ISOMORPHISMS OF CAYLEY DIGRAPHS OF ABELIAN GROUPS

CAI HENG LI

For a finite group G and a subset S of G with $1 \notin S$, the Cayley graph $\operatorname{Cay}(G, S)$ is the digraph with vertex set G such that (x, y) is an arc if and only if $yx^{-1} \in S$. The Cayley graph $\operatorname{Cay}(G, S)$ is called a CI-graph if, for any $T \subset G$, whenever $\operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, T)$ there is an element $\sigma \in \operatorname{Aut}(G)$ such that $S^{\sigma} = T$. For a positive integer m, G is called an m-DCI-group if all Cayley graphs of G of valency at most m are CI-graphs; G is called a connected m-DCI-group if all connected Cayley graphs of G of valency at most m are CI-groups is a long-standing open problem. It is known from previous work that all Abelian m-DCI-groups lie in an explicitly determined class $\mathcal{ADCI}(m)$ of Abelian groups. First we reduce the problem of determining Abelian m-DCI-groups to the problem of determining whether every subgroup of a member of $\mathcal{ADCI}(m)$ is a connected m-DCI-group. Then (for a finite group G, letting p be the least prime divisor of |G|,) we completely classify Abelian m-DCI-groups G for $m \leq p+1$. This gives many earlier results when p = 2.

1. INTRODUCTION

For a finite group G and a subset S of G not containing the identity of G, the associated Cayley graph $\operatorname{Cay}(G, S)$ of G is the directed graph with vertex set G and arc set $\{(x, y) \mid x, y \in G, yx^{-1} \in S\}$. It easily follows that $\operatorname{Cay}(G, S)$ is connected if and only if $\langle S \rangle = G$.

A Cayley graph Cay(G, S) is called a *CI-graph* (CI stands for *Cayley Isomorphism*) if, whenever $Cay(G, S) \cong Cay(G, T)$ there is $\sigma \in Aut(G)$ such that $S^{\sigma} = T$. One longstanding open problem about Cayley graphs is to determine which Cayley graphs for a given group are CI-graphs. In this paper we study the problem for the class of Abelian groups. For a positive integer m, if all Cayley graphs of G of valency at most m are CI-graphs, then G is called an m-*DCI-group*, in particular, if G is a |G|-DCI-group then G is called a *DCI-group*.

Received 3rd June, 1997

The author thanks Professor Cheryl Praeger for her helpful suggestions on the work of the paper.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.

[2]

The problem of determining *m*-DCI-groups has been investigated extensively over the past 30 years, stemming from a conjecture of Ádám [1] that all finite cyclic groups were DCI-groups. This conjecture was disproved by Elspas and Turner [7]. Since then, considerable energy has been devoted to seeking cyclic DCI-groups (see Babai [3], Alspach and Parsons [2], and Godsil [11]), and very recently, a complete classification of cyclic DCI-groups was finally obtained by Muzychuk [18, 19]. Babai and Frankl in [4] investigated isomorphisms of undirected Cayley graphs of odd order and posed a conjecture that all undirected Cayley graphs of elementary Abelian groups \mathbb{Z}_p^d were CI-graphs. The conjecture has been proved for the case d = 2 by Godsil [11] and for the case d = 3 by Dobson [6]. It is actually proved that \mathbb{Z}_p^d for $d \leq 3$ are DCI-groups. However, Nowitz [20] proved that \mathbb{Z}_2^d is not a DCI-group.

On the other hand, *m*-DCI-groups have been studied for certain small values of *m*. A complete classification of the Abelian *m*-DCI-groups for $m \leq 4$ is obtained by the work of [21, 8, 9, 10, 12]. Recently, it is shown in [17] that if *G* is an *m*-DCI-group for $m \geq 2$ then $G = U \times V$ where (|U|, |V|) = 1, *U* is an Abelian group of which all Sylow subgroups are homocyclic (namely, the direct product of cyclic groups of the same order), and *V* belongs to an explicitly determined list of groups. In particular, it is shown that a Sylow *q*-subgroup G_q of an Abelian *m*-DCI-group *G* has the following properties (or see [14, Proposition 3.3]):

- (i) if q > m then G_q is homocyclic;
- (ii) if q = m then G_q is elementary Abelian or cyclic;
- (iii) if q < m then G_q is elementary Abelian or \mathbb{Z}_4 .

