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Abstract

Let G be a graph of order n, and let a and b be two integers with 1 ≤ a ≤ b. Let h : E(G)→ [0, 1] be
a function. If a ≤

∑
e3x h(e) ≤ b holds for any x ∈ V(G), then we call G[Fh] a fractional [a, b]-factor of

G with indicator function h, where Fh = {e ∈ E(G) : h(e) > 0}. A graph G is fractional independent-set-
deletable [a, b]-factor-critical (in short, fractional ID-[a, b]-factor-critical) if G − I has a fractional [a, b]-
factor for every independent set I of G. In this paper, it is proved that if n ≥ ((a + 2b)(a + b − 2) + 1)/b
and δ(G) ≥ ((a + b)n)/(a + 2b), then G is fractional ID-[a, b]-factor-critical. This result is best possible in
some sense, and it is an extension of Chang, Liu and Zhu’s previous result.
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1. Introduction

For motivation and background to this work, see [15]. Readers are referred to [1]
for undefined terms and concepts. The graphs considered in this paper will be finite
undirected graphs which have neither loops nor multiple edges. Let G be a graph.
We use V(G) and E(G) to denote its vertex set and edge set, respectively. For each
x ∈ V(G), we use dG(x) to denote the degree of x in G, and NG(x) to denote the
neighborhood of x in G. We write NG[x] for NG(x) ∪ {x}. For S ⊆ V(G), we denote
by G[S ] the subgraph of G induced by S , and G − S = G[V(G) \ S ]. If G[S ] has no
edges, then we call S independent. The minimum degree of G is denoted by δ(G). If
G1 and G2 are disjoint graphs, the join and union are denoted by G1 ∨G2 and G1 ∪G2,
respectively.

Let a and b be two positive integers with 1 ≤ a ≤ b. Then a spanning subgraph F
of G is called an [a, b]-factor if a ≤ dF(x) ≤ b for each x ∈ V(G). If a = b = k, then
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an [a, b]-factor is called a k-factor. If k = 1, then we say that a 1-factor is a perfect
matching. A graph G is factor-critical [7] if G − v has a perfect matching for each
v ∈ V(G). In [9], the concept of the factor-critical graph was generalised to the ID-
factor-critical graph. We say that G is independent-set-deletable factor-critical (in
short, ID-factor-critical) if for every independent set I of G which has the same parity
with |V(G)|, G − I has a perfect matching. It is clear that every ID-factor-critical graph
with odd vertices is factor-critical.

Let h : E(G)→ [0, 1] be a function. If a ≤
∑

e3x h(e) ≤ b holds for any x ∈ V(G),
then we call G[Fh] a fractional [a, b]-factor of G with indicator function h, where
Fh = {e ∈ E(G) : h(e) > 0}. If a = b = k, then a fractional [a, b]-factor is called a
fractional k-factor. A fractional 1-factor is also called a fractional perfect matching.
A graph G is fractional ID-k-factor-critical [2] if G − I has a fractional k-factor for
every independent set I of G. In this paper, the concept of the fractional ID-k-
factor-critical graph was generalised to the fractional ID-[a, b]-factor-critical graph,
that is, a graph G is fractional independent-set-deletable [a, b]-factor-critical (in short,
fractional ID-[a, b]-factor-critical) if G − I has a fractional [a, b]-factor for every
independent set I of G.

Many authors have investigated [a, b]-factors [3, 8, 10, 12, 13] and fractional
factors [5, 6, 11, 14]. Chang et al. [2] obtained a minimum degree condition for a
graph to be a fractional ID-k-factor-critical graph.

T 1.1 [2]. Let k be a positive integer and G be a graph of order n with
n ≥ 6k − 8. If δ(G) ≥ 2n/3, then G is fractional ID-k-factor-critical.

In this paper, we study fractional ID-[a, b]-factor-critical graphs, and obtain a
minimum degree condition for a graph to be a fractional ID-[a, b]-factor-critical graph.
Our main result is the following theorem, which is an extension of Theorem 1.1.

T 1.2. Let G be a graph of order n, and let a and b be two integers with
1 ≤ a ≤ b. If n ≥ ((a + 2b)(a + b − 2) + 1)/b and δ(G) ≥ ((a + b)n)/(a + 2b), then G
is fractional ID-[a, b]-factor-critical.

