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1. Introduction. Let Au A2, . . . , An be a finite collection of subsets (not 
necessarily distinct) of a set A. By a transversal1 of A\A2, . . . , An we shall 
mean a set of n distinct elements a\, a2j . . . , an of A such that, for some 
permutation ih i2, . . . , 4 of the integers 1, 2, . . . , n, 

aj e At. (J = 1,2, . . . , » ) . 

More generally, we shall say that the set {ai, a2, . . . , a r}, (r < w) is a partial 
transversal oi Ai, A2, . . . y An oi length r if (i) a±, a2, . . . , ar are distinct ele
ments of A and (ii) there exists a set of distinct integers i\, i2j . . . , iT such 
that 

aj e At. (j = 1,2, . . . , r ) . 

A well-known theorem of P. Hall (2) states that the sets Ai, A2t . . . , An 

have a transversal (of length n) if, and only if, every k of them contain 
collectively at least k distinct elements {k = 1, 2, . . . , n). A generalization 
of this theorem by Ore (3) states that the sets Ai, A2, . . . , An have a partial 
transversal of length r < n if, and only if, every k of them contain collectively 
at least k + r — n distinct elements {n — r + l < & < « ) . 

In this paper we enquire under what conditions the sets A\, A2j . . . , An 

will have m mutually disjoint partial transversals of prescribed lengths 
T\, r2} . . . , rm. As in the two theorems quoted above, the obvious necessary 
conditions are again found to be sufficient. As a special case we deduce a 
theorem of Ryser (4) and Gale (1) concerning the existence of matrices of 
O's and l 's with prescribed row sums and column sums. 

2. Notation. Throughout our argument n will denote a fixed positive 
integer (the number of subsets Aj), and ru r2y . . . , rm will denote positive 
integers not exceeding n. We shall suppose that r± > r2 > . . . > rm > 0 and 
think of these integers as a partition [rt] of t\ + r\ + . . . + rm. The con
jugate partition [r*] is defined as usual: 

(1) r* = £ 1 (j = 1, 2 , . . . , f l ) . 

It is convenient also to define r* = 0 if r\ < j < n, which is in accord with 
(1) if we interpret empty sums as zero. 

Received May 22, 1958. 

^ h i s term, due to P. Hall, is normally used when the sets Ai, Ai, . . . An are disjoint, but 
its use in this wider sense is convenient here. 
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We now write 

(2) ak = Ê r* (k = 1, 2, . . . , n). 
j=n-k+l 

An alternative expression for ak can be obtained as follows, If s and t are 
integers, let Ex(s, t) denote the excess, if any, of 5 over t, that is, Ex(s, i) 
= 5 — t if 5 > t, and Ex(s, t) = 0 if 5 < t. Then 

m 

(3) a* = Z £* ( ' * » - *) (i = l ,2 »). 

The easiest way to see this is to draw a partition diagram for [r*], that is, an 
m X n matrix whose ith row has entries 1 in the first rt places and 0 else
where. Then r* is the number of l 's in the j th column, and ak is the number 
of l 's in the last k columns. However, the ith row has exactly Ex{ru n — k) 
l 's in the last k columns, and (3) follows. 

3. Disjoint partial transversals. Suppose that Ah A2, . . . , An have dis
joint partial transversals (D.P.T.'s) Ri, R2, . . . , Rm of lengths ri, r2j . . . , rm 

respectively. The elements of Rt represent rt of the A's. Of these ^4's at least 
Ex(ri} n — k) must be included in any collection of k of the ^4's. It follows 
that every k of the ^4's must contain between them at least Ex(ru n — k) 
distinct elements out of Ri and hence at least 

m 

oik = Z Ex(ru n — k) 

distinct elements altogether, since the R's are disjoint. Our theorem asserts 
that this necessary condition is also sufficient. 

THEOREM. A necessary and sufficient condition for Aly A2, . . . , An to have 
mutually disjoint partial transversals of lengths ri, r2} . . . , rm is that, for k = 1, 
2, . . . , n, every k of the A1 s contain between them at least ak distinct elements, 
where ak is defined by (1) and (2) above. 

We observe here that the case m = 1, t\ = r, is precisely Ore's theorem since 
we then have ak = 0 (1 < k < n — r) and ak = k + r — n (n — r + 1 < & 
<n). 

The proof of sufficiency proceeds by induction on n. It is trivial when 
n = 1, and from now on we shall assume the result for all collections of 
n' < n sets and all sets of integers rt < nf. 

We distinguishtwo cases which are mutually exclusive and cover all possi
bilities : 

Case 1. m > 2 and rm < n, rm-\ < n; 

Case 2. rx = r2 = . . . = rm-\ = n, 1 < rm < n. 