We use $\mathcal{ADCI}(m)$ to denote the class of all Abelian groups of which all Sylow subgroups satisfy conditions (i)-(iii). Then $\mathcal{ADCI}(m)$ contains all candidates of Abelian *m*-DCI-groups, and therefore, the problem of determining Abelian *m*-DCI-groups becomes the following problem.

PROBLEM 1.1. Determine which groups in ADCI(m) are *m*-DCI-groups.

However, this is still a very difficult problem. For example, it is even not known whether \mathbb{Z}_p^4 with p a prime are *m*-DCI-groups for arbitrary *m*, see for example [6]. One of the main aims of this paper is to give a reduction for Problem 1.1.

A group G is called a *connected* m-DCI-group if all connected Cayley graphs of G of valency at most m are CI-graphs. It is easily shown that if a group G is an m-DCI-group then each subgroup of G is a connected m-DCI-group (see Lemma 2.1). Conversely, we have:

THEOREM 1.2. Let m be a positive integer, and let G be a member of ADCI(m). Then G is an m-DCI-group if and only if all subgroups of G are connected m-DCI-groups.

Thus the problem of determining Abelian m-DCI-groups is further reduced to the problem of determining Abelian connected m-DCI-groups which are subgroups of a mem-

ber of ADCI(m). There have been some investigations on connected *m*-DCI-groups. It follows from [5] that an Abelian group *G* is a connected 2-DCI-group (also see [22]). Xu and Meng [22] obtain a complete classification of Abelian connected 3-DCI-groups. Some more general results are obtained in [14, 15], and in particular, it is shown in [14] that an Abelian group *G* with *p* the smallest prime divisor of |G| is a connected *m*-DCI-group for $m \leq p$ but not necessarily a connected (p+1)-DCI-group. The next result gives a complete classification of Abelian connected (p+1)-DCI-groups:

THEOREM 1.3. Let G be an Abelian group, and let p be the smallest prime divisor of |G|. Then G is a connected p-DCI-group. Further, let G_p be the Sylow p-subgroup of G. Then G is a connected (p+1)-DCI-group if and only if one of the following holds:

- (i) G is of rank at least 3;
- (ii) G is of rank at most 2, and either G_p is homocyclic of rank 2, or G_p ≅ Z_p or Z₄.

Combining Theorem 1.2 and Theorem 1.3, we have an immediate consequence:

COROLLARY 1.4. Let G be a member of ADCI(m), and let p be the smallest prime divisor of |G|. If $m \leq p+1$ then G is an m-DCI-group.

Taking p = 2, this corollary gives the results of [21, 8, 9, 10].

2. Proof of Theorem 1.2

If Cay(G, S) is a CI-graph, we shall call S a *CI-subset* for convenience. We use the following two lemmas to prove Theorem 1.2.

LEMMA 2.1. Assume that G is an m-DCI-group. Then all subgroups of G are connected m-DCI-groups.

PROOF: Let H be a subgroup of G which is generated by S where $|S| \leq m$. Let $T \subset H$ be such that $\operatorname{Cay}(H,S) \cong \operatorname{Cay}(H,T)$. Then $\langle T \rangle = H$ and $\operatorname{Cay}(G,S) \cong \operatorname{Cay}(G,T)$. Thus there exists $\sigma \in \operatorname{Aut}(G)$ such that $S^{\sigma} = T$. Now $H^{\sigma} = \langle S^{\sigma} \rangle = \langle T \rangle = H$, so σ induces an automorphism of H. Hence S is a CI-subset of H, and H is a connected m-DCI-group.

LEMMA 2.2. Let G be a member of ADCI(m). Assume that every subgroup of G is a connected m-DCI-group. Then G is an m-DCI-group.

