistent system if and only if

(2.8) )
t ~

0

Proof ,1°. If n<2m, then (2*8) is a consequence of Lemma 2.ί.

2°. Now assume n-2m. In the course of the proqf of Lemma 2Λ we have

shown that T{

t

n) is of the form

\m)

First, we note that the group property

(2.9) Po = l, P

^ = T{

sit implies
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and that pt is continuous in /.

If pt<l for all t*0, then it follows that At, Bt, and C* are all mxm

orthogonal matrices. In view of the form of Tιi} and the group property, we

have the following relation, by comparing left upper mxm matrices of Tψ+S

and Tsm)Tι

t

m,

Therefore, by cnsidering the determinants of both sides, it follows that

hence,

Ps+t - PsPt = ± otσs = ± V 1 - pi V 1 - p\.

Since pt is continuous in t, the left hand side of the above expression has

constant sign, so that it should be either

Case 1. ps+t - Ps# = V 1 - pj V 1 - pj for all s, t*0,

or

Case 2. ps+t -ρsρt = - V 1 - ρl V 1 - P) for all s, t* 0.

In the case 1, if we set s = £, then Pu~ p\~l-p]> that is Pzt-l which is a

contradiction. In the case 2, if we let s tend to - 1 , then the continuity of pt

and (2.9) again imply a contradiction 1 ~pj= - (1 - p\). Therefore, we have

proved that ρt = 1 for some t* 0. Observing the above arguments, we can

restrict the range of variables s and t within any symmetric region around the

origin which is bounded away from it. Hence it is easily seen that pt = 1 for

all t. This proves the necessity of the theorem. Sufficiency is obvious.

Let {Ttn)} be a one-parameter subgroup of SO(n). Then, it is well known

that T\n) can be expressed as the exponential form

T\n) = exp (tX), X + X* = 0 (X : real-skew symmetric matrix).

Let { ± iλu . . . , ± iλry 0, . . . , 0} (λk*0) be the spectral set of X, then there

exists an orthogonal matrix T such that
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V2.10) S'"> = TT^T'1 = exp itTXT'1) =

Aλt)

AΛt)

where Ak(t) ̂ sin λkt cos J

This means that the flow {T(

t

n)} is isomorphic to a flow of the above form.

We shall say that the flow {S(

t

n)} is canonical.

Let M ' = {ftp p>l) be a cofinal subset of M = {2, 3, . . .} such that a

condition

is satisfied and assume that we are given a one-parameter subgroup {T{

t

n)) of

SO( nf) for each n1 e Λf'. Then, we have the following theorem.

THEOREM 2.2. 7/ ί/z£ system of flows {TΓ'*) ^ consistent for each t, then the

flow {Tt) on S*> ivhich is determined by {Tψ'}) U ' G M ' ) is isomorphic to a flow

that is determined by a consistent system of "canonical" flows.

Proof. On account of Lemma 2.2, T{

t

np) has a form

(2.11) , where f j υ = T{

t

ni).

By the same arguments as in (2.10), we can find T{ftp) e O ( ^ ) such that

(2.12) 7^) =

Tιp)

and
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/ c\ I Q \ c(np)

where each {Sι

t

k)} is canonical. Since {Sι

t

np)} is consistent, it determines a flow

{St) on 5αo and also {T(ttp)} gives an automorphism T o n S«. Then it is obvious

that St= T TrT"1. This concludes the proof.

Let Λp = iλ[p), . . . , λty-np-i} be the spectral set of {ff} and A be a sequence

of numbers which are ordered in such a way: χ\1\ . . . , $ , λ[2), . . . . For

short, we shall call A the spectral set of {Tt}.

Now, concerning Theorem 2.2, there is an alternative interpretation for

consistent canonical flows even in case the condition (*) is false. Assume that

every fiow {T{

t

np)} is given in the form (2.11). Then everything is the same

as in Theorem 2.2. On the other hand, as we have seen in (2.10), each {T(

t

np)}

is uniquely determined by its spectral set up to metrical equivalence by orthogonal

transformations. Therefore we have following proposition.

PROPOSITION 2.2. Let Mf = {2np ;/>>l} be any cofinal subset of M— {2, 3, . . . } ,

and let A = {λk I k>l} be a sequence of real numbers. Then, there exists a flow

{Tt) on 5» = Π Sn> with A as its spectral set. This flow is uniquely determined

by A up to metrical equivalence, if we confine the consistent sequence which ap-

proximates {Tt} to canonical ones.

PROPOSITION 2.3. Let {Tt) be a flow with spectral set A. Then {Tt) is

periodic with period 2 π if and only if A is constituted by integers.

At this stage, we wish to mention a meaning of spectral set Λ in our sense.

In [2], Hida first constructed a flow {Ttt with spectral set (0,1, 2, . . .} when

M1 = {3, 5, 7, . . .}, which is closely related with periodical Brownian motion as

was studied there. Following to him, let us consider the case where M1 =

{2, 4, 6, . . . } and Λ = {λk k>l), {λk) being an arbitrary sequence of reals.

