DISJOINT TRANSVERSALS OF SUBSETS

P. J. HIGGINS

1. Introduction. Let $A_{1}, A_{2}, \ldots, A_{n}$ be a finite collection of subsets (not necessarily distinct) of a set A. By a transversal ${ }^{1}$ of $A_{1} A_{2}, \ldots, A_{n}$ we shall mean a set of n distinct elements $a_{1}, a_{2}, \ldots, a_{n}$ of A such that, for some permutation $i_{1}, i_{2}, \ldots, i_{n}$ of the integers $1,2, \ldots, n$,

$$
a_{j} \in A_{i_{j}} \quad(j=1,2, \ldots, n)
$$

More generally, we shall say that the set $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\},(r \leqslant n)$ is a partial transversal of $A_{1}, A_{2}, \ldots, A_{n}$ of length r if (i) $a_{1}, a_{2}, \ldots, a_{r}$ are distinct elements of A and (ii) there exists a set of distinct integers $i_{1}, i_{2}, \ldots, i_{r}$ such that

$$
a_{j} \in A_{i_{j}} \quad(j=1,2, \ldots, r)
$$

A well-known theorem of P . Hall (2) states that the sets $A_{1}, A_{2}, \ldots, A_{n}$ have a transversal (of length n) if, and only if, every k of them contain collectively at least k distinct elements ($k=1,2, \ldots, n$). A generalization of this theorem by Ore (3) states that the sets $A_{1}, A_{2}, \ldots, A_{n}$ have a partial transversal of length $r \leqslant n$ if, and only if, every k of them contain collectively at least $k+r-n$ distinct elements $(n-r+1 \leqslant k \leqslant n)$.

In this paper we enquire under what conditions the sets $A_{1}, A_{2}, \ldots, A_{n}$ will have m mutually disjoint partial transversals of prescribed lengths $r_{1}, r_{2}, \ldots, r_{m}$. As in the two theorems quoted above, the obvious necessary conditions are again found to be sufficient. As a special case we deduce a theorem of Ryser (4) and Gale (1) concerning the existence of matrices of 0 's and 1 's with prescribed row sums and column sums.
2. Notation. Throughout our argument n will denote a fixed positive integer (the number of subsets A_{j}), and $r_{1}, r_{2}, \ldots, r_{m}$ will denote positive integers not exceeding n. We shall suppose that $r_{1} \geqslant r_{2} \geqslant \ldots \geqslant r_{m}>0$ and think of these integers as a partition $\left[r_{i}\right]$ of $r_{1}+r_{1}+\ldots+r_{m}$. The conjugate partition $\left[r_{j}{ }^{*}\right]$ is defined as usual:

$$
\begin{equation*}
r_{j}^{*}=\sum_{r_{i} \geqslant j} 1 \quad\left(j=1,2, \ldots, r_{1}\right) \tag{1}
\end{equation*}
$$

It is convenient also to define $r_{j}{ }^{*}=0$ if $r_{1}<j \leqslant n$, which is in accord with (1) if we interpret empty sums as zero.

[^0]We now write

$$
\begin{equation*}
\alpha_{k}=\sum_{j=n-k+1}^{n} r_{j}^{*} \quad(k=1,2, \ldots, n) \tag{2}
\end{equation*}
$$

An alternative expression for α_{k} can be obtained as follows. If s and t are integers, let $E x(s, t)$ denote the excess, if any, of s over t, that is, $E x(s, t)$ $=s-t$ if $s \geqslant t$, and $E x(s, t)=0$ if $s \leqslant t$. Then

$$
\begin{equation*}
\alpha_{k}=\sum_{i=1}^{m} E x\left(r_{i}, n-k\right) \quad(k=1,2, \ldots, n) \tag{3}
\end{equation*}
$$