PROOF: Let S be a subset of G of size at most m, and let $H = \langle S \rangle$. Then S is a CIsubset of H. Let T be a subset of G such that $\operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, T)$, and let $K = \langle T \rangle$. Then $\operatorname{Cay}(H, S) \cong \operatorname{Cay}(\langle T \rangle, T)$. Let $A = \operatorname{Aut}\operatorname{Cay}(H, S)$ and $B = \operatorname{Aut}\operatorname{Cay}(K, T)$. Then $A = HA_1$ with $H \cap A_1 = 1$, and $B = KB_1$ with $K \cap B_1 = 1$, where A_1, B_1 is the stabiliser of 1 in A, B, respectively. Since $\operatorname{Cay}(H, S) \cong \operatorname{Cay}(K, T)$, we have that $A \cong B$ and |H| = |K|. Since $|S|, |T| \leq m$, every prime divisor of $|A_1|$ (and of $|B_1|$) is at most m (see [16, Lemma 2.1]). Let q be a prime of |H| and H_q a Sylow q-subgroup of H, and let K_q be a Sylow q-subgroup of K. We claim that $H_q \cong K_q$. If q > m then H_q is a Sylow q-subgroup of A. Since $A \cong B$, $H_q \cong K_q$. Next assume that $q \leq m$. Then G_q is elementary Abelian or cyclic, and so any two subgroups of G_q of the same order are isomorphic. Since |H| = |K|, we have $|H_q| = |K_q|$, and so $H_q \cong K_q$. Consequently, $H_q \cong K_q$ for all q dividing |H| and so $H \cong K$.

Let σ be an isomorphism from K to H and let $T' = T^{\sigma}$. Then $\operatorname{Cay}(H, T') \cong$ $\operatorname{Cay}(K,T) \cong \operatorname{Cay}(H,S)$. Since S is a CI-subset of H, there is $\alpha \in \operatorname{Aut}(H)$ such that $(T')^{\alpha} = S$. Thus $\beta := \sigma \alpha$ is an isomorphism from K to H such that $T^{\beta} = (T^{\sigma})^{\alpha} =$ $(T')^{\alpha} = S$. Since all Sylow subgroups of G are homocyclic, it is easy to see that there exists an automorphism ρ of G such that $\beta = \rho|_K$, the restriction of ρ to K. Therefore, $T^{\rho} = T^{\beta} = S$, and so S is a CI-subset of G.

3. Proof of Theorem 1.3

In this section we prove Theorem 1.3. For a finite group G, we use p to denote the smallest prime divisor of |G|. The first lemma shows that if G is an Abelian connected (p+1)-DCI-group of rank 2 and a Sylow *p*-subgroup G_p of G is noncyclic then G_p must be homocyclic.

LEMMA 3.1. Let $G = \langle x \rangle \times \langle y \rangle \cong \mathbb{Z}_{k_1 p^n} \times \mathbb{Z}_{k_2 p^m}$ where $(k_1 k_2, p) = 1$ and $n > m \ge 1$. Then $\langle x^{k_1 p^{n-1}} \rangle y \cup \{x\}$ is a generating subset and is not a CI-subset of G.

PROOF: Set $S := \langle x^{k_1 p^{n-1}} \rangle y \cup \{x\}$, and let $T = \langle x^{k_1 p^{n-1}} \rangle x^{k_1 p^{n-m-1}} y \cup \{x\}$. Then for any integer *i*, $o(x^{ik_1 p^{n-1}} y) = p^m$ and $o(x^{ik_1 p^{n-1}} x^{k_1 p^{n-m-1}} y) = p^{m+1}$. It follows that $S^{\sigma} \neq T$ for any $\sigma \in \operatorname{Aut}(G)$. To prove that S is not a CI-subset we only need to verify that $\operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, T)$. Let $z = x^{k_1 p^{n-1}}$ and $y' = x^{k_1 p^{n-m-1}} y$. Then

$$G = \bigcup_{0 \leq i \leq k_2 p^m - 1} \bigcup_{0 \leq j \leq k_1 p^{n-1} - 1} \langle z \rangle y^i x^j = \bigcup_{0 \leq i \leq k_2 p^m - 1} \bigcup_{0 \leq j \leq k_1 p^{n-1} - 1} \langle z \rangle (y')^i x^j.$$

Let ρ be the map from G to G defined as follows:

 $z^h y^i x^j \to z^h (y')^i x^j$ for $0 \leq h \leq p-1, 0 \leq i \leq k_2 p^m - 1$ and $0 \leq j \leq k_1 p^{n-1} - 1$.

A straightforward calculation shows that ρ is an isomorphism from Cay(G,S) to Cay(G,T). Hence S is not a CI-subset of G.

