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ISOMORPHISMS OF CAYLEY DIGRAPHS OF ABELIAN GROUPS

Ca1 HENG L1

For a finite group G and a subset S of G with 1 ¢ S, the Cayley graph Cay(G,S)
is the digraph with vertex set G such that (z,y) is an arc if and only if yzr~! €
S. The Cayley graph Cay(G,S) is called a CI-graph if, for any T C G, whenever
Cay(G,S) = Cay(G,T) there is an element 6 € Aut(G) such that §° = T. For a
positive integer m, G is called an m-DCl-group if all Cayley graphs of G of valency
at most m are Cl-graphs; G is called -a connected m-DCI-group if all connected
Cayley graphs of G of valency at most m are CI-graphs. The problem of determining
Abelian m-DClI-groups is a long-standing open problem. It is known from previous
work that all Abelian m-DCI-groups lie in an explicitly determined class ADCI(m) of
Abelian groups. First we reduce the problem of determining Abelian m-DCl-groups
to the problem of determining whether every subgroup of a member of ADCI(m) is
a connected m-DCl-group. Then (for a finite group G, letting p be the least prime
divisor of |G|,) we completely classify Abelian connected {p + 1)-DCl-groups G, and
as a corollary, we completely classify Abelian m-DCI-groups G for m < p + 1. This
gives many earlier results when p = 2.

1. INTRODUCTION

For a finite group G and a subset S of G not containing the identity of G, the
associated Cayley graph Cay(G, S) of G is the directed graph with vertex set G and arc
set {(z,y) | 7,y € G, yz! € S}. It easily follows that Cay(G, S) is connected if and
only if (S) =G.

A Cayley graph Cay(G, S) is called a CI-graph (CI stands for Cayley Isomorphism)
if, whenever Cay(G, S) & Cay(G,T) there is ¢ € Aut(G) such that S = T. One long-
standing open problem about Cayley graphs is to determine which Cayley graphs for a
given group are Cl-graphs. In this paper we study the problem for the class of Abelian
groups. For a positive integer m, if all Cayley graphs of G of valency at most m are
Cl-graphs, then G is called an m-DCI-group, in particular, if G is a |G |-DCI-group then
G is called a DCI-group.
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The problem of determining m-DCI-groups has been investigated extensively over
the past 30 years, stemming from a conjecture of Adam [1] that all finite cyclic groups
were DCl-groups. This conjecture was disproved by Elspas and Turner [7]. Since then,
considerable energy has been devoted to seeking cyclic DCI-groups (see Babai [3], Alspach
and Parsons [2], and Godsil [11]), and very recently, a complete classification of cyclic
DClI-groups was finally obtained by Muzychuk [18, 19]. Babai and Frankl in [4] inves-
tigated isomorphisms of undirected Cayley graphs of odd order and posed a conjecture
that all undirected Cayley graphs of elementary Abelian groups Zg were Cl-graphs. The
conjecture has been proved for the case d = 2 by Godsil [11] and for the case d = 3 by
Dobson [6]. It is actually proved that Zg for d < 3 are DCI-groups. However, Nowitz
[20] proved that Z$ is not a DCI-group.

On the other hand, m-DCI-groups have been studied for certain small values of m.
A complete classification of the Abelian m-DCl-groups for m < 4 is obtained by the
work of [21, 8, 9, 10, 12]. Recently, it is shown in [17] that if G is an m-DCl-group
for m > 2 then G = U x V where (JU|,|V]|) = 1, U is an Abelian group of which all
Sylow subgroups are homocyclic (namely, the direct product of cyclic groups of the same
order), and V' belongs to an explicitly determined list of groups. In particular, it is shown
that a Sylow g-subgroup G, of an Abelian m-DCI-group G has the following properties
(or see [14, Proposition 3.3]):

(i) if ¢ > m then G, is homocyclic;
(if) if ¢ = m then G, is elementary Abelian or cyclic;
(iii) if ¢ < m then G, is elementary Abelian or Z,.

We use ADCI(m) to denote the class of all Abelian groups of which all Sylow sub-
groups satisfy conditions (i)—(iii). Then ADCZ(m) contains all candidates of Abelian m-
DCI-groups, and therefore, the problem of determining Abelian m-DCI-groups becomes
the following problem.