The easiest way to see this is to draw a partition diagram for $\left[r_{i}\right]$, that is, an $m \times n$ matrix whose i th row has entries 1 in the first r_{i} places and 0 elsewhere. Then $r_{j}{ }^{*}$ is the number of 1 's in the j th column, and α_{k} is the number of 1 's in the last k columns. However, the i th row has exactly $E x\left(r_{i}, n-k\right)$ 1 's in the last k columns, and (3) follows.
3. Disjoint partial transversals. Suppose that $A_{1}, A_{2}, \ldots, A_{n}$ have disjoint partial transversals (D.P.T.'s) $R_{1}, R_{2}, \ldots, R_{m}$ of lengths $r_{1}, r_{2}, \ldots, r_{m}$ respectively. The elements of R_{i} represent r_{i} of the A 's. Of these A 's at least $E x\left(r_{i}, n-k\right)$ must be included in any collection of k of the A 's. It follows that every k of the A 's must contain between them at least $\operatorname{Ex}\left(r_{i}, n-k\right)$ distinct elements out of R_{i} and hence at least

$$
\alpha_{k}=\sum_{i=1}^{m} E x\left(r_{i}, n-k\right)
$$

distinct elements altogether, since the R 's are disjoint. Our theorem asserts that this necessary condition is also sufficient.

Theorem. A necessary and sufficient condition for $A_{1}, A_{2}, \ldots, A_{n}$ to have mutually disjoint partial transversals of lengths $r_{1}, r_{2}, \ldots, r_{m}$ is that, for $k=1$, $2, \ldots, n$, every k of the A 's contain between them at least α_{k} distinct elements, where α_{k} is defined by (1) and (2) above.

We observe here that the case $m=1, r_{1}=r$, is precisely Ore's theorem since we then have $\alpha_{k}=0(1 \leqslant k \leqslant n-r)$ and $\alpha_{k}=k+r-n(n-r+1 \leqslant k$ $\leqslant n$).

The proof of sufficiency proceeds by induction on n. It is trivial when $n=1$, and from now on we shall assume the result for all collections of $n^{\prime}<n$ sets and all sets of integers $r_{i} \leqslant n^{\prime}$.

We distinguishtwo cases which are mutually exclusive and cover all possibilities:

Case 1. $m \geqslant 2$ and $r_{m}<n, r_{m-1}<n$;
Case 2. $r_{1}=r_{2}=\ldots=r_{m-1}=n, 1 \leqslant r_{m} \leqslant n$.
We shall first reduce Case 1 to Case 2 .

If $\left[r_{i}\right]$ is a partition falling under Case 1 , we define a new partition [\tilde{r}_{i}], the reduction of $\left[r_{i}\right]$, as follows. Let $r_{1}=r_{2}=\ldots=r_{t}=n, r_{t+1}<n$, where, by assumption, $0 \leqslant t \leqslant m-2$. Then $\tilde{r}_{m}=r_{m}-1, \tilde{r}_{t+1}=r_{t+1}+1$, and $\tilde{r}_{i}=r_{i}$ for all other values of i. Clearly $\tilde{r}_{1} \geqslant \tilde{r}_{2} \geqslant \ldots \geqslant \tilde{r}_{m}$, and by a finite number of such reductions any partition falling under Case 1 can be reduced to one falling under Case 2 . Note that we may have $\tilde{r}_{m}=0$, in which case the value of m is reduced by 1 . It will, however, be convenient at times to retain such vanishing parts of a partition and interpret a partial transversal of length zero as the empty set. This will not affect the proof in any way.

To reduce Case 1 to Case 2 it is enough to prove
Lemma. If the theorem is true for the partition [\tilde{r}_{i}] then it is also true for the partition $\left[r_{i}\right]$.

Proof. Suppose that $\left[r_{i}\right]$ falls under Case 1, and every k of the A 's contain between them at least α_{k} distinct elements $(k=1,2, \ldots, n)$.

Case 1 (a). First consider the possibility that for some $k(1 \leqslant k \leqslant n-1)$ there is a collection of k of the A 's, say $A_{1}, A_{2}, \ldots, A_{k}$, which contain between them precisely α_{k} distinct elements. We construct two new partitions [p_{i}] and $\left[q_{i}\right]$ where $p_{i}=E x\left(r_{i}, n-k\right), q_{i}=\min \left(r_{i}, n-k\right)(i=1,2, \ldots, m)$. Then $p_{i}+q_{i}=r_{i}(i=1,2, \ldots, m), p_{j}^{*}=r_{j+n-k}^{*}(j=1,2, \ldots, k)$, and $q_{j}{ }^{*}=r_{3}{ }^{*}(j=1,2, \ldots, n-k)$. We apply our induction hypothesis to the sets A, A_{2}, \ldots, A_{k} with the partition [p_{i}] and to the sets $A_{k+1}, A_{k+2}, \ldots, A_{n}$ with the partition $\left[q_{i}\right]$. For this purpose let β_{s} and γ_{s} be the integers obtained from $\left[p_{i}\right]$ and $\left[q_{i}\right]$ in the same way that the α_{s} were obtained from $\left[r_{i}\right]$. Thus