2. The proof of Theorem 1.2

In order to prove Theorem 1.2, we rely heavily on the following lemma.

L 2.1 [4]. Let G be a graph. Then G has a fractional [a, b]-factor if and only if
for every subset S of V(G),

δG(S , T ) = b|S | + dG−S (T ) − a|T | ≥ 0,

where

T = {x : x ∈ V(G) \ S , dG−S (x) ≤ a} and dG−S (T ) =
∑
x∈T

dG−S (x).
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P  T 1.2. By Theorem 1.1, the result obviously holds for a + b = 2 (that
is, a = b = 1). In the following, we assume that a + b ≥ 3. Let X be an independent set
of G and H = G − X. Clearly, |V(H)| = n − |X|, n − |X| ≥ δ(G) and δ(H) ≥ δ(G) − |X|.

In order to complete the proof of Theorem 1.2, we need only to prove that H has a
fractional [a, b]-factor. By contradiction, we suppose that H has no fractional [a, b]-
factor. Then, according to Lemma 2.1, there exists some subset S ⊆ V(H) such that

δH(S , T ) = b|S | + dH−S (T ) − a|T | ≤ −1. (2.1)

We choose such subsets S and T so that |T | is as small as possible.

Claim 1. We shall show that dH−S (x) ≤ a − 1 for any x ∈ T .

P. If dH−S (x) ≥ a for some x ∈ T , then the subsets S and T \ {x} satisfy (2.1),
which contradicts the choice of S and T . The proof of Claim 1 is complete. �

Since n − |X| ≥ δ(G) and δ(G) ≥ ((a + b)n)/(a + 2b),

b(a + b)
a2

(δ(G) − |X|) +
b|X|

a
−

bn
a

=
b(a + b)δ(G)

a2
−

b2|X|
a2
−

bn
a

=
b(a + b)δ(G)

a2
+

b2

a2
(n − |X|) −

b2n
a2
−

bn
a

=
b(a + b)δ(G)

a2
+

b2

a2
(n − |X|) −

b(a + b)n
a2

≥
b(a + b)δ(G)

a2
+

b2

a2
δ(G) −

b(a + b)n
a2

=
b(a + 2b)δ(G)

a2
−

b(a + b)n
a2

≥
b(a + 2b)

a2
·

(a + b)n
a + 2b

−
b(a + b)n

a2
= 0,

which implies

δ(G) − |X| ≥
a

a + b
(n − |X|).

Combining this with δ(H) ≥ δ(G) − |X|,

δ(H) ≥ δ(G) − |X| ≥
a

a + b
(n − |X|). (2.2)

Claim 2. We shall show that |T | ≥ b + 1.

P. According to (2.2),

n ≥
(a + 2b)(a + b − 2) + 1

b
>

(a + 2b)(a + b − 2)
b

,

n − |X| ≥ δ(G) and δ(G) ≥
(a + b)n
a + 2b

,
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and

δ(H) ≥
a

a + b
·

(a + b)n
a + 2b

=
an

a + 2b
>

a
a + 2b

·
(a + 2b)(a + b − 2)

b

=
a(a + b − 2)

b
≥

a(b − 1)
b

= a −
a
b
≥ a − 1.

In terms of the integrity of δ(H),

δ(H) ≥ a. (2.3)

If |T | ≤ b, then, by (2.1) and (2.3),

−1 ≥ δH(S , T ) = b|S | + dH−S (T ) − a|T |

≥ |T ||S | + dH−S (T ) − a|T |

=
∑
x∈T

(|S | + dH−S (x) − a)

≥
∑
x∈T

(δ(H) − a) ≥ 0,

which is a contradiction. This completes the proof of Claim 2. �

According to Claim 2, T , ∅. Define

h1 = min{dH−S (x) : x ∈ T }.

Choose x1 ∈ T such that dH−S (x1) = h1. If T \ NT [x1] , ∅, let

h2 = min{dH−S (x) : x ∈ T \ NT [x1]}.

Choose x2 ∈ T \ NT [x1] such that dH−S (x2) = h2. According to Claim 1, 0 ≤ h1 ≤ h2 ≤

a − 1. Obviously, dH(xi) ≤ |S | + hi for i = 1, 2.

Case 1. T = NT [x1].