The next lemma shows that if a Sylow *p*-subgroup of an Abelian connected (p+1)-DCI-group of rank at most 2 is cyclic then it must be of order *p* or 4.

LEMMA 3.2. Let $G = \langle x \rangle \times \langle y \rangle \cong \mathbb{Z}_{k_1 p^n} \times \mathbb{Z}_{k_2}$, where $(k_1 k_2, p) = 1$, and either $p \ge 3$ and $n \ge 2$, or p = 2 and $n \ge 3$. Let

$$S = \begin{cases} \langle x^{k_1 p^{n-1}} \rangle x \cup \{ y x^{k_1 p^{n-1}} \}, & \text{if } p \ge 3, \\ \langle x^{k_1 2^{n-1}} \rangle x \cup \{ y x^{k_1 2^{n-2}} \}, & \text{if } p = 2. \end{cases}$$

Then S is a generating subset and is not a CI-subset of G.

PROOF: Set

$$T = \begin{cases} \langle x^{k_1 p^{n-1}} \rangle x \cup \{ y^{-1} x^{-k_1 p^{n-1}} \}, \text{ if } p \ge 3, \\ \langle x^{k_1 2^{n-1}} \rangle x \cup \{ y^{-1} x^{-k_1 2^{n-2}} \}, \text{ if } p = 2. \end{cases}$$

Let $k_0 = \begin{cases} k_1 p^{n-1}, \text{ if } p \ge 3\\ k_1 2^{n-2}, \text{ if } p = 2 \end{cases}$, and let $z = x^{k_0}$. Then $G = \bigcup_{0 \le i \le k_2 - 1} \bigcup_{0 \le j \le k_0 - 1} \langle z \rangle y^i x^j$. Let ρ be the map from G to G defined as follows:

$$z^h y^i x^j \rightarrow z^{-h} y^{-i} x^j$$
 for $0 \leqslant h \leqslant p-1$, $0 \leqslant i \leqslant k_2 - 1$, $0 \leqslant j \leqslant k_0 - 1$

A straightforward calculation shows that ρ is an isomorphism from $\operatorname{Cay}(G, S)$ to $\operatorname{Cay}(G, T)$. Suppose that there exists $\alpha \in \operatorname{Aut}(G)$ sending S to T. Now $o(x) = k_1 p^n$ and $o(y^{-1}z^{-1}) = k_2 p$ or $4k_2$ for p > 2 or p = 2, respectively. Thus $x^{\alpha} = x^{lk_1 p^{n-1}} x$ for some integer l, and so $z^{\alpha} = (x^{k_0})^{\alpha} = (x^{lk_1 p^{n-1}} x)^{k_0} = z$. Therefore, $(\langle x^{k_1 p^{n-1}} \rangle x)^{\alpha} = \langle x^{k_1 p^{n-1}} \rangle x$ and $\{yz\}^{\alpha} = (S \setminus \langle x^{k_1 p^{n-1}} \rangle x)^{\alpha} = T \setminus \langle x^{k_1 p^{n-1}} \rangle x = \{y^{-1}z^{-1}\}$ so that $z^{\alpha} = z^{-1}$, which is a contradiction. Hence S is not a CI-subset of G.

To complete the proof of Theorem 1.3, we need the following known results.

THEOREM 3.3. ([13, Theorem 3.2].) Let G be an Abelian group and S a generating subset of G. Let $\Gamma = \operatorname{Cay}(G, S)$, and let $A = \operatorname{Aut} \Gamma$ and A_1 the stabiliser of 1 in A. Then either A_1 is faithful on S, or S contains a coset of some subgroup of G.

PROPOSITION 3.4. ([14, Proposition 4.1].) Let G be an Abelian group, and let p be the smallest prime divisor of |G|. Let S be a subset of G, and let $A = \operatorname{Aut} \operatorname{Cay}(G,S)$ and let A_1 be the stabiliser of 1 in A. If $(|A_1|, |G|) = 1$ then S is a CI-subset; if $(|A_1|, |G|) = p$, then either S is a CI-subset, or S contains a coset of some subgroup of G.

Now we can complete the proof of Theorem 1.3.

