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REGULARITY OF RICHARDSON'S COMPACTIFICATION 

R. J. GAZIK 

1. Introduction. In [7] Richardson constructed a Stone-Cech type 
compactification R(E) of a Hausdorff convergence space E. Two questions 
arise in this regard. First, when is R(E) homeomorphic to 0(E), 0(E) the 
topological Stone-Cech compactification of E, for a Tychonoff topological 
space E? Second, if £ is a regular convergence space, when is R(E) regular? 
The last question is motivated by the study of regular compactifications in [6]. 
In section 2 it will be shown that a necessary and sufficient condition in 
answer to both questions, is that a = cl(a:) for each nonconvergent ultrafilter 
a on E. In section 3 it is shown that if R(E) = 0(E), then R(F) = 0(F) for 
every extension F = E U A in 0(E), A closed, A C 0(E) — E. This provides 
a class of nondiscrete, noncompact topological spaces F for which R(F) = 
0(F). Also it is shown that R(E) = 0(E) implies 0(E) = W(E), W(E) the 
Wallman compactification of E, and that 0(E) is equivalent to the Fomin 
iJ-closed extension of E. From these results it follows that the class of E for 
which R(E) = 0(E) is neither finitely productive nor hereditary. 

For use in the next section, we review the compression operator in a slightly 
modified setting. Let O be a filter on R(E). If A Ç & a n d / is any function on A 
for which f(D) £ D for each D U , define A(f) = U (f(D) : D £ A). 
Since ^ is a filter base on the collection of all filters on E, the A(f) constitute 
a filter base on E. Then K(&) is defined to be the filter, on E, generated by 
t h e ^ ( / ) . 

Notation involving the compactification R(E) is that of [7]. If E is a con­
vergence space and A C E, cl (A, E) is the closure of A in E and, if a is a 
filter on E, cl (a, E) is the filter generated by the cl (A, E) , A £ a. The ab­
breviations cl (^4), cl (a) will be used when there is no loss of clarity. The 
convergence space E is regular if cl (a) —•» x whenever a —» x for each filter 
a on E. (See [2] for an equivalent definition of regularity which makes essential 
use of the compression operator K, and [4], for example, for a different concept 
of regularity.) In section 2 "space" means convergence space unless specified 
otherwise. In section 3 all spaces are topological Tychonoff. 
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2. Basic result. 

LEMMA 1. Suppose 0> is a filter onR(E),a G R(E) and <I> —> a. ThenK(&) = 
a if a is nonconvergent and K(<&) —> x if a = x. 

Proof. First suppose a is nonconvergent. If A G a then, by definition of 
convergence in R(E), H C A for some H G <I>. If/ is defined on if by f(h) = A 
for each h (z H, then 

H(f) = U (f(h) :heH) =A G * ( * ) . 

So a ^ -K"(0) and equality follows because a is an ultrafilter. 
But if a = x then 4> ^ 7 for some 7, 7 —> x, and the same argument as above 

shows that K(Q>) ^ 7. 

LEMMA 2. If A C £ , E a Hausdorff space, then cl (Â,R(E)) C (ci (4 , £ ) ) A . 

Proof. Let a G cl (Â, R(E)) and suppose first that a is nonconvergent. Then 
there is a filter <ï> with & —» a and ^1 G <I>. By Lemma 1, i£(«I>) = a so ̂ 4 ( / ) G 
X(O) = a, where/ is defined on A by /(A) = ^4forfe G ̂ 4. Thus, A = Â(f) G 
a. It follows that a £ Â so a £ (cl (A, £ ) ) A . 

Now suppose that <x = x G cl (A, R(E)). There is a filter & with <I> —» x 
and 4̂ G «I>. By Lemma 1, K(&) —> x and ^ G <I>. With / defined on ^ by 
/(A) = A for h £ Â, we have ,4 = Â(f) G X W , i£(«I>) ->x . This means 
x G cl {A, E) and it follows that x G (cl (A, £ ) ) " . 

THEOREM 1. Le£ E be a regular Hausdorff space. Then R(E) is regular if and 
only if a = cl (a) for each nonconvergent ultrafilter a on E. 

Proof. Suppose that R(E) is regular, that i is the embedding of E into R(E) 
and that a is a nonconvergent ultrafilter on E. Then i(d) —>a hence cl (i(a), 
R(E)) -> a. So if A G a, cl (i(B), R(E)) C 4̂ for some B G a. We claim that 
cl (£, E) (Z A. For, if x G cl (I?, £ ) , there is a filter 7 with 7 —> x and 12 G 7. 
Then ^(7) ->*(*), *(£) G i (5 ) G 1(7), so x = i(a) G cl ( i (5) , J R ( £ ) ) C -4. 
It follows from this that x G A and our claim is true. Thus, cl (a, E) ^ a and 
cl (a, E) = a follows. 

Conversely, suppose that the closure of each nonconvergent ultrafilter on E 
is itself. Let <b —• a in R(E). 

Case 1. a is nonconvergent. Then €> ^ a. By Lemma 2 (cl (a, E)Y ^ 
cl (a, -R(£)) and, by assumption, a = cl (a) so cl (<I>, £ ( £ ) ) ^ cl (a, R (£ ) ) è 
(cl (a, E)Y = a. From this cl (4>) —> a. 

Case 2. a = x. Then 4> ^ 7 for some 7, 7 —* x. Since E is regular, cl (7, E) —» 
x and, using Lemma 2 again, cl (O, i?(£)) ^ cl (7, R(E)) ^ (cl (7, £ ) ) A . 
Thuscl (<P,R(E)) ->x . 