$$
\beta_{s}=\sum_{j=k-s+1}^{k} p_{j}^{*}=\sum_{j=n-s+1}^{n} r_{j}^{*}=\alpha_{s} \quad(s=1,2, \ldots, k)
$$

and

$$
\gamma_{s}=\sum_{j=n-k-s+1}^{n-k} q_{j}^{*}=\sum_{j=n-k-s+1}^{n-k} r_{j}^{*}=\alpha_{k+s}-\alpha_{k} \quad(s=1,2, \ldots, n-k)
$$

By assumption, every s of the sets $A_{1}, A_{2}, \ldots, A_{k}$ contain between them at least $\alpha_{s}=\beta_{s}$ distinct elements. Also, any s of the sets $A_{k+1}, A_{k+2}, \ldots, A_{n}$ contain, together with all of $A_{1}, A_{2}, \ldots, A_{k}$, at least α_{k+s} distinct elements. Since $A_{1} \cup A_{2} \cup \ldots \cup A_{k}$ contains precisely α_{k} elements, any s of the sets $A_{k+1}, A_{k+2}, \ldots, A_{n}$ must contain between them at least $\alpha_{k+s}-\alpha_{k}=\gamma_{s}$ distinct elements not in $A_{1} \cup A_{2} \cup \ldots \cup A_{k}$. It follows that there exist D.P.T.'s $P_{1}, P_{2}, \ldots, P_{m}$ of $A_{1}, A_{2}, \ldots, A_{k}$ of lengths $p_{1}, p_{2}, \ldots, p_{m}$, and D.P.T.'s $Q_{1}, Q_{2}, \ldots, Q_{m}$ of $A_{k+1}, A_{k+2}, \ldots, A_{n}$ of lengths $q_{1}, q_{2}, \ldots, q_{m}$, none of the Q 's having any elements in common with any of the P 's. The sets $P_{1} \cup Q_{1}, P_{2} \cup Q_{2}, \ldots, P_{m} \cup Q_{m}$ are then D.P.T.'s of $A_{1}, A_{2}, \ldots, A_{n}$ of lengths $r_{1}, r_{2}, \ldots, r_{m}$.

Case 1 (b). If no such collection of A 's exists then, for $k=1,2, \ldots, n-1$, every k of the A 's must contain between them at least $\alpha_{k}+1$ distinct elements,
and we now appeal to the reduced partition. We observe that in passing from $\left[r_{i}\right]$ to $\left[\tilde{r}_{i}\right]$ one of the $r,{ }^{*}$ is increased by 1 , and one of them is decreased by 1 , the others being unaltered. Hence, in the obvious notation,

$$
\tilde{\alpha}_{k}=\sum_{j=n-k+1}^{n} \tilde{r}_{j}^{*} \leqslant 1+\sum_{j=n-k+1}^{n} r_{j}^{*}=1+\alpha_{k} \quad(k=1,2, \ldots, n),
$$

while $\tilde{\alpha}_{n}=\alpha_{n}$. Thus every k of the A 's contain between them at least $\tilde{\alpha}_{k}$ distinct elements $(k=1,2, \ldots, n)$. Assuming the theorem for the partition $\left[\tilde{r}_{i}\right]$, we can find D.P.T.'s $\widetilde{R}_{1}, \widetilde{R}_{2}, \ldots, \widetilde{R}_{m}$ of lengths $\tilde{\gamma}_{1}, \widetilde{r}_{2}, \ldots, \widetilde{r}_{m}$. Now $\tilde{r}_{t+1}>r_{t+1} \geqslant r_{m}>\tilde{r}_{m}$ (t has the same meaning as before). Hence there must be in \widetilde{R}_{t+1} at least one element which represents a set A, not represented by any element of \widetilde{R}_{m}. If we transfer this element from \widetilde{R}_{t+1} to \widetilde{R}_{m} we obtain D.P.T.'s of lengths $r_{1}, r_{2}, \ldots, r_{m}$. This proves the lemma.