PROOF OF THEOREM 1.3: Suppose that G is a connected (p+1)-DCI-group. If G is of rank at least 3 then G is as in part (i). Thus we assume that G has rank at most 2. By Lemmas 3.1 and 3.2, either G_p is homocyclic of rank 2, or $G_p \cong \mathbb{Z}_p$ or \mathbb{Z}_4 , as in part (ii).

Conversely, assume that G is an Abelian group with p the least prime divisor of |G| which satisfies part (i) or part (ii) of the theorem. We need to prove that G is a connected (p+1)-DCI-group. By [14, Theorem 1.1 (2)], G is a connected p-DCI-group. Thus assume that S is a generating subset of G of size p+1 with $1 \notin S$. Let $\Gamma = \text{Cay}(G,S)$ and $A = \text{Aut }\Gamma$. If $(|G|, |A_1|) = 1$ then by Proposition 3.4, S is a CI-subset. Thus we assume that $(|G|, |A_1|) \neq 1$. We need to prove that S is a CI-subset of G. By Xu and Meng [22], if p = 2 then S is a CI-subset. Thus we further assume that $p \ge 3$. Suppose that S contains no coset of a nontrivial subgroup of G. Then by Theorem 3.3, A_1 is faithful on S and it follows that $(|G|, |A_1|)$ divides p, and therefore, by Proposition 3.4, S is a CI-subset. Thus we suppose that S contains a coset of some nontrivial subgroup

of G, so we may write $S = \langle c \rangle b \cup \{a\}$ for some $a, b, c \in G$ with $\langle c \rangle \cong \mathbb{Z}_p$. In particular, G is of rank at most 3.

We claim that $\langle c \rangle b$ and $\{a\}$ are two orbits of A_1 on S. Suppose that A_1 is transitive on S. Since $b^2 \langle c \rangle \subseteq \Gamma(bc^i)$ for all i, $|\Gamma(bc^i) \cap \Gamma(bc^j)| \ge p \ge 3$ for any integers i, j, and hence we have that $|\Gamma(bc^i) \cap \Gamma(a)| \ge 3$. It follows that there exists an integer k such that $(a.bc^k) = (bc^i.bc^{j'})$ for some integer j'. Therefore, $a = bc^{i+j'-k} \in b\langle c \rangle$, which is a contradiction. So A_1 is not transitive on S. On the other hand, since $p \mid |A_1|, A_1$ has an orbit of length p on S. Thus A_1 has exactly 2 orbits on S, one has length p and the other has length 1. It follows since $|\Gamma(bc^i) \cap \Gamma(a)| \le 2$ for each i that $\langle c \rangle b$ and $\{a\}$ are the two orbits of A_1 on S, as claimed. Consequently, A has the two orbits on arcs of Γ ; one is $(1, a)^A$ and the other is $(1, b)^A$. We shall call edges of Γ in these orbits a-edges and b-edges, respectively.

Let T be a subset of G such that $\Gamma \cong \operatorname{Cay}(G,T)$. Then $\operatorname{Cay}(G,T)$ is also not arctransitive, and S is a CI-subset if and only if T is a CI-subset. Thus, similarly, we may write $T = \langle c' \rangle b' \cup \{a'\}$ for some $a', b', c' \in G$ with $\langle c' \rangle \cong \mathbb{Z}_p$. Further, $B := \operatorname{Aut} \operatorname{Cay}(G,T)$ has two orbits on the arcs of $\operatorname{Cay}(G,T)$; one is $(1,a')^B$, and the other is $(1,b')^B$. We shall call edges of $\operatorname{Cay}(G,T)$ in these orbits a'-edges and b'-edges, respectively. Since G_p is homocyclic, $\langle c \rangle$ is conjugate under $\operatorname{Aut}(G)$ to $\langle c' \rangle$, so we may assume that $\langle c' \rangle = \langle c \rangle$ so that $T = \langle c \rangle b' \cup \langle a' \rangle$. Let ρ be an isomorphism from Γ to $\operatorname{Cay}(G,T)$ such that $1^{\rho} = 1$. Then we have that ρ maps b-edges to b'-edges and a-edges to a'-edges. In particular, $\{b, cb, \ldots, c^{p-1}b\}^{\rho} = (\langle c \rangle b)^{\rho} = \langle c \rangle b' = \{b', cb', \ldots, c^{p-1}b'\}$ and $a^{\rho} = a'$, and if $x^{\rho} = x'$ (inductively) then

$$(ax)^{\rho} = a'x', \quad (\langle c \rangle bx)^{\rho} = \{bx, cbx, \dots, c^{p-1}bx\}^{\rho} = \{b'x', cb'x', \dots, c^{p-1}b'x'\} = \langle c \rangle b'x'.$$

