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ISOMORPHISMS OF CAYLEY DIGRAPHS OF ABELIAN GROUPS

CAI HENG LI

For a finite group G and a subset 5 of G with 1 ^ 5 , the Cayley graph Cay(G,S)
is the digraph with vertex set G such that (x,y) is an arc if and only if yx"1 €
S. The Cayley graph Cay(G, 5) is called a Cl-graph if, for any T c G, whenever
Cay(G,5) = Cay(G,T) there is an element a € Aut(G) such that S" = T. For a
positive integer m, G is called an ra-DCI-group if all Cayley graphs of G of valency
at most m are Cl-graphs; G is called a connected m-DCI-group if all connected
Cayley graphs of G of valency at most m are Cl-graphs. The problem of determining
Abelian m-DCI-groups is a long-standing open problem. It is known from previous
work that all Abelian m-DCI-groups lie in an explicitly determined class ADCI(m) of
Abelian groups. First we reduce the problem of determining Abelian m-DCI-groups
to the problem of determining whether every subgroup of a member of AVCI(m) is
a connected m-DCI-group. Then (for a finite group G, letting p be the least prime
divisor of \G\,) we completely classify Abelian connected (p + l)-DCI-groups G, and
as a corollary, we completely classify Abelian m-DCI-groups G for m < p + 1. This
gives many earlier results when p = 2.

1. INTRODUCTION

For a finite group G and a subset 5 of G not containing the identity of G, the
associated Cayley graph Cay(G, S) of G is the directed graph with vertex set G and arc
set {{x,y) \ x,y £ G, yx~l e S}. It easily follows that Cay(G, S) is connected if and
only if (5) = G.

A Cayley graph Cay(G, 5) is called a Cl-graph (CI stands for Cayley Isomorphism)

if, whenever Cay(G,5) = Cay(G,T) there is a £ Aut(G) such that 5" = T. One long-
standing open problem about Cayley graphs is to determine which Cayley graphs for a
given group are Cl-graphs. In this paper we study the problem for the class of Abelian
groups. For a positive integer m, if all Cayley graphs of G of valency at most m are
Cl-graphs, then G is called an m-DCI-group, in particular, if G is a |G|-DCI-group then
G is called a DCI-group.
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The problem of determining m-DCI-groups has been investigated extensively over
the past 30 years, stemming from a conjecture of Adam [1] that all finite cyclic groups
were DCI-groups. This conjecture was disproved by Elspas and Turner [7]. Since then,
considerable energy has been devoted to seeking cyclic DCI-groups (see Babai [3], Alspach
and Parsons [2], and Godsil [11]), and very recently, a complete classification of cyclic
DCI-groups was finally obtained by Muzychuk [18, 19]. Babai and Frankl in [4] inves-
tigated isomorphisms of undirected Cayley graphs of odd order and posed a conjecture
that all undirected Cayley graphs of elementary Abelian groups Z^ were Cl-graphs. The
conjecture has been proved for the case d = 2 by Godsil [11] and for the case d = 3 by
Dobson [6]. It is actually proved that Zp for d ^ 3 are DCI-groups. However, Nowitz
[20] proved that Z!j is not a DCI-group.

On the other hand, m-DCI-groups have been studied for certain small values of m.
A complete classification of the Abelian m-DCI-groups for m ^ 4 is obtained by the
work of [21, 8, 9, 10, 12]. Recently, it is shown in [17] that if G is an m-DCI-group
for m ^ 2 then G — U x V where (|f/|, | V|) = 1, U is an Abelian group of which all
Sylow subgroups are homocyclic (namely, the direct product of cyclic groups of the same
order), and V belongs to an explicitly determined list of groups. In particular, it is shown
that a Sylow ^-subgroup Gq of an Abelian m-DCI-group G has the following properties
(or see [14, Proposition 3.3]):

(i) if q > m then Gq is homocyclic;

(ii) if q = m then Gq is elementary Abelian or cyclic;

(iii) if q < m then Gq is elementary Abelian or Z4.

We use AVCI(m) to denote the class of all Abelian groups of which all Sylow sub-
groups satisfy conditions (i)-(iii). Then A'DCI{m) contains all candidates of Abelian m-
DCI-groups, and therefore, the problem of determining Abelian m-DCI-groups becomes
the following problem.

PROBLEM 1.1. Determine which groups in AT>CX(m) are m-DCI-groups.