In each case it has been shown that cl (<I>) —*a whenever O - x x s o R(E) 
is regular. 
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COROLLARY 1. Let E he a regular, principal, Hausdorff space in which a = 
cl (a) for each nonconvergent ultrafiUer a on E. Then E is a completely regular 
topological space. 

Proof. From iesults of [7] and Theorem 1, R(E) is Hausdorff, regular and 
compact. Clearly R(E) is also principal so it is an immediate consequence of 
[6, Proposition 1] that R(E) is a completely regular topological space. Since E 
is embedded in R(E), E is also completely regular. 

COROLLARY 2. Let E be a Tychonoff topological space. Then, a necessary and 
sufficient condition that R(E) = 13(E) is that a = cl (a) for each nonconvergent 
ultrafiUer a on E. 

Proof. If £ is Tychonoff and /3(E) is homeomorphic to R(E), then R(E) is 
regular and a = cl (a) on nonconvergent ultrafilters by Theorem 1. 

If a = cl (a) on nonconvergent ultrafilters, then R(E) is regular, compact, 
principal and Hausdorff so, by Corollary 1, R(E) is a topological, Hausdorff, 
Stone-Cech type compactification of E. Thus, R(E) is homeomorphic to /3(E). 

Remark. It is clear from results in [4] that ua = cl (a) on nonconvergent 
ultrafilters" agrees with compactness on minimal regular spaces. Any discrete 
space shows that this condition and compactness need not agree in general, 
even on completely regular topological spaces. Nondiscrete examples appear in 
section 3. 

3. Consequences for topological E. The first result below generates 
nondiscrete, noncompact E for which R(E) = P(E). (For example, by starting 
with E discrete.) 

THEOREM 2. Suppose R{E) = P(E). If F = E\J A is an extension of E in 
13(E) with A C /3(E) - E, A closed in (3(E), then R(F) = 13(F). 

Proof. Let <I> be a nonconvergent ultrafilter on E KJ A and let B £ O. Then 
A (? 4> so the restriction &(E) of 4> to E exists as a nonconvergent ultrafilter 
on E. By assumption 

(1) cl (W, E) C B - A for some W 6 $ ( £ ) . 

Now <!>(£) converges in P(E) to some p, p £ A. Hence, if q £ A then q 
cannot be in the closure of every V, V C W, V € ®(E). So, when q G A, 
there exists V(q) £ ®(E) such that q $ cl (V(q), R(E)). By compactness of 
A in /3(£) there is a finite subset Q of A such that 

n (cl V((«), R(E) : q € Q) C /»(£) - A. 

Then U = n (V(q) : 2 6 Q) € * (E) so 
(2) There exists Z7 € * ( £ ) such that U QW and cl (U, E\J A) C 

cl ([/, £ ) . 
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Finally, U V A £ <P and, using (1), (2), 

cl (UUA,EUA) = cl (U, E\J A) VJ A C cl (£7, E) KJ A 

C (B - A)KJ A = B. 

It has been shown that cl O , £ U 4 ) = O so £ ( £ U 4 ) = i?(£ \J A). 

THEOREM 3. If R(E) = 13(E) then E is normal andp(E) = W(E), W(E) the 
Wallman compactification of E. 

Proof. The result follows if W(E) is Hausdorff. To show this, notice first 
that when X G W(E), then [X] G R(E), [X] the filter on E generated by the 
maximal closed filter X. Next, the map i : E -^>R(E), i(x) = x, extends to a 
continuous/ : W(E) ->R(E) by defining, for X G W(E) - E, /(X) to be the 
unique cluster point of the closed filter 

W(\) = (A :A closed in R(E), i~l(A) G X). 

HoweverW(\) -» [X] in R{E) because, if F G X, 

cl (i(F), R(E)) C cl (E, R(E)) C (cl [F, £ ) ) * = F. 

Hence/(X) = [X], t h u s / is one-to-one, and since R(E) is Hausdorff the same 
holds for W(E). 

THEOREM 4. If R(E) = /3(E) /As» 0(E) ^s equivalent to a(E), a(E) the 
Fomin H-closed extension of E. 

Proof. According to the [3, Corollary, p. 245] we must show that bdry (G) 
is compact whenever G is open in E. Suppose this is not so for some open G. 
Then there exists a non-convergent ultrafilter a which contains bdry (G). 
By assumption a G R(E) = /3(E). Considering (3(E) as the space of maximal 
completely regular filters as in [1], a is generated by a maximal completely 
regular filter on E. So a has an open base. But this means bdry (G) contains a 
non void open set, a contradiction. 

Concluding remarks. The class ^ of spaces E for which R(E) = 0(E) is not 
finitely productive. For, by Theorem 2, N \J \p) G ^ , p G 0(M) — N, N the 
natural numbers. But the boundary of N X N in N X (N *U {p}) is not com­
pact so iV X (N \J {p}) $ ^ by Theorem 4. Moreover, if E is any non-
compact member of fê, then some power X of E is not normal (see [5]) so 
X g <% by Theorem 3. 

The class ^ is not hereditary: If N is the natural numbers and A is an 
infinite closed subset of p(N), A C P(N) - N, then N KJ A G &. Define 
F = N yj A — \p}y where p is a point of -4 which is the limit of a filter in 
4̂ — \p). As a subspace oï N \J A, F d *% because the boundary of N in E is 

not compact. Closed subspaces of members of & are in ^ , but a discrete 
space E is not closed i n £ U \p\ and yet £ f ? . 
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