By induction on i + j, we have

$$(a^i)^{\rho} = a^{\prime i}, \ (\langle c \rangle b^i a^j)^{\rho} = \langle c \rangle (b^{\prime})^i (a^{\prime})^j, \text{ for all integers } i, j \ge 0.$$

Therefore, o(a) = o(a'), and ρ induces an automorphism β of $\overline{G} := G/\langle c \rangle$ such that $(\overline{b}^i \overline{a}^j)^{\beta} = (\overline{b}')^i (\overline{a}')^j$, in particular, $\overline{S}^{\beta} = \{\overline{a}, \overline{b}\}^{\beta} = \{\overline{a}', \overline{b}'\} = \overline{T}$, $o(\overline{a}) = o(\overline{a}')$ and $o(\overline{b}) = o(\overline{b}')$, where " \overline{X} " is the image of an object X (of G) under $G \to \overline{G}$.

If G is of rank 3, then $G = \langle S \rangle = \langle c, b, a \rangle$. If $\langle c \rangle \cap \langle b, a \rangle \neq 1$ then $c \in \langle b, a \rangle$ and so $G = \langle b, a \rangle$, which is a contradiction. Thus $\langle c \rangle \cap \langle b, a \rangle = 1$, and therefore, $G = \langle c \rangle \times \langle b, a \rangle \cong \langle c \rangle \times \overline{G}$. Thus the above-defined β may be viewed as an automorphism of $\langle b, a \rangle$ so that $(b, a)^{\beta} = (b', a')$. Let $\tau = (\varepsilon, \beta) \in \operatorname{Aut}(\langle c \rangle) \times \operatorname{Aut}(\langle b, a \rangle) \leq \operatorname{Aut}(G)$ where ε denotes the identity of $\operatorname{Aut}(\langle c \rangle)$. Then $S^{\tau} = (\langle c \rangle b \cup \{a\})^{\tau} = \langle c \rangle b' \cup \{a'\} = T$, so S is a CI-subset.

Thus we suppose that G is of rank at most 2 in the following. Let G_p be the Sylow p-subgroup and $G_{p'}$ the Hall p'-subgroup of G. Write $a = a_p a_{p'}$ and $b = b_p b_{p'}$ such that $a_p, b_p \in G_p$ and $a_{p'}, b_{p'} \in G_{p'}$, and write $a' = a'_p a'_{p'}$ and $b' = b'_p b'_{p'}$ such that $a'_p, b'_p \in G_p$ and $a'_{p'}, b'_{p'} \in G_{p'}$. Then $\overline{a}^{\beta}_p = \overline{a}'_p$ and $\overline{b}^{\beta}_p = \overline{b}'_p$. On the other hand, since $\overline{G}^{\beta}_{p'} = \overline{G}_{p'}, \beta$ induces

Cayley digraphs

an automorphism β' of $\overline{G}_{p'}$, and since $\overline{G}_{p'} \cong G_{p'}$, β' may be viewed as an automorphism of $G_{p'}$. Thus $a_{p'}^{\beta'} = a'_{p'}$ and $b_{p'}^{\beta'} = b'_{p'}$.

Assume first that $G_p \cong \mathbb{Z}_p$. Then $G = \langle c \rangle \times G_{p'}$, and $b_p, b'_p \in \langle c \rangle$ and so $\langle c \rangle b = \langle c \rangle b_{p'}$ and $\langle c \rangle b' = \langle c \rangle b'_{p'}$. Let $\tau = (\alpha, \beta') \in \operatorname{Aut}(\langle c \rangle) \times \operatorname{Aut}(\langle b, a \rangle) \leq \operatorname{Aut}(G)$ such that $a_p^{\alpha} = a'_p$. Then $S^{\tau} = (\langle c \rangle b \cup \{a\})^{(\alpha, \beta')} = (\langle c \rangle b_{p'} \cup \{a_p a_{p'}\})^{(\alpha, \beta')}$

$$= \langle c \rangle b_{p'}^{\beta'} \cup \{ a_p^{\alpha} a_{p'}^{\beta'} \} = \langle c \rangle b'_{p'} \cup \{ a'_p a'_{p'} \} = \langle c \rangle b' \cup \{ a' \} = T.$$

Thus S is a CI-subset.

