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High-throughput scanning electron microscopy (SEM) has the goal to acquire large volumes at high 
resolution [1]. For samples of several millimeters a full scan with a traditional dense scanning pattern 
would take years. There are various ways to reduce the required time as has been evaluated in [2]. The 
authors showed that the best strategy for reducing overall acquisition times are sparse scanning methods 
that record only a small percentage of all possible pixels but with a reasonably high dwell time per pixel. 
The sparse data pattern must be reconstructed afterwards. As one solution missing data can be 
reconstructed using inpainting methods [2]. One promising approach is exemplar-based inpainting [3], 
which can deliver useful results without the introduction of artifacts that have not been observed in 
known data, as only prior knowledge of already fully scanned images is used for the reconstruction 
process. 
 
Inspired by [4], we investigated into a new approach that uses deep learning for the reconstruction based 
on the sparse pattern. The discriminative feature in comparison to most known methods is that no prior 
knowledge is needed. Instead of starting from known image patches or dictionaries as used in sparse 
coding, the algorithm is initialized with a dense random pattern and the positions and pixel values of the 
scanned data. A convolutional neural network is trained based on this initialization. While training, the 
missing parts of the image are reconstructed. For the reconstruction of three-dimensional SEM 
acquisitions the procedure works iteratively slice by slice. The reconstruction of the first slice takes 
many iterations in the training process. However, after the first image has been reconstructed, the 
process is sped up. Due to the similarity of neighboring thin slices the networks parameters need not to 
be altered a lot, so that few iterations in general suffice for subsequent reconstructions. 
 
As proof-of-concept we evaluated the algorithm based on SEM acquisitions of filled micro silica balls 
(Figure 1). Sparse scans were simulated with 1%, 5%, and 20% of the original data. We reconstructed 
the sparse data using random data as initialization and computed peak-signal-to-noise-ratio (PSNR) and 
structural similarity index (SSIM) for each experiment, as depicted in Figure 1. The results of our 
experiments are very promising and further research into the capabilities of deep learning for the 
reconstruction of sparsely sampled data must be conducted. 
 
Summarizing, deep learning offers a great potential for high-throughput SEM. Besides segmentation, 
which has been investigated a lot, even in electron microscopy use cases, our proposed procedure does 
not need any manually generated labels to be used in a supervised learning manner. Especially this 
independence of any prior knowledge may foster further applications [5]. 
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Figure 1. Silica micro balls excerpt and zoom in. a) Ground truth image. b) Reconstruction with 1% of 
original data. Sparse data acquisition was simulated with random sampling. PSNR=23.95, SSIM=0.60. 
c) Reconstruction with 5%. PSNR=31.11, SSIM=0.82. d) Reconstruction with 20%. PSNR=34.52, 
SSIM=0.87. 
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