It remains to prove the theorem in Case 2, that is, under the assumptions $r_{1}=r_{2}=\ldots=r_{m-1}=n, 1 \leqslant r_{m} \leqslant n, m \geqslant 1$. Then $r_{j}^{*}=m$ for $j=1$, $2, \ldots, r$, and $r_{j}{ }^{*}=m-1$ for $j=r+1, r+2, \ldots, n$, where for convenience we write $r_{m}=r$. We now make the further definition

$$
\delta_{k}=\sum_{j=1}^{k} r_{j}^{*} \geqslant \alpha_{k} \quad(k=1,2, \ldots, n)
$$

Assume that $A_{1}, A_{2}, \ldots, A_{n}$ satisfy the conditions of the theorem.
Case 2 (a). First suppose that, for $k=1,2, \ldots, n-1$, every k of the A 's contain between them at least δ_{k} distinct elements. The same will be true for $k=n$ since $\delta_{n}=\alpha_{n}$. Consider a collection of sets $\left\{B_{j}\right\}$ consisting of m repetitions of each of the sets $A_{1}, A_{2}, \ldots, A_{r}$ and $m-1$ repetitions of each of the sets $A_{r+1}, A_{r+2}, \ldots, A_{n}$ (if any). There are α_{n} sets altogether, and we shall show that, for $s=1,2, \ldots, \alpha_{n}$, any s of these sets contain between them at least s distinct elements. We must first count the number k of distinct* A 's included amongst s of the B 's. Clearly $k \geqslant s / m$; and if $s>m r$ then $k \geqslant r+(s-m r) /(m-1)$. If $s \leqslant m r$, then $s / m \leqslant r$ and, if k^{\prime} is the smallest integer such that $k^{\prime} \geqslant s / m$, then $k^{\prime} \leqslant r$. Hence $\delta_{k^{\prime}}=k^{\prime} m \geqslant s$, and any s of the B 's must contain between them at least $\delta_{k} \geqslant \delta_{k^{\prime}} \geqslant s$ distinct elements. On the other hand, if $s>m r$, then $k-r \geqslant(s-m r) /(m-1)$, and $\delta_{k}=r m$ $+(k-r)(m-1) \geqslant r m+(s-m r)=s$. Thus again any s of the B 's must contain between them at least s distinct elements. Applying Hall's theorem quoted in the introduction, we can find a complete transversal of the B 's. The α_{n} distinct elements in this transversal comprise m distinct representatives of each of the sets $A_{1}, A_{2}, \ldots, A_{\tau}$ and $m-1$ distinct representatives of each of the sets $A_{r+1}, A_{r+2}, \ldots, A_{n}$. It is easy to see that these elements can be arranged to form D.P.T.'s of $A_{1}, A_{2}, \ldots, A_{n}, m-1$ of length n and one of length r.

[^1]Case 2 (b). The alternative to 2 (a) is that for some $k(1 \leqslant k \leqslant n-1)$ there is a collection of k of the A 's whose union contains fewer than δ_{k} distinct elements (but at least α_{k}). From all such collections (for all possible values of k) we pick one collection consisting of, say, $k A$'s whose union contains $\alpha_{k}+u$ distinct elements with u as small as possible. Thus every s of the A 's ($s=1,2, \ldots, n$) contain between them at least $\min \left(\delta_{s}, \alpha_{s}+u\right)$ distinct elements. (This statement for $s=n$ follows from the fact that $\delta_{n}=\alpha_{n}$.) Let the chosen sets be $A_{1}, A_{2}, \ldots, A_{k}$ (k is now fixed, $1 \leqslant k \leqslant n-1$). If $u=0$ we may, of course, proceed as in Case 1 (a). This fails, however, if $u>0$, and we must appeal again to the special form of the partition $\left[r_{i}\right]$.

