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Let K be a skewfield, E a left vector space over K, r an integer ^ 1 and Gr(£)
the set of all r-dimensional subspaces of E, called the Grassmannian of index r.
The function d(A, B) = r - dim (A n B) is a distance on Gr{E). UK' is a skewfield
and E' a left vector space over K', then any semilinear isomorphism u:E-*E'
(relative to an isomorphism K->K') induces a distance preserving bijection
Gr("): Gr(E) -* Gr(E'). When E has finite dimension n and 2r = «, another example
of such a mapping is obtained by taking K' = Xop, £ ' = £* and defining
wr: Gr(£) - Gr(E*) to be wr(A) = {feE*\f{A) = 0}.

In 1949, Chow [2] proved the following converse:

THEOREM. Suppose E and E' both have finite dimension n and 2 ^ r :g n — 2.
Let <}> be a distance preserving bijection Gr(E) -* Gr(E'). Then if 2r ^ n there
exists a semilinear isomorphism u:E-*E' such that <j> = Gr(u), while in the case
2r = n, 4> may also be of the form Gr(v)wr, where v is a semilinear isomorphism
E*-*E'.

The proof consists of a reduction to the case r = 1, followed by an application
of the fundamental theorem of projective geometry. The purpose of this note is
to place the first part of Chow's argument in a lattice-theoretic setting and apply
it to some other examples.

Let L be a lattice with 0; we assume that L is discrete i.e. that for all a, beL,
the supremum of lengths of chains from a to b is finite. Such a lattice has a height
function h: L-*N, defined by h(a) — sup. of lengths of chains from 0 to a. The
supremum of all numbers h(a), which may be infinite, is denoted by h{L). We shall
assume furthermore that L is atomic and modular; the height function then
satisfies the identity

h(a V b) + h(a A b) = h(a) + h(b).
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For every integer r ^ 1, the set Lr of all elements of height r in L is a metric space
under the distance d(a, b) = r — h(a A b).

Atoms p,q,re Lt are called collinear if they are all contained in some element
of L2. If L' is a lattice with the same properties as L, a bijective mapping
u: Li-* L\ is called a collineation provided that atoms p,q,re Lt are collinear if
and only if their images in L't are collinear.

LEMMA 1. A collineation u: L1-^U1 induces a distance preserving bijec-
tion ur: Lr-+L'r by defining ur(a) = u(pj) V ••• V u(pr), where a = py V ••• V pr

is some representation of a as a join of atoms.

Granted this lemma, our principal result can be stated as follows:

THEOREM. Suppose L and L are discrete atomic modular lattices such that
h(L) = h(L') and 2 ^ r ^ h(L) — 2. Let <f> be a distance preserving bijection
Lr-* L'r. Then if2r ^ h(L) there exists a collineation u: Lx -> L\ such that </> = ur,
while in the case 2r = h(L), (/> may also be of the form wvr, where w is a particular
exceptional mapping Lr -> L'r and v is a collineation L2 -* Lt.

Taking L (L') to be the lattice of all finite dimensional subspaces of E (£'),
one recovers essentially the theorem of Chow, with the added observation that
it remains valid for infinite dimensional spaces (in an even simpler form). Another
interesting example is obtained when L is the lattice F(S) of all finite subsets of a
set S; in this case, the theorem simplifies to read as follows:

COROLLARY. / / S and S' are sets, any distance preserving bijection
<j>: Fr(S)->F,(S') is induced by a bijection M: S->S' unless both S and S' are
finite of cardinality n, and 2r = n, when <f> may also be of the form 4>(A)
= u(S\A).

It is curious to note that, just as the fundamental theorem of projective
geometry is used [3, p. 93] in determining the automorphisms of GLn{K), so can
a special case of the above corollary be applied to the automorphisms of finite or
infinite symmetric groups Sx, Indeed, one first shows by some means that for
card(X) # 6 ,the set of transpositions is left invariant by an automorphism and
then remarks that the distance between transpositions (regarded as elements of
F2(X)) is 0,1 or 2 according to whether the order of their product is 1,3 or 2.
Since automorphisms preserve order, the corollary shows that for card(X) # 4 the
automorphism is induced, at least on transpositions, by conjugation with an
element ueSx. The argument is then concluded as in [4].

Finally, we remark that if L satisfies h(L) < oo in addition to the other hypo-
theses, a theorem of Birkhoff [1, p. 93] says that L must be a product of a boolean
algebra with projective geometries. In this case, Chow's theorem covers the simple
Desarguean factors, while the corollary above takes care of the boolean algebra.
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We now turn to the proofs. Elements a,beLr are called adjacent if d(a, b) = l.

LEMMA 2. / / d(a,b) = k, there exists a sequence co,---,ck of elements in

Lr such that c0 = 0, ck = b and C;_x is adjacent to cijor 1 ^ i ^ k.

PROOF. An argument of Birkhoff [1, p. 88] shows that a lattice satisfying
our assumptions is relatively complemented. Therefore a = (a A b) V *,
b = (a A b) V y for some x and y disjoint from a /\b and from each other. If
x = p\/x',y = q\Jy' for some atoms p and q, the element q_x = (a A &) V P
V y ' satisfies J(a, cfe_x) = k — 1 and d(ck-1,b) = 1; the argument is now
concluded by induction.