PROBLEM 1.1. Determine which groups in ADCZ(m) are m-DCI-groups.

However, this is still a very difficult problem. For example, it is even not known
whether Z7 with p a prime are m-DCI-groups for arbitrary m, see for example [6]. One
of the main aims of this paper is to give a reduction for Problem 1.1.

A group G is called a connected m-DCI-group if all connected Cayley graphs of G of
valency at most m are CI-graphs. It is easily shown that if a group G is an m-DCl-group
then each subgroup of G is a connected m-DCI-group (see Lemma 2.1). Conversely, we
have:

THEOREM 1.2. Letm be a positive integer, and let G be a member of ADCI(m).
Then G is an m-DClI-group if and only if all subgroups of G are connected m-DCI-groups.

Thus the problem of determining Abelian m-DCI-groups is further reduced to the
problem of determining Abelian connected m-DCI-groups which are subgroups of a mem-
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ber of ADCZ(m). There have been some investigations on connected m-DCl-groups. It
follows from [5] that an Abelian group G is a connected 2-DCI-group (also see {22]). Xu
and Meng [22] obtain a complete classification of Abelian connected 3-DCI-groups. Some
more general results are obtained in {14, 15], and in particular, it is shown in [14] that
an Abelian group G with p the smallest prime divisor of |G| is a connected m-DCl-group
for m < p but not necessarily a connected (p + 1)-DCl-group. The next result gives a
complete classification of Abelian connected (p + 1)-DCl-groups:

THEOREM 1.3. Let G be an Abelian group, and let p be the smallest prime
divisor of |G|. Then G is a connected p-DCI-group. Further, let G, be the Sylow p-
subgroup of G. Then G is a connected (p+ 1)-DCI-group if and only if one of the
following holds:

(i) G is of rank at least 3;
(ii) G is of rank at most 2, and either G, is homocyclic of rank 2, or G, = Z,
or Z4.

Combining Theorem 1.2 and Theorem 1.3, we have an immediate consequence:

COROLLARY 1.4. Let G be a member of ADCI(m), and let p be the smallest
prime divisor of |G|. If m < p+ 1 then G is an m-DCI-group.

Taking p = 2, this corollary gives the results of [21, 8, 9, 10].

2. PrROOF OF THEOREM 1.2

If Cay(G, S) is a Cl-graph, we shall call S a CI-subset for convenience. We use the
following two lemmas to prove Theorem 1.2.

LEMMA 2.1. Assume that G is an m-DCI-group. Then all subgroups of G are
connected m-DCI-groups.

PROOF: Let H be a subgroup of G which is generated by S where |S| < m. Let T C
H be such that Cay(H,S) = Cay(H,T). Then (T) = H and Cay(G, S) = Cay(G,T).
Thus there exists ¢ € Aut(G) such that S = T. Now H° = (§?) = (T) = H, soo
induces an automorphism of H. Hence S is a Cl-subset of H, and H is a connected
m-DCl-group. 0

LEMMA 2.2. Let G be a member of ADCI(m). Assume that every subgroup of
G is a connected m-DCI-group. Then G is an m-DCI-group.

PROOF: Let S be a subset of G of size at most m, and let H = (S). Then S is a CI-
subset of H. Let T be a subset of G such that Cay(G, S) = Cay(G,T), and let K = (T).
Then Cay(H, S) = Cay((T),T). Let A= AutCay(H, S) and B = Aut Cay(K,T). Then
A= HA, with HN A, = 1, and B = KB, with KN B; = 1, where A, B; is the
stabiliser of 1 in A, B, respectively. Since Cay(H, S) = Cay(K,T), we have that A ~ B
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and |H| = |K|. Since |S|,|T| < m, every prime divisor of |4,| (and of |B,|) is at most
m (see [16, Lemma 2.1]). Let g be a prime of |H| and H, a Sylow g-subgroup of H,
and let K; be a Sylow g-subgroup of K. We claim that H, = K,. If ¢ > m then H,
is a Sylow g-subgroup of A. Since A & B, H, = K,. Next assume that ¢ < m. Then
G, is elementary Abelian or cyclic, and so any two subgroups of G, of the same order
are isomorphic. Since |H| = |K|, we have |H,| = |K,|, and so H, = K,. Consequently,
H, = K, for all ¢ dividing |H| and so H = K.