Consider the sums of k successive r^{*} 's, that is, the integers $\epsilon_{i}=r_{i+1}{ }^{*}+$ $r_{i+2}^{*}+\ldots+r_{i+k}^{*}(i=0,1, \ldots, n-k)$. Clearly $\delta_{k}=\epsilon_{0} \geqslant \epsilon_{1} \geqslant \ldots \geqslant \epsilon_{n-k}$ $=\alpha_{k}$. Also $\epsilon_{i}-\epsilon_{i+1} \leqslant 1$ since $m=r_{1}{ }^{*} \geqslant r_{2}{ }^{*} \geqslant \ldots \geqslant r_{n}{ }^{*} \geqslant m-1$. Now $\delta_{k}>\alpha_{k}+u>\alpha_{k}$; hence there is an integer $t(1 \leqslant t<n-k)$ such that $\epsilon_{t}=\alpha_{k}+u$. We may take $t \leqslant r$ since, if ϵ_{τ} is defined, its value is $(m-1) k$ which must also be the value of α_{k}.

In the partition diagram of $\left[r_{i}\right]$ we now look at columns $t+1, t+2, \ldots$, $t+k$. They form the partition diagram of $\left[p_{i}\right]$ where $p_{1}=p_{2}=\ldots=p_{m-1}$ $=k, p_{m}=r-t$, and

$$
\sum_{i=1}^{m} p_{i}=\alpha_{k}+u
$$

The remaining columns form the partition diagram of $\left[q_{i}\right]$ where $q_{1}=q_{2}=\ldots$ $=q_{m-1}=n-k, q_{m}=t$. The integers β_{s} and γ_{s} obtained from $\left[p_{i}\right]$ and $\left[q_{i}\right]$ in the same way that the α_{s} were obtained from $\left[r_{i}\right]$ are given by

$$
\begin{array}{ll}
\beta_{s}=\sum_{j=k-s+1}^{k} p_{j}^{*}=\sum_{j=t+k-s+1}^{t+k} r_{j}^{*} & (s=1,2, \ldots, k), \\
\gamma_{s}=\sum_{j=n-k-s+1}^{n-k} q_{j}^{*}=\left\{\begin{array}{lll}
\alpha_{s} & \text { if } s \leqslant n-k-t \\
\alpha_{k+s}-\left(\alpha_{k}+u\right) & \text { if } & n-k-t<s \leqslant n-k .
\end{array}\right.
\end{array}
$$

Consider a collection of $s \leqslant k$ of the sets $A_{1}, A_{2}, \ldots, A_{k}$. Between them they contain at least $\min \left(\delta_{s}, \alpha_{s}+u\right)$ distinct elements. Now

$$
\delta_{s}=\sum_{j=1}^{s} r_{j}^{*} \geqslant \sum_{j=t+k-s+1}^{t+k} r_{j}^{*}=\beta_{s} .
$$

Also

$$
\begin{aligned}
\alpha_{s}+u=\left(\alpha_{k}+u\right)-\left(\alpha_{k}-\alpha_{s}\right) & =\sum_{j=t+1}^{t+k} r_{j}^{*}-\sum_{j=n-k+1}^{n-s} r_{j}^{*} \\
& \geqslant \sum_{j=t+1}^{t+k} r_{j}^{*}-\sum_{j=t+1}^{t+k-s} r_{j}^{*} \quad(\text { since } t \leqslant n-k) \\
& =\beta_{s} .
\end{aligned}
$$

Thus any s of $A_{1}, A_{2}, \ldots, A_{k}$ contain between them at least β_{s} distinct elements, and since $k<n$, we may apply our induction hypothesis to find D.P.T.'s $P_{1}, P_{2}, \ldots, P_{m}$ of $A_{1}, A_{2}, \ldots, A_{k}$ of lengths $p_{1}, p_{2}, \ldots, p_{m}$.