Assume secondly that $G_p \cong \mathbb{Z}_p^2$. Then either $G_p = \langle a_p, c \rangle = \langle a'_p, c \rangle$, or $a = a_{p'}$, $a' = a'_{p'}$ and $G_p = \langle b_p, c \rangle = \langle b'_p, c \rangle$. First suppose that $G_p = \langle a_p, c \rangle = \langle a'_p, c \rangle$. Then $b_p = c^i a^j_p$ for some integers i, j, so $\bar{b}_p = \bar{a}^j_p$. Now $\bar{b}'_p = \bar{b}^\beta_p = (\bar{a}^j_p)^\beta = (\bar{a}^j_p)^j$, so $b'_p = c^k (a'_p)^j$ for some integer k. Consequently, $\langle c \rangle b = \langle c \rangle b_p b_{p'} = \langle c \rangle c^i a^j_p b_{p'} = \langle c \rangle a^j_p b_{p'}$ and $\langle c \rangle b' = \langle c \rangle b'_p b'_{p'} = \langle c \rangle c^k (a'_p)^j b'_p = \langle c \rangle (a'_p)^j b'_{p'}$. Let $\tau = (\alpha, \beta') \in \operatorname{Aut}(G_p) \times \operatorname{Aut}(G_{p'}) \leq \operatorname{Aut}(G)$ such that $a^p_p = a'_p$ and $c^\alpha = c$. Then

$$S^{\tau} = (\langle c \rangle b \cup \{a\})^{\tau} = (\langle c \rangle a_p^j b_{p'} \cup \{a_p a_{p'}\})^{(\alpha,\beta')}$$
$$= (\langle c \rangle a_p^j)^{\alpha} b_{p'}^{\beta'} \cup \{a_p^{\alpha} a_{p'}^{\beta'}\} = \langle c \rangle (a'_p)^j b'_{p'} \cup \{a'_p a'_{p'}\} = \langle c \rangle b' \cup \{a'\} = T.$$

Therefore, S is a CI-subset. Now suppose that $a = a_{p'}$, $a' = a'_{p'}$ and $G_p = \langle b_p, c \rangle = \langle b'_p, c \rangle$. Let $\tau = (\alpha, \beta') \in \operatorname{Aut}(G_p) \times \operatorname{Aut}(G_{p'}) \leq \operatorname{Aut}(G)$ such that $b_p^{\alpha} = b'_p$ and $c^{\alpha} = c$. Then

$$S^{\tau} = (\langle c \rangle b \cup \{a\})^{\tau} = (\langle c \rangle b_p b_{p'} \cup \{a_{p'}\})^{(\alpha,\beta')}$$

= $(\langle c \rangle b_p)^{\alpha} b_{p'}^{\beta'} \cup \{a_{p'}^{\beta'}\} = \langle c \rangle b'_p b'_{p'} \cup \{a'_{p'}\} = \langle c \rangle b' \cup \{a'\} = T.$

Therefore, S is a CI-subset.

Assume, finally, that G_p is not elementary Abelian so that $G_p = \langle g_1 \rangle \times \langle g_2 \rangle \cong \mathbb{Z}_{p^n}^2$ with $n \ge 2$. Then $G_p = \langle b_p, a_p \rangle = \langle b'_p, a'_p \rangle$. Let τ be the map τ from G to G defined as follows:

 $(b^i a^j)^{\tau} = b'^i a'^j$ for all integers *i* and *j*.