Let o be an isomorphism from K to H and let 7' = T°. Then Cay(H,T') =
Cay(K,T) = Cay(H,S). Since S is a Cl-subset of H, there is « € Aut(H) such that
(T")* = S. Thus 8 := o« is an isomorphism from K to H such that 7% = (T9)* =
(T")® = S. Since all Sylow subgroups of G are homocyclic, it is easy to see that there
exists an automorphism p of G such that 8 = p|k, the restriction of p to K. Therefore,
T° =TP =S, and so S is a Cl-subset of G. 0

3. PROOF oF THEOREM 1.3

In this section we prove Theorem 1.3. For a finite group G, we use p to denote the
smallest prime divisor of |G|. The first lemma shows that if G is an Abelian connected
(p + 1)-DCl-group of rank 2 and a Sylow p-subgroup G,, of G is noncyclic then G, must
be homocyclic.

LEMMA 3.1. Let G = (z) X (y) & Zyypn X Zg,pm where (k1kz,p) = 1 and n >
m > 1. Then (z***" ")y U {z} is a generating subset and is not a Cl-subset of G.

PROOF: Set S := (7" )y U {z}, and let T = (z**" " )z**" "'y U {z}. Then
for any integer i, o(z”‘lp"_ly) = p™ and o(ziklp"_lz"”’"'m'ly) = p™*t!. It follows that
S9 # T for any o € Aut(G). To prove that S is not a Cl-subset we only need to verify
that Cay(G, S) = Cay(G,T). Let z = z¥*"™" and ' = 57" 'y. Then

¢G= U U (@vd= U U @6
0gigkop™—~1 0Ki<kipn—1-1 0<i<hkap™ ~1 0Kj<hipn1-1
Let p be the map from G to G defined as follows:
2yt — z"(y’)izj for0<Sh<p-1,0<i<kp™—1land 0K j < kp* ! - 1.
A straightforward calculation shows that p is an isomorphism from Cay(G,S) to
Cay(G,T). Hence S is not a Cl-subset of G.

The next lemma shows that if a Sylow p-subgroup of an Abelian connected (p + 1)-
DCl-group of rank at most 2 is cyclic then it must be of order p or 4.

LEMMA 3.2. Let G = (z) X (y) = Zy,pn X Ly,, where (kik,p) = 1, and either
pz23andn>2 orp=2andn 2 3. Let

5= { (" Yz {ysh" ), ifp 23,
T (@R T)Yzu {yzh? Y, ifp=2.

Then S is a generating subset and is not a Cl-subset of G.
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PROOF: Set - ',,-,
=] @7 U lyTlah ) ifp > 3,
(T Yz U {y iz ), ifp=2.

k n—1 if 2 3 PR
Let kg = 1pn_2, 1 p ~ . ,andlet z =z*. Then G = U U (2)y'z?. Let
k27 ifp=2 0<i<ka~10<i<ko—1

p be the map from G to G defined as follows:
2yt o 2Ry forOS A p -1, Qsiskg—l, 0<ji<k -1

A straightforward calculation shows that p is an isomorphism from Cay(G, S) to Cay(G,T).

Suppose that there exists o € Aut(G) sending S to T. Now o(z) = k;p" and

o(y~'z"') = kyp or 4k, for p > 2 or p = 2, respectively. Thus z* = z**" 'z for some

integer I, and so 2* = (z"")a = (:c"’“’"-lz)ko = z. Therefore, ((x"“’"_l)z)a = (zF*" g

and {yz}* = (S \ (:l:""’"“l)a:)u =T\ (z¥*" ")z = {y~'27'} so that 2* = 2™, which is a

contradiction. Hence S is not a Cl-subset of G. 0
To complete the proof of Theorem 1.3, we need the following known results.

THEOREM 3.3. ([13, Theorem3.2].) Let G be an Abelian group and S a gener-
ating subset of G. Let T = Cay(G, S), and let A = AutT and A, the stabiliser of 1 in
A. Then either A, is faithful on S, or S contains a coset of some subgroup of G.