Now consider a collection of $s \leqslant n-k$ of the sets $A_{k+1}, A_{k+2}, \ldots, A_{n}$. Together with all of $A_{1}, A_{2}, \ldots, A_{k}$ they contain at least $\min \left(\delta_{k+s}, \alpha_{k+s}+u\right)$ distinct elements. Since $A_{1} \cup A_{2} \cup \ldots \cup A_{k}$ contains exactly $\alpha_{k}+u$ elements, the s sets from $A_{k+1}, A_{k+2}, \ldots, A_{n}$ must contain between them at least $\min \left(\delta_{k+s}-\left(\alpha_{k}+u\right), \alpha_{k+s}-\alpha_{k}\right)$ distinct elements not already used in $P_{1}, P_{2}, \ldots, P_{m}$. If we can show that, for $s=1,2, \ldots, n-k$,

$$
\text { (i) } \delta_{k+s}-\left(\alpha_{k}+u\right) \geqslant \gamma_{s} \text {, }
$$

and
(ii) $\alpha_{k+s}-\alpha_{k} \geqslant \gamma_{s}$,
we may apply our induction hypothesis to obtain D.P.T.'s $Q_{1}, Q_{2}, \ldots, Q_{m}$ of $A_{k+1}, A_{k+2}, \ldots, A_{n}$ of lengths $q_{1}, q_{2}, \ldots, q_{m}$ from elements not already used in $P_{1}, P_{2}, \ldots, P_{m}$. If $s>n-k-t$, these inequalities are obvious; for then $\gamma_{s}=\alpha_{k+s}-\left(\alpha_{k}+u\right)$, and clearly $\delta_{k+s} \geqslant \alpha_{k+s}, \alpha_{k} \leqslant \alpha_{k}+u$. On the other hand, if $s \leqslant n-k-t$, then $\gamma_{s}=\alpha_{s}$. In this case we observe that $\delta_{k+s} \geqslant \delta_{k}+\alpha_{s}>\left(\alpha_{k}+u\right)+\alpha_{s}$, from which (i) follows. Also $\alpha_{k+s} \geqslant \alpha_{k}+\alpha_{s}$, from which (ii) follows. This establishes the existence of $Q_{1}, Q_{2}, \ldots, Q_{m}$.

Finally, $P_{1} \cup Q_{1}, P_{2} \cup Q_{2}, \ldots, P_{m} \cup Q_{m}$ are D.P.T.'s of $A_{1}, A_{2}, \ldots, A_{n}$ of lengths $r_{1}, r_{2}, \ldots, r_{m}$, and the theorem is proved.

The application to matrices of 0 's and 1 's, mentioned in the introduction, is immediate. Let $n \geqslant r_{1} \geqslant r_{2} \geqslant \ldots \geqslant r_{m} \geqslant 0$ and $s_{1} \geqslant s_{2} \geqslant \ldots \geqslant s_{n} \geqslant 0$. The insertion of 1 's in an $m \times n$ matrix so that there are at least $r_{i} 1$'s in the i th row $(i=1,2, \ldots, m)$ and not more than s_{j} in the j th column $(j=1$, $2, \ldots, n)$ is equivalent to the construction of D.P.T.'s of lengths $r_{1}, r_{2}, \ldots, r_{m}$ of n disjoint sets containing respectively $s_{1}, s_{2}, \ldots, s_{n}$ elements. Our theorem gives as necessary and sufficient conditions for the existence of such D.P.T.'s the inequalities

$$
\sum_{j=n-k+1}^{n} s_{j} \geqslant \alpha_{k}=\sum_{j=n-k+1}^{n} r_{j}^{*} \quad(k=1,2, \ldots, n)
$$

(The inclusion of zeros amongst the r 's affects neither the hypotheses nor the conclusion.) If we require exactly r_{i} 1's in the i th row and exactly s_{j} in the j th column, we need only add the condition

$$
\sum_{j=1}^{n} s_{j}=\sum_{i=1}^{m} r_{i} .
$$

These are the conditions found by Ryser and Gale.

References

1. David Gale, A theorem on flows in networks, Pacific J. Math., 7 (1957), 1073-82.
2. Philip Hall, On representatives of subsets, J. Lond. Math. Soc., 10 (1935), 26-30.
3. Oystein Ore, Graphs and matching theorems, Duke Math. J., 22 (1955), 625-39.
4. H. J. Ryser, Combinatorial properties of matrices of zeros and ones, Can. J. Math., 9 (1957), 371-7.
Harvard University

[^0]: Received May 22, 1958.
 ${ }^{1}$ This term, due to P . Hall, is normally used when the sets $A_{1}, A_{2}, \ldots A_{n}$ are disjoint, but its use in this wider sense is convenient here.

[^1]: *By "distinct" we mean here "having distinct suffixes." Thus distinct A 's may have the same members.