We shall first reduce Case 1 to Case 2. 
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If [fi] is a partition falling under Case 1, we define a new partition [rt]y 

the reduction of [rt]t as follows. Let r\ = r2 = . . . = rt = w, rt+\ < n, where, 
by assumption, 0 < t < m — 2. Then rTO = rm — 1, r / + i = rt+i + 1, and 
ft = fi for all other values of i. Clearly f\ > f2 > . . . > rro, and by a finite 
number of such reductions any partition falling under Case 1 can be reduced 
to one falling under Case 2. Note that we may have rm = 0, in which case 
the value of m is reduced by 1. It will, however, be convenient at times to 
retain such vanishing parts of a partition and interpret a partial transversal 
of length zero as the empty set. This will not affect the proof in any way. 

To reduce Case 1 to Case 2 it is enough to prove 

LEMMA. If the theorem is true for the partition [f *] then it is also true for the 
partition [rt]. 

Proof. Suppose that [rt] falls under Case 1, and every k of the A1 s contain 
between them at least ak distinct elements (k = 1, 2, . . . , n). 

Case 1 (a). First consider the possibility that for some & ( l < £ < f t — 1) 
there is a collection of k of the ^4's, say Ai, A2, . . . , Akl which contain between 
them precisely ak distinct elements. We construct two new partitions [pi] 
and [qi] where pi = Ex(ru n — k), qt = min(rt-, n — k) (i — 1, 2, . . . , m). 
Then pf + qf = r, (i = 1, 2 w), pf = rj+n-k* (j = 1 , 2 , . . . , k), and 
<L* = r* 0* = 1> 2, . . . , n — k). We apply our induction hypothesis to the 
sets Ay A2, . . . , Ak with the partition [pi] and to the sets Ak+i, Ak+2} . . . , An 

with the partition [gf]. For this purpose let /3S and 7S be the integers obtained 
from [pi] and [qt] in the same way that the as were obtained from [rt]. Thus 

* * n * 
^s = Z) ^; = Z) rj = as (s = 1, 2, . . . , fe), 

^=A;—s+l j = n - s + l 

and 
w—A; w—A: 

Ts = X) 2̂  = Z) rJ = ak+s - oik (s = 1, 2, . . . , n - k). 
j=n—k—s+l j=n—k—s+l 

By assumption, every 5 of the sets Ai, A2, . . . , Ak contain between them at 
least as = (3S distinct elements. Also, any 5 of the sets Ak+i, Ak+2, . . . , An 

contain, together with all of Ai, A2, . . . , Aky at least ak+s distinct elements. 
Since Ai\J A2\J . . . U Ak contains precisely ak elements, any 5 of the sets 
Ak+i, Ak+2, . . . , An must contain between them at least ak+s — ak = ys 

distinct elements not in A\\J A2\J . . .\J Ak. It follows that there exist 
D.P.T.'s Pi , P2, . . . , Pm of Au A2, . . . , Ak of lengths pu p2, . . . , pm, and 
D.P.T.'s O i, Q2, . . . , Qm of Ak±iy ^4^+2, . . . , An of lengths g_i, q2, . . . , qmi none 
of the Q's having any elements in common with any of the P's . The sets 
PX\J QUP2\J Q2,.. . ,Pm\J Qm are then D.P.T.'s of Au A2} . . . , An of 
lengths ri, r2, . . . , rm. 

Case 1 (b). If no such collection of ^4's exists then, for fe = 1,2, . . . , » — 1, 
every k of the A1 s must contain between them at least ak + 1 distinct elements, 
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and we now appeal to the reduced partition. We observe that in passing 
from [rt] to [r*] one of the r3* is increased by 1, and one of them is decreased 
by 1, the others being unaltered. Hence, in the obvious notation, 

n n 

à*= Z) fj<l + Z) rj = l+ak (k = 1,2, . . . ,»), 

while an = an. Thus every k of the ^4's contain between them at least àk 

distinct elements (k = 1, 2, . . . , n). Assuming the theorem for the partition 
[ft], we can find D.P.T.'s Ri, R2, . . . , Rm of lengths n , f2,..., rm. Now 
?t+i > rt+i > rm > fm (t has the same meaning as before). Hence there must 
be in Rt+i at least one element which represents a set A 3 not represented by 
any element of Rm. If we transfer this element from Rt+i to Rm we obtain 
D.P.T.'s of lengths ru r2} . . . , rm. This proves the lemma. 

It remains to prove the theorem in Case 2, that is, under the assumptions 
r\ = r2 = . . . = ?v_i = n, 1 < rm < n, m > 1. Then r3* = m for j = 1, 
2, . . . , r, and r / = m — 1 for j = r + 1, r + 2, . . . , n, where for con
venience we write rm = r. We now make the further definition 

k * 
h = 11, rJ > <*h (k = l, 2 , . . . , »). 

. 7 = 1 

Assume that Ai, A2j . . . , An satisfy the conditions of the theorem. 