However, this is still a very difficult problem. For example, it is even not known
whether Z* with p a prime are m-DCI-groups for arbitrary m, see for example [6]. One
of the main aims of this paper is to give a reduction for Problem 1.1.

A group G is called a connected m-DCI-group if all connected Cayley graphs of G of
valency at most m are Cl-graphs. It is easily shown that if a group G is an m-DCI-group
then each subgroup of G is a connected m-DCI-group (see Lemma 2.1). Conversely, we
have:

THEOREM 1 . 2 . Let mbea positive integer, and let G be a member ofAVCX(m).

Then G is an m-DCI-group if and only if all subgroups ofG are connected m-DCI-groups.

Thus the problem of determining Abelian m-DCI-groups is further reduced to the
problem of determining Abelian connected m-DCI-groups which are subgroups of a mem-
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ber of ADCX(m). There have been some investigations on connected m-DCI-groups. It
follows from [5] that an Abelian group G is a connected 2-DCI-group (also see [22]). Xu
and Meng [22] obtain a complete classification of Abelian connected 3-DCI-groups. Some
more general results are obtained in [14, 15], and in particular, it is shown in [14] that
an Abelian group G with p the smallest prime divisor of \G\ is a connected m-DCI-group
for m ^ p but not necessarily a connected (p + l)-DCI-group. The next result gives a
complete classification of Abelian connected (p + l)-DCI-groups:

THEOREM 1 . 3 . Let G be an Abelian group, and let p be the smallest prime
divisor of \G\. Then G is a connected p-DCI-group. Further, let Gv be the Sylow p-
subgroup of G. Then G is a connected (p + l)-DCI-group if and only if one of the
following holds:

(i) G is of rank at least 3;

(ii) G is of rank at most 2, and either Gp is homocyclic of rank 2, or Gv = Zp

orZ4.

Combining Theorem 1.2 and Theorem 1.3, we have an immediate consequence:

COROLLARY 1.4. Let G be a member of AVCI(m), and let p be the smallest
prime divisor of \G\. Ifm^p+l then G is an m-DCI-group.

Taking p = 2, this corollary gives the results of [21, 8, 9, 10].

2. PROOF OF THEOREM 1.2

If Cay(G, 5) is a Cl-graph, we shall call 5 a Cl-subset for convenience. We use the
following two lemmas to prove Theorem 1.2.

LEMMA 2 . 1 . Assume that G is an m-DCI-group. Then all subgroups of G are
connected m-DCI-groups.

PROOF: Let H be a subgroup of G which is generated by S where \S\ ^ m. Let T c
H be such that Cay(#,S) S Cay(H.T). Then (T) = H and Cay(G,S) = Cay(G,T).
Thus there exists a G Aut(G) such that S" = T. Now H" = (Sa) = (T) = H, so a
induces an automorphism of H. Hence 5 is a Cl-subset of H, and H is a connected
m-DCI-group. D

LEMMA 2 . 2 . Let G be a member of AVCI(m). Assume that every subgroup of
G is a connected m-DCI-group. Then G is an m-DCI-group.

PROOF: Let 5 be a subset of G of size at most m, and let H = (S). Then 5 is a Cl-
subset of H. Let T be a subset of G such that Cay(G, S) 3* Cay(G, T), and let K = (T).
Then Cay(#,S) S Cay((T),T). Let A = kutCay{H,S) and B = AutCay(A",T). Then
A = HAX with H n Ax = 1, and B = KB\ with K n Bx = 1, where AX,BX is the
stabiliser of 1 in A,B, respectively. Since Cay{H,S) = Ca.y(K,T), we have that A^B
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and \H\ — \K\. Since \S\, \T\ ^ m, every prime divisor of \A\\ (and of |^x | ) is at most
m (see [16, Lemma 2.1]). Let q be a prime of \H\ and Hq a Sylow g-subgroup of H,
and let Kq be a Sylow g-subgroup of K. We claim that Hq = Kq. If q > m then Hq

is a Sylow ^-subgroup of A. Since A = B, Hq = Kq. Next assume that q ^ m. Then
G7 is elementary Abelian or cyclic, and so any two subgroups of Gq of the same order
are isomorphic. Since \H\ = \K\, we have \Hq\ = \Kq\, and so Hq = Kq. Consequently,
Hq 3S Kq for all q dividing \H\ and so H^K.