Denoting by {Tt) the flow with A as its spectral set, and we can assume that

Tt is constructed by canonical flows such that

'? (

t

p) = Γcos λpt - sin λpt 1
I sin λpt cos λpt J

(cf. (2.11)). It is known that lim x(

k

2n) = lim l > t h coordinate of f2nix)l = £*(*)
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exists (a.e. on S*>) and that {£*} is an independent Gaussian system such that

each £jfe-has mean 0 and variance 1 ([3, p. 302]). Therefore we have

(2.14) ξ2k-ΛTtx) ξ2k-i(x)cosλktξ2k(x)sinλkt,
(ae. on

) ) cosλkt,

for each t. Further we have

(2.15) ϊa<x)

is a Gaussian random variable if a = (αi, a2> . . .) is in I2. Since the cor-

respondence a : i2:Ba-*ξa in (2.15) is linear and isometric from I2 to

L2(Soo)([3, p. 302]), we can say that the unitary group Ut ' f(x)->f(Ttx) has

discreate spectrum { ±λk) on a closed linear manifold σ{ I2) of L2(S«).

§3. Approximation to the flow on (Ω, B, P). Let C«/ be a partition of Ω

derived from the projection fn> : Ω-*Ώn>, where nf is in M\ the set presented

before. Similarly let ηn>t a partition of S«, be defined by pn>. Here we introduce

the following conditions:

(A) cn> n,-qn> n w t o o ) .

In other words, ζn>(yn>) is a refinement of Cm\r)m>) for m'<n' and ζn, tends to

the pointwise partiton e(5)of i?(5oo) as «' t co in the sense of the usual order

of partitions. Let us consider an automorphism and an automorphism (mod 0)

T on Ω. T is said to be consistent with {CΛ/} either

(3.1) TCn> = Cn>

or

(3.2) Tζn> = ζn< (mod QPζn,)

holds, where Pςn> is the factor measure on the factor space Ω/ζn', which is

isomorphic to Ωn*. Similarly, we call an automorphism S o n S » , i s consistent

with {Qn>) if

(3.3) Svn> = yΛ' and SCn> = Cn/ (mod 0 Pζn,)

In view of (3.1) ((3.2)) or (3.3), there exists a well defined point transforma-

tion on Ω or S« such that

(3.4) TWy=fn>Tfn>
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or

(3.5) Sin'}=pn'Tpn}.

We can now state a proposition.

PROPOSITION 3.1. Suppose that the condition (A) is satisfied. If T(S) is an

automorphism or automorphism (mod 0) on Ω(S*>) which is consistent with {CΛ'},

then τ{nf)(S{n/)) is an automorphism or automorphism (mod 0) on Ω(S*>). Moreover

{Tιn>)}({S{nf)}) is consistent and determinines the given TiS).

Proof. Let Ω° be a subset of Ω on which T is automorphic. It is easy to

show that T{n>) is automorphic on Ω°n>=fn>(Ω°). By using (2.2) and (2.3),

we have

Tln*)-fm..n.(x{")) = TmΊ-fm,,n«fnΛx) = Tim>)-fw(x) = fm\Tx)

for x{nΊ^Ω%.

Hence, {T { n Ί} is consistent and it determines T itself.

Define

(3.6) f^'^x) = *-th coordinate of pn>(x)>

and denote by Mn. a linear manifold of L2(5») spanned by {ψ[n'\ . . . , ψ{n'Ί).

Since S«' is isomorphic to the factor space S»/??„', we can consider ψ^t} as a

function of xιn'}GSn>. Now we prove

LEMMA 3.1. {ψ[n'\ . . . , ^S?'}} is an orthonormal base in MΛ/.

Proof. Let { î, . . . f βn>-i) be the polar coordinates of jc(l|r>eS«». Then

they are independent random variables on (5 Λ ' , B(S»0, P«0 with joint distribu-

tion nnjk(Ok)dθL -rfe^-i.where/iiei) = 1/2 τr,Λ(fc) = nk/2)b/^T\i - 1/2)]"1

sin*"2^(^>2). By expressing φ(

k

nΊ(xinf)) =x(p with their polar coordinates 6if

it is not hard to show that {φg'* k- 1, 2, . . . , n') is an orthonormal base of

THEOREM 3.1. Suppose that the condition (A) is satisfied. If {Tt} is a

measurable flow on S» and if Tt is consistent with {C»'} for each t. Then there exists

a measurable flow {Tι

t

nΊ} on S^ for each n'&Mf. They form a consistent system

and determine the given Tt for every t. Furthermore, if the unitary group {Ut}
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induced by {Tt) reduces the linear manifold Mn,, of L2(5«), then {T{

t

nf)} can be

derived from a one-parameter subgroup of SOin1).

Proof 1°. Define T{

t

nΊ as in (3.5), then {ΓP> is the factor flow of {Tt)

by (3.5) so that the first part of theorem is a consequence of Proposition 3.1.

2°. Since Ut reduces Mn,, Lemma 3.1 shows that every Utψ{kΊ is expressed

in the form

Let (. , .) and <. , .> be the inner product in L2(Sn>) and Rn' respectively.

On account of Lemma 3.1, we have

{r, UtψTΊ) = <aki aί>

where an = (a^t . . . , «*«'). Therefore A = (akt) is an orthogonal matrix. On

the other hand, the above form implies that

O t h coordinate of Tι

t

nt)xl = Utψp'^x) = <βk, x>, for ΛΓ= (xl9 . . . , χn ) e S«,,

so that Tίn/> = A on S«'. This concludes the proof of the thorem.
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