Using Claim 2 and T = NT [x1],

a − 1 ≥ h1 = dH−S (x1) ≥ |NT [x1]| − 1 = |T | − 1 ≥ b ≥ a.

This is a contradiction.

Case 2. T \ NT [x1] , ∅.

Note that |NT [x1]| ≤ dH−S (x1) + 1 = h1 + 1 and a − h2 ≥ 1. Let |V(H)| = p. Then we
obtain p − |S | − |T | ≥ 0. Thus,

(a − h2)(p − |S | − |T |) − 1 ≥ δH(S , T ) = b|S | + dH−S (T ) − a|T |

≥ b|S | + h1|NT [x1]| + h2(|T | − |NT [x1]|) − a|T |

= b|S | − (a − h2)|T | − (h2 − h1)|NT [x1]|

≥ b|S | − (a − h2)|T | − (h2 − h1)(h1 + 1),
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that is,
(a + b − h2)|S | ≤ (a − h2)p + (h2 − h1)(h1 + 1) − 1. (2.4)

From (2.2) and n − |X| = p, we have δ(H) ≥ ap/(a + b). Combining this with
|S | ≥ δ(H) − h1,

|S | ≥
ap

a + b
− h1. (2.5)

According to (2.4) and (2.5),

(a + b − h2)
( ap
a + b

− h1

)
≤ (a − h2)p + (h2 − h1)(h1 + 1) − 1,

which implies

(bp − a − b)h2 ≤ (a + b)2h1 − (a + b)(h1 + 1)h1 − (a + b). (2.6)

In terms of

p = n − |X| ≥ δ(G), δ(G) ≥
(a + b)n
a + 2b

, n ≥
(a + 2b)(a + b − 2) + 1

b

and a + b ≥ 3, we get

bp ≥ bδ(G) ≥
b(a + b)n

a + 2b
≥

(a + b)(a + 2b)(a + b − 2) + (a + b)
a + 2b

> (a + b)(a + b − 2) ≥ a + b.

Combining this with (2.6) and h1 ≤ h2,

(bp − a − b)h1 ≤ (bp − a − b)h2 ≤ (a + b)2h1 − (a + b)(h1 + 1)h1 − (a + b),

that is,
(a + b)h2

1 + (bp − (a + b)2)h1 + (a + b) ≤ 0. (2.7)

Let f (h1) = (a + b)h2
1 + (bp − (a + b)2)h1 + (a + b). If h1 = 0, then, by (2.7), we

have 2 ≤ a + b ≤ 0, which is a contradiction. In the following, we may assume that
h1 ≥ 1. Since bp > (a + b)(a + b − 2),

f ′(h1) = 2(a + b)h1 + bp − (a + b)2 > 2(a + b) + (a + b)(a + b − 2) − (a + b)2 = 0.

Thus, by (2.7),

0 ≥ f (h1) ≥ f (1) = (a + b) + (bp − (a + b)2) + (a + b)

> 2(a + b) + (a + b)(a + b − 2) − (a + b)2 = 0,

which is a contradiction.
In each of the above cases we obtained contradictions. Hence, H has a fractional

[a, b]-factor, that is, G is fractional ID-[a, b]-factor-critical.
This completes the proof of Theorem 1.2. �
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3. Remark

In this section, we show that the condition δ(G) ≥ ((a + b)n)/(a + 2b) in
Theorem 1.2 is sharp. To see this, we construct a graph G = (at)K1 ∨ (bt)K1 ∨

(bt + 1)K1, where t is a sufficiently large positive integer. Obviously, |V(G)| = n =

(a + 2b)t + 1 and

(a + b)n
a + 2b

> δ(G) = (a + b)t = (a + b) ·
n − 1
a + 2b

=
(a + b)n
a + 2b

−
a + b

a + 2b
>

(a + b)n
a + 2b

− 1.

In the following, let X = (bt)K1. Clearly, X is an independent set of G. Put
H = G − X = (at)K1 ∨ (bt + 1)K1, S = (at)K1 and T = (bt + 1)K1. Then

δH(S , T ) = b|S | + dH−S (T ) − a|T |

= abt − a(bt + 1) = −a < 0.

According to Lemma 2.1, H has no fractional [a, b]-factor. Hence, G is not fractional
ID-[a, b]-factor-critical. In the sense above, the bound of δ(G) in Theorem 1.2 is sharp.
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