Let CT be an isomorphism from K to H and let T' = T"'. Then Cay(/7,T') =
Cay(K,T) 2S Cay(#, 5). Since 5 is a Cl-subset of H, there is a 6 Aut(#) such that
(T')° = 5. Thus 0 :- era is an isomorphism from K to H such that T" = (T°)a =
(T')Q = 5. Since all Sylow subgroups of G are homocyclic, it is easy to see that there
exists an automorphism p of G such that 0 — P\K, the restriction of p to K. Therefore,
T*> = T0 = S, and so 5 is a Cl-subset of G. D

3. P R O O F OF THEOREM 1.3

In this section we prove Theorem 1.3. For a finite group G, we use p to denote the
smallest prime divisor of \G\. The first lemma shows that if G is an Abelian connected
(p + l)-DCI-group of rank 2 and a Sylow p-subgroup Gp of G is noncyclic then Gp must
be homocyclic.

LEMMA 3 . 1 . Let G = (x) x (y) S Zkipn x Z*2Pm where (k1k2,p) = 1 and n >

m ^ 1. Tien (xkiJ>n~1)y U {x} is a generating subset and is not a Cl-subset ofG.

P R O O F : Set S := {xkiJ>n'l)y U {x}, and let T = (xkipn~l)xk»>n~m~ly U {x}. Then
for any integer i, o(xifclP""'y) = p m and o^'P""^*1"""™"'?/) = p m + 1 . It follows that
S" ^ T for any a € Aut(G). To prove that S is not a Cl-subset we only need to verify
that Cay(G,5) S Cay(G,T). Let z = z*1"""' and y' - xki»n~m~1y. Then

G= U U <*>2/V= U U

Let /9 be the map from G to G defined as follows:

zhyixj -> zh(y'Yxj for 0 ^ A ̂  p - 1, 0 < i ^ k2p
m - 1 and 0 < j < fcip""1 - 1.

A straightforward calculation shows that p is an isomorphism from Cay(G,S) to
Cay(G,T). Hence 5 is not a Cl-subset of G. D

The next lemma shows that if a Sylow p-subgroup of an Abelian connected (p -I-1)-
DCI-group of rank at most 2 is cyclic then it must be of order p or 4.

LEMMA 3 . 2 . Let G = (x) x (y) = Zkipn x Zk2) where (kik2,p) — 1, and either

p ^ 3 and n ^ 2, or p — 2 and n ^ 3. Let

\ !}, ifp =

Tien 5 is a generating subset and is not a Cl-subset ofG.
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P R O O F : Set ,
rp _ 1 \ * ,'•» ^ I*/ •*• Jl l l P i? &j

I \X * )x U ^y *̂  1 j , if p = 2.

( —i

Let k0 = < , l P
n _ 2 ' !f

 P 1 . a n d let 2 = a;*0. Then G = U U ( z ) ^ . Let

p be the map from G to G defined as follows:

zf tyV -> 2"Ay"V' for 0 ^ /i ^ p - 1, 0 < i ^ A;2 - 1, 0 < j < fc0 - 1.

A straightforward calculation shows that p is an isomorphism from Cay(G, 5) to Cay(G, T).

Suppose that there exists a € Aut(G) sending 5 to T. Now o(x) = kxp
n and

o(y~xz~l) = k-iP or 4&2 for p > 2 or p = 2, respectively. Thus i a = x'*lP""1i for some

integer /, and so za = {xk°)a = (xlklP"~1 x)** = z. Therefore, ((a:*lP""')x)Q = (xklP"~')x

and {yz}a = (S\ (xklJ>n~1)x)a =T\ (x*lP""')a; = {y^z'1} so that za = z~\ which is a
contradiction. Hence 5 is not a Cl-subset of G. D

To complete the proof of Theorem 1.3, we need the following known results.

THEOREM 3 . 3 . ([13, Theorem3.2].) Let G be an Abelian group and S a gener-
ating subset ofG. Let T = Cay(G,5), and let A — AutF and J4I the stabiliser of 1 in
A. Then either Ai is faithful on S, or S contains a coset of some subgroup ofG.