LEMMA 3. y4 bijection 4>: Lr-+ L!r preserves distance if and only if both <j>
and <j>~1 preserve adjacence.

PROOF. Suppose d(a, b) = k. Then, with the notation of lemma 2, the sequence
<Wco)>'"'><A(cfc) is s u c n <Wc>-i) a n d <Kci) a r e adjacent for 1 <; i <; fc. The triangle
inequality implies d(<f>(a), <j)(b)) ^ d(a, ft). (Actually, this inequality in turn implies
that (j) preserves adjacence, for if d(a, b) = 1, d(<j)(a), (t>(b)) cannot be 0 since <j> is
injective and must therefore be 1.) Since (j)'1 also preserves adjacence, we conclude
that d((/)~1(a),(j)~1(by) g d(a,b) and together the two inequalities imply that <f>
preserves distance.

PROOF OF LEMMA 1. If a eLr is written as a join p1 V ••• V pr of r atoms,
the latter are necessarily independent. We show by induction that an atom
q g P V ••• V Pr if and only if u(q) ^ u(px) \J ••• V u(pr). This is clear if q = pr or
if q ^ pt V ••• VP r - \ \ otherwise, q\Jpr intersects p± V ••• V p r - i i n an atom t.
We must have q ^ q\J pr = t\J pr and thus u{q) ^ u(t) V w(/>r) since M is a
collineation; however, the induction assumption shows that u{t) =g M(pt) V •••
V«(pr-i)- The converse follows by applying the same argument to u"1 . We

conclude in particular that the atoms K(/>I), •••,u(pr) are independent so that
u(Pi) V ••• Vu{Pr)tL'r\ secondly, if pi V ••• V Pr is another representation of a as

q join of atoms, u{pt) ^ u(pi) V ••• V "(pr)
 s 0 fhat u{p\) \J ••• \J u{p'r) = u(p{)

V • • • V u{Pr)- Thus ur is well-denned, with inverse (u~ 1)P. If a, b e Lr are adjacent
then, since u /a ) and ur(b) clearly contain ur-t{a A b), they must be adjacent or
equal, but the latter is impossible. We conclude by lemma 3 that uP preserves
distance.

We now come the the theorem itself. The first step is to determine the structure
of a maximal set M of pairwise adjacent elements of Lk. Since k < h(L), M must
have at least two elements a and b. If there exists some ceM which does not
contain a /\b, then every element of M is contained in a\j b. Indeed, if deM
does not contain a A b, then a f\d^b f\d so that d = {a/\d)\/{b/\d)
^,{a\J b) /\d i.e. d ̂ a\J b. If, on the other hand, deM does contain a f\b,
then c Ad must be distinct from a /\d = a Ab so that d = (cAd)V(aAd)
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g ( c V a) t\d = (a V b) f\d and again d ^ a V b. This argument shows that M
is either of the form Cx = {a e Lr | a k x} for some x e Lr_ t or Cy = {a e Lr | a ^ y}
for some yeLr+u since such sets consist of pairwise adjacent elements. If a set Cx

is not maximal, it is contained in another set of the form Cy or Cy. The first alterna-
tive is clearly impossible and the second is ruled out by the condition r ^ h(L) — 2.
Indeed, if p is an atom not contained in y, then p V x e Cx \ C

y. Similarly, the
condition r ^ 2 shows that sets of the form Cy are maximal.

Now suppose that cf>: Lr^>Ur is a distance preserving bijection. If x £ L , _ , ,
4>(CX) is a maximal set of pairwise adjacent elements and thus of the form Cy or
Cy. If the first alternative holds for a particular xeLr-u then it holds for all
elements of Lr_ j . To see this, it suffices to remark that if x ^ x', Cx n Cx. consists
of at most one element (x V x'), while an intersection of a set Cy with a set Cy

has at least two elements, namely y \J p and y V q, where p and q are distinct
atoms contained in y' but not in y.

It follows that 0 induces either a bijection i^: Lr^l -» L'r_! or Lr_ t -> L'r+1.
Since x and x' are adjacent precisely when Cx n Cx- ^ 0 or Cx n C^ ^ 0 , it
follows that both ^ and i/'"1 preserve adjacence and hence distance. Unless h(L)
< oo and 2r = /J(L), the second alternative is impossible. If 2r < h(L), the distance
between elements of Lr_j is at most r — 1, while the distance between elements
L'r+1 can be as high as r. If 2r > h(L), the second distance is at most h(L) — r — 1,
while the first can be h{L) — r.

The original mapping <j> can be recovered from \jt through the equation iA(C*)
= C*(JC), which also shows that even if 2(r — 1) happens to be h{L), \j/ still maps
sets of the form Cx to sets of the same form and thus induces a mapping Lr_2

-» L'r_2. Eventually, we obtain a collineation u: Lx -*L\ such that <f> = Mr.
If there does exist, when 2r = h(L), an exceptional mapping w which induces

a mapping Lr_x-* L'r+l then for every other such mapping </>, w~l(j> induces a
mapping Lr_ t-+ Lr_ t and thus comes from a collineation v:Li-^Ll. This
completes the proof.
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