PROPOSITION 3.4. ([14, Proposition4.1].) Let G be an Abelian group, and let
p be the smallest prime divisor of |G|. Let S be a subset of G, and let A = Aut Cay(G,S)
and let A, be the stabiliser of 1 in A. If (|A1|,|G|) = 1 then S is a Cl-subset; if
(|A1],1G]) = p, then either S is a CI-subset, or S contains a coset of some subgroup of
G.

Now we can complete the proof of Theorem 1.3.

PROOF OF THEOREM 1.3: Suppose that G is a connected (p + 1)-DCI-group. If G
is of rank at least 3 then G is as in part (i). Thus we assume that G has rank at most
2. By Lemmas 3.1 and 3.2, either G, is homocyclic of rank 2, or G, & Z, or Zy4, as in
part (ii).

Conversely, assume that G is an Abelian group with p the least prime divisor of
|G| which satisfies part (i) or part (ii) of the theorem. We need to prove that G is a
connected (p + 1)-DCl-group. By [14, Theorem 1.1(2)}, G is a connected p-DCI-group.
Thus assume that S is a generating subset of G of size p+1 with 1 ¢ S. Let I' = Cay(G, S)
and A = AutT. If (|G|, |A1]) = 1 then by Proposition 3.4, S is a Cl-subset. Thus we
assume that (|G|, |A;|) # 1. We need to prove that S is a Cl-subset of G. By Xu and
Meng [22], if p = 2 then S is a CI-subset. Thus we further assume that p > 3. Suppose
that S contains no coset of a nontrivial subgroup of G. Then by Theorem 3.3, 4, is
faithful on S and it follows that (|G|, |A:]|) divides p, and therefore, by Proposition 3.4,
S is a Cl-subset. Thus we suppose that S contains a coset of some nontrivial subgroup
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of G, so we may write S = (c)bU {a} for some a,b,c € G with () = Z,. In particular,
G is of rank at most 3.

We claim that (c)b and {a} are two orbits of A; on S. Suppose that A, is transitive
on S. Since b%*(c) C I'(bc*) for all ¢, |T'(bc) NT(bc7)] = p > 3 for any integers i, j, and
hence we have that [['(bc') NI'(a)| > 3. It follows that there exists an integer k such
that (a.bc’“) = (bc‘.bo’") for some integer j'. Therefore, a = bci+7'~* € b(c), which is a
contradiction. So A, is not transitive on S. On the other hand, since pl |A;], A; has
an orbit of length p on S. Thus A; has exactly 2 orbits on S, one has length p and the
other has length 1. Tt follows since |T'(bc') N T'(a)| < 2 for each i that (c)b and {a} are
the two orbits of A; on S, as claimed. Consequently, A has the two orbits on arcs of [
one is (1,a)* and the other is (1, b)*. We shall call edges of T in these orbits a-edges and
b-edges, respectively.

Let T be a subset of G such that T' 2 Cay(G,T). Then Cay(G,T) is also not arc-
transitive, and S is a ClI-subset if and only if T is a CI-subset. Thus, similarly, we may
write T = ()b’ U {a’} for some o', ¥, ¢ € G with (¢) = Z,. Further, B := Aut Cay(G,T)
has two orbits on the arcs of Cay(G,T); one is (1,a')?, and the other is (1,0)5. We
shall call edges of Cay(G,T) in these orbits a’-edges and b'-edges, respectively. Since G,
is homocyclic, (c) is conjugate under Aut(G) to ('), so we may assume that () = (c)
so that T = {c)b' U (a’). Let p be an isomorphism from I' to Cay(G, T) such that 12 = 1.
Then we have that p maps b-edges to b'-edges and a-edges to a’-edges. In particular,
{b,cb,...,cP b} = ((c)b)’ = (c)b' = {¥,cV,...,c’"'V'} and @ = d, and if 2* = =’
(inductively) then

(ax)® = d'z’, ({c)bz)” = {bx,cbz,..., P bz} = (2, cb'2/,..., P W2’} = (c)b'2.

By induction on ¢ + j, we have
(ai)p =a", ((c)biaj)p = () (t')'(a')’, for all integers ¢,5 > 0.