Then τ induces the automorphism β of $G/\langle c \rangle$ defined before. In particular, β' (defined before) is the restriction of τ to $G_{p'}$. On the other hand, since G_p is of rank 2, τ induces an automorphism α of G_p . Therefore, $\tau = (\alpha, \beta')$ is an automorphism of G, and $\langle c \rangle^{\tau} = \overline{1}^{\beta} = \overline{1} = \langle c \rangle$ where $\overline{1}$ is the identity of \overline{G} . Consequently, we have that

$$S^{\tau} = (\langle c \rangle b \cup \{a\})^{\tau} = \langle c^{\tau} \rangle b^{\tau} \cup \{a^{\tau}\} = \langle c \rangle b^{\prime} \cup \{a^{\prime}\} = T.$$

Thus S is a CI-subset. This completes the proof of the theorem.

Combining Theorem 1.2 and Theorem 1.3, we can easily prove Corollary 1.4.

PROOF OF COROLLARY 1.4: Assume that G is a member of ADCI(m) with p the smallest prime divisor of |G|. Let S be a subset of G of size $m \leq p+1$. By Theorem 1.3, S is a CI-subset of $\langle S \rangle$, and so by Theorem 1.2, S is a CI-subset of G. Therefore, G is an m-DCI-group.

C.H. Li

References

- [1] A. Adám, 'Research problem 2-10', J. Combin. Theory 2 (1967), 309.
- [2] B. Alspach and T. D. Parsons, 'Isomorphisms of circulant graphs and digraphs', Discrete Math. 25 (1979), 97-108.
- [3] L. Babai, 'Isomorphism problem for a class of point-symmetric structures', Acta Math. Acad. Sci. Hungary 29 (1977), 329-336.
- [4] L. Babai and P. Frankl, 'Isomorphisms of Cayley graphs I', Colloq. Math. Soc. János Bolyai 18 (1978), 35-52.
- [5] C. Delorme, O. Favaron and M. Maheo, 'Isomorphisms of Cayley multigraphs of degree 4 on finite Abelian groups', European J. Combin. 13 (1992), 59-61.
- [6] E. Dobson, 'Isomorphism problem for Cayley graphs of \mathbb{Z}_p^3 ', Discrete Math. 147 (1995), 87–94.
- B. Elspas and J. Turner, 'Graphs with circulant adjacency matrices', J. Combin. Theory 9 (1970), 297-307.
- [8] X.G. Fang, 'A characterization of finite Abelian 2-DCI groups', (in Chinese), J. Math. (Wuhan) 8 (1988), 315-317.
- [9] X.G. Fang, 'Abelian 3-DCI groups', Ars Combin. 32 (1992), 263-267.
- [10] X.G. Fang and M.Y. Xu, 'Abelian 3-DCI groups of odd order', Ars Combin. 28 (1988), 247-251.
- [11] C.D. Godsil, 'On Cayley graph isomorphisms', Ars Combin. 15 (1983), 231-246.
- [12] C.H. Li, 'Abelian 4-DCI groups', J. Yunnan Normal University 11 (1991), 24-27.
- [13] C.H. Li, 'On Cayley graphs of Abelian groups', J. Algebraic Combin. (to appear).
- [14] C.H. Li, 'On isomorphisms of connected Cayley graphs', Discrete Math. (to appear).
- [15] C.H. Li, 'Isomorphisms of connected Cayley digraphs', Graphs Combin. (to appear).
- [16] C.H. Li, 'The cyclic groups with the m-DCI property', European J. Combin. 18 (1997), 655-665.
- [17] C.H. Li, C.E. Praeger and M.Y. Xu, 'Isomorphisms of finite Cayley digraphs of bounded valency', J. Combin. Theory Ser. B (to appear).
- [18] M. Muzychuk, 'Ádám's conjecture is true in the square-free case', J. Combin. Theory Ser. A 72 (1995), 118-134.
- [19] M. Muzychuk, 'On Ádám's conjecture for circulant graphs', Discrete Math. 167/168 (1997), 497-510.
- [20] L.A. Nowitz, 'A nonCayley-invariant Cayley graph of the elementary Abelian group of order 64', Discrete Math. 110 (1992), 223-228.
- [21] L. Sun, 'Isomorphisms of circulant graphs', Chinese Ann. Math. Ser. A 9 (1988), 567-574.
- [22] M.Y. Xu and J. Meng, 'Weakly 3-DCI Abelian groups', Austral. J. Combin. 13 (1996), 49-60.

Department of Mathematics University of Western Australia Nedlands WA 6907 Australia e-mail: li@maths.uwa.edu.au