PROPOSITION 3 . 4 . ([14, Proposition 4.1].) LetGbean Abelian group, and let
p be the smallest prime divisor of \G\. Let S be a subset ofG, and let A = Aut Cay(G, 5)
and let A\ be the stabiliser of I in A. If (\Ai\,\G\) = 1 then S is a Cl-subset; if
(\A\\, |G|) = p, then either S is a Cl-subset, or S contains a coset of some subgroup of
G.

Now we can complete the proof of Theorem 1.3.

P R O O F OF THEOREM 1.3: Suppose that G is a connected (p -I- l)-DCI-group. If G
is of rank at least 3 then G is as in part (i). Thus we assume that G has rank at most
2. By Lemmas 3.1 and 3.2, either Gp is homocyclic of rank 2, or Gp = Zp or Z4, as in
part (ii).

Conversely, assume that G is an Abelian group with p the least prime divisor of
|G| which satisfies part(i) or part(ii) of the theorem. We need to prove that G is a
connected (p+ l)-DCI-group. By [14, Theorem 1.1 (2)], G is a connected p-DCI-group.
Thus assume that 5 is a generating subset of G of size p+1 with 1 ^ 5 . Let F = Cay(G, 5)
and A = AutF. If (|G|, |i4i|) = 1 then by Proposition 3.4, 5 is a Cl-subset. Thus we
assume that (|G|, \Ai\) ^ 1. We need to prove that 5 is a Cl-subset of G. By Xu and
Meng [22], if p = 2 then 5 is a Cl-subset. Thus we further assume that p > 3. Suppose
that 5 contains no coset of a nontrivial subgroup of G. Then by Theorem 3.3, A\ is
faithful on 5 and it follows that (|G|, \AX\) divides p, and therefore, by Proposition 3.4,
5 is a Cl-subset. Thus we suppose that 5 contains a coset of some nontrivial subgroup
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of G, so we may write 5 = (c)bU {a} for some a,b,c e G with (c) = Zp. In particular,
G is of rank at most 3.

We claim that {c)b and {a} are two orbits of Ax on 5. Suppose that Ai is transitive
on 5 . Since 62(c) C F(6c') for all i, \r(bc{) D F(&c>)| ^ p ^ 3 for any integers i,j, and
hence we have that |F(6c') n F ( a ) | ^ 3. It follows that there exists an integer k such
that (a.bd'J = (&c'.6c;'J for some in teger / . Therefore, a = bci+j'~k 6 b(c), which is a
contradiction. So A\ is not transitive on 5 . On the other hand, since p \Ai\, A\ has
an orbit of length p on 5 . Thus A\ has exactly 2 orbits on 5, one has length p and the
other has length 1. It follows since \r(bd) D F(a)| ^ 2 for each i that (c)b and {o} are
the two orbits of A\ on S, as claimed. Consequently, A has the two orbits on arcs of F;
one is (l,a)A and the other is (1, b)A. We shall call edges of F in these orbits a-edges and
b-edges, respectively.

Let T be a subset of G such that F = Cay (G,T). Then Cay (G,T) is also not arc-
transitive, and 5 is a Cl-subset if and only if T is a Cl-subset. Thus, similarly, we may
write T = (d)b'U{a'} for some a',b',d €G with (d) * Zp. Further, B := Aut Cay(G,T)

has two orbits on the arcs of Cay(G, T); one is (l,a')B, and the other is (l,b')B. We
shall call edges of Cay (G,T) in these orbits a'-edges and &'-edges, respectively. Since Gp

is homocyclic, (c) is conjugate under Aut(G) to (c'), so we may assume that (d) = (c)
so that T — (c)b' U (a')- Let p be an isomorphism from F to Cay(G, T) such that lp — 1.
Then we have that p maps &-edges to fc'-edges and a-edges to a'-edges. In particular,
{b,cb,...,<?-lbY = {{c)b)p = (c)b' - {b',cb',. ..,&-lb'} and a" = a', and if i " = x'
(inductively) then

(ax)" - a V , « c ) t e ) p - {bx, cbx,..., (f^bx}" = {b'x1, cb'x',..., d'-'b'x'} = (c)b'x'.

By induction on i + j , we have

) " = ( c ) ( i ' ) > T , for all integers z,j ^ 0.

Therefore, o(a) = o(a'), and p induces an automorphism /? of G := G/(c) such that
(5*5») = (6') t(o/) i , in particular, 5^ = {3,6}^ = {sr,?} = T, o(o) = 0(3*) and o{b) =

o(b'\ where "X" is the image of an object X (of G) under G —> G.