Ther%fore 0 a) = o(a'), and p mduces an automorphlsm B of G := G/(c) such that
(b ) ) (@), in particular, 5 = {a,5}% = {@,5} =T, o(@) = o(@) and o(b) =
o( ), where “X” is the image of an object X (of G) under G — G.
If G is of rank 3, then G = (5) = (¢,b,a). If (c) N (b,a) # 1 then ¢ € (b,a) and so
= (b, a), which is a contradiction. Thus {c)N (b, a) = 1, and therefore, G = (c) x (b, a) =
(c) x G. Thus the above-defined § may be viewed as an automorphism of (b, a) so that
(b,a)’ = (V',a'). Let 7 = (g, B) € Aut({c)) x Aut({b,a}) < Aut(G) where ¢ denotes the
identity of Aut({(c)). Then S” = ({c}bU {a})" = (c)¥’ U{a’'} =T, so S is a Cl-subset.
Thus we suppose that G is of rank at most 2 in the following. Let G, be the Sylow
p-subgroup and G the Hall p’-subgroup of G. Write a = ayay and b = byb, such that
ap, b, € Gp and ay, by € Gy, and write a’ = a,a,, and ¥ = b,b}, such that a, b, € G, and
aly, b, € Gy. Then @ = @, and Eg = 5;,. On the other hand, since @f, = Gy, B induces
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an automorphism g’ of _G-,,:, and since @,,: = Gy, §' may be viewed as an automorphism
of Gp. Thus af = ), and b = b,,.

Assume first that G, & Z,. Then G = (c) x G, and by, b}, € (c) and so (c)b = (c)by
and ()b’ = (c)by,. Let T = (o, B') € Aut({c)) x Aut({b,a)) < Aut(G) such that af = aj,.

Then of af
S = (@B U e} = ()b U {ayy))
= (c)bg, U {agaf,} = ()b U {apay} = (W U{a'} =T.

Thus S is a Cl-subset.

Assume secondly that G, = Z2. Then either G, = (a,,¢) = (a},¢), or a = ay,
a' = ay and G, = (by,c) = (b, c). First suppose that G, = (a,,c) = (ay, ©)- Then
b, = c'aj for some integers 4, j, so b, = @. Now b, = Bf = (Ei)ﬁ = (E;)J, so by, = c"(a;,)]
for some integer k. Consequently, {(c)b = (c)byby = (c)c'alby = (c)alby and (c)b' =
(OB, = () (ap) b, = (c)(a) by Let T = (o, B) € Aut(G,) x Aut(Gy) < Aut(G)
such that af = a, and ¢ = c¢. Then

S™ = ((9)buU{a})” = ((e)ajby U {a,,ap,})(""")

= ((c)ag;)"bf;' U {agal} = () (a;,)’b;, U{aal} = (W Uu{a'} =T.

Therefore, S is a CI-subset. Now suppose that a = ap, d' = a;,, and G, = (b, ¢) = (b;,, c).
Let 7 = (o, §') € Aut(G,) x Aut(Gp) < Aut(G) such that b3 = b/, and ¢* = c¢. Then

8™ = ({c)buU {a,})T = (,(C)bpbp; U {ap:})(""s')
= ((C)bp)abgl U {a,g,} = (c)b;,b;, U {a;,} = () U{a}=T.

Therefore, S is a Cl-subset.
Assume, finally, that G, is not elementary Abelian so that G, = (g1) x (g2) = Z2.

with n > 2. Then G, = (by, ap) = (b, a,). Let 7 be the map 7 from G to G defined as
follows: S oNT o

(b’a’) = b"a"” for all integers i and j.
Then 7 induces the automorphism 3 of G/(c) defined before. In particular, §’ (defined
before) is the restriction of 7 to Gy. On the other hand, since G, is of rank 2, 7
induces an automorphism a of G,. Therefore, 7 = (a, §’) is an automorphism of G, and
() = P=1= (c) where T is the identity of G. Consequently, we have that

S = ({)bU {a})” = () U {a"} = (V' U {d'} = T.

Thus S is a Cl-subset. This completes the proof of the theorem. 0
Combining Theorem 1.2 and Theorem 1.3, we can easily prove Corollary 1.4.
PROOF OF COROLLARY 1.4: Assume that G is a member of ADCZ(m) with p the

smallest prime divisor of |G|. Let S be a subset of G of size m < p+ 1. By Theorem 1.3,

S is a Cl-subset of (S), and so by Theorem 1.2, S is a Cl-subset of G. Therefore, G is

an m-DCI-group. 0
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