If G is of rank 3, then G = (S) = (c, 6, a). If (c) n (6, a) ^ 1 then c e (6, a) and so
G = (6, a), which is a contradiction. Thus (c)n(6, a) = 1, and therefore, G = (c)x (b, a) =

(c) x G. Thus the above-defined 0 may be viewed as an automorphism of (6, a) so that
{b,a)p = (b',a!). Let r = (e,P) € Aut((c)) x Aut((6,a}) ^ Aut(G) where e denotes the
identity of Aut((c)). Then ST = {{c)b U {a})T = (c)b' U {a'} = T, so 5 is a Cl-subset.

Thus we suppose that G is of rank at most 2 in the following. Let Gp be the Sylow
p-subgroup and Gp> the Hall p'-subgroup of G. Write a = apap> and b = bpbpi such that
ap,bp € Gp and 0^,6^ 6 G^, and write a' = a'pCi'p, and 6' = 6p6p, such that ap, 6p € Gp and
a^, 6p; € Gpi. Then 0^ = 0̂ , and bp =Vp- On the other hand, since G^ = Gp-, /? induces
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an automorphism /3' of Gp>, and since Gp> = Gp>, j3' may be viewed as an automorphism

of Gp.. Thus e$ = a',,, and \Pp, = fy.

Assume first that Gp = Zp. Then G = (c) xGp>, and bp, b'p G (c) and so (c)b - (c)(y

and (c)V = (c)^. Let r = (a,/?') € Aut«c» x Aut«6,a)) ^ Aut(G) such that a° = a'p.

T h e n ' = «c>6 U {a})<-"> = «c> V U
= (c)$ U { ( # # } = (c)^ U { a ^ } = <c)6' U {a'} = T.

Thus 5 is a Cl-subset.
Assume secondly that Gp = l?p. Then either Gp = (ap,c) = {a!p,c), or a = ty,

a' = ap( and Gp = (6pic) = (b'p,c). First suppose that Gp = (ap,c) = (a'p,c). Then

bp = dap for some integers i, j , so 6P = ap. Now 6p = bp = (aj) = (oj,) , so b'p = c* (ap)J

for some integer fc. Consequently, (c)b — (c)bpbpi = (c)c*aj6p/ = (c)ajfep' and (c)6' =

^. Let r = (a,/?') e Aut(Gp) x Aut(Gp-) ^ Aut(G)
such that ap — a'p and ca — c. Then

T = «c>6 U {a})T = ({c)apbp, U

^ ' U {a«a^'} = ( c ) ^ ) ^ U {a1^} = (c)V U {a'} = T.

Therefore, 5 is a Cl-subset. Now suppose that a = 0,^,0! = ap< and Gp = (bp, c) — (b'p, c).
Let r = {a,/3') € Aut(Gp) x Aut(Gp-) ^ Aut(G) such that 6£ = b'p and c° = c. Then

= «c>6 U {a})T = ((c>6pV
= ((c)6p)Q^' U {a^} = (c>6;6^ U {a^} = (c)6' U {a'} = T.

Therefore, 5 is a Cl-subset.
Assume, finally, that Gp is not elementary Abelian so that Gp = (51) x (g2) = Zpn

with n > 2. Then Gp = (bp,ap) = (6p,ap). Let r be the map r from G to G defined as
follows: T

\b%o?\ = 6"a'J for all integers i and j .

Then r induces the automorphism 0 of G/(c) defined before. In particular, /?' (defined
before) is the restriction of r to Gp>. On the other hand, since Gp is of rank 2, r
induces an automorphism a of Gp. Therefore, T = (a, /?') is an automorphism of G, and
(c)T = T = T = (c) where T is the identity of G. Consequently, we have that

ST = {(c)bU{a})T = (cT)bT U {aT} = (c)b' U {a'} = T.

Thus 5 is a Cl-subset. This completes the proof of the theorem. D
Combining Theorem 1.2 and Theorem 1.3, we can easily prove Corollary 1.4.

P R O O F OF COROLLARY 1.4: Assume that G is a member of AVCl(m) with p the
smallest prime divisor of \G\. Let 5 be a subset of G of size m ^ p +1. By Theorem 1.3,
5 is a Cl-subset of (5), and so by Theorem 1.2, 5 is a Cl-subset of G. Therefore, G is
an m-DCI-group. D
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