Case 2 (a). First suppose that, for k = 1, 2, . . . , n — 1, every k of the ^4's 
contain between them at least 8k distinct elements. The same will be true 
for k — n since 8n = an. Consider a collection of sets {Bj} consisting of m 
repetitions of each of the sets Ai, A2, . . . , AT and m — \ repetitions of each 
of the sets ^4r+i, Ar+2, . . . , An (if any). There are an sets altogether, and we 
shall show that, for s = 1, 2 , . . . , an, any 5 of these sets contain between them 
at least s distinct elements. We must first count the number k of distinct* 
^4's included amongst 5 of the B's. Clearly k > s/m; and if s > mr then 
k > r + {s — mr)/{m — 1). If 5 < mr, then s/m < r and, if kf is the smallest 
integer such that k' > s/m, then k' < r. Hence ô^ = k'm > s, and any 5 of 
the i?'s must contain between them at least 8k > dkr > s distinct elements. On 
the other hand, if s > mr, then k — r > (s — mr)/(m — 1), and hk = rm 
+ (k — r)(m — 1) > rm + (s — mr) = s. Thus again any 5 of the B's 
must contain between them at least 5 distinct elements. Applying Hall's 
theorem quoted in the introduction, we can find a complete transversal of 
the B's. The an distinct elements in this transversal comprise m distinct 
representatives of each of the sets A\, A2l . . . , Ar and m — 1 distinct repre
sentatives of each of the sets Ar+i, Ar+2, . . . , An. It is easy to see that these 
elements can be arranged to form D.P.T.'s of Au A2, . . . , Anj m — 1 of 
length n and one of length r. 

*By "distinct" we mean here "having distinct suffixes." Thus distinct ^4's may have the 
same members. 
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Case 2 (b). The alternative to 2 (a) is that for some k (1 < & < w — 1) 
there is a collection of k of the ^4's whose union contains fewer than 8k distinct 
elements (but at least ak). From all such collections (for all possible values 
of k) we pick one collection consisting of, say, k A's whose union contains 
ak + u distinct elements with u as small as possible. Thus every s of the -4's 
(s = 1,2, . . . , n) contain between them at least min(5s, as + u) distinct 
elements. (This statement for s — n follows from the fact that bn = an.) Let 
the chosen sets be Ax, A2, . . . , Ak (k is now fixed, 1 < k < n — 1). If u = 0 
we may, of course, proceed as in Case 1 (a). This fails, however, if u > 0, 
and we must appeal again to the special form of the partition [r*]. 

Consider the sums of k successive r*'s, that is, the integers e* = ri+i* + 
ri+2* + . . . + ri+k* (i = 0, 1, . . . , n - k). Clearly 5k = e0 > ei > . . . > en_* 
= ak. Also et — ei+i < 1 since m = ri* > r2* > . . . > rn* > w — 1. Now 
&k > oik + u > ak; hence there is an integer t (1 < t < n — k) such that 
et = ak + u. We may take / < r since, if eT is defined, its value is (m — l)k 
which must also be the value of ak. 

In the partition diagram of [rt] we now look at columns t + 1, J + 2, . . . , 
t + k. They form the partition diagram of [pt] where pi = p2 = . . . = pm-i 
= k, pm = r — /, and 

m 

X pi = ak + u. 

The remaining columns form the partition diagram of [qt] where qi = q2 = . . . 
= qm-i = n — k, qm = t. The integers /3S and 7S obtained from [pt] and [g<] 
in the same way that the as were obtained from [r j are given by 

0. = 1^ PJ = ±j rj 
j=k— s+1 ;= t+k- s+1 

(s= 1 , 2 , . . . , * ) , 

7s g * = /«. if 5 < n — k — t 
k — / < 5 < w — k. 

Consider a collection of s < k of the sets A\, A2, . . . , Ak. Between them 
they contain at least min(<5s, as + w) distinct elements. 

j=\ j=t+k—s+l 

Now 

Also 

as + u = 
t+k n—s 

(ak + u) - (ak - as) = J^ Tj - X) rJ 
j=t+l j=n-k+l 
t+k . t+k—s 

(since t < n — k) 
* = M - 1 j=t+l 

Thus any 5 of Au A2, . . . , Afc contain between them at least fis distinct 
elements, and since k < n, we may apply our induction hypothesis to find 
D.P.T.'s Pi , P2 , . . . , Pm of Au A2, . . . , Ak of lengths pu p2, . . . , pm. 

https://doi.org/10.4153/CJM-1959-030-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-030-9


DISJOINT TRANSVERSALS OF SUBSETS 285 

Now consider a collection of s < n — k of the sets Ak+i, Ak+2, . . . , -4n. 
Together with all of A i, A2, . . . , ,4* they contain at least min(ôA+5, afc+s + M) 
distinct elements. Since ^ 4 i W ^ 4 2 W . . . U ^ 4 A ; contains exactly ak + u 
elements, the s sets from Ak+i, Ak+2, . . . , An must contain between them at 
least min^+s — (ak + u),ak+s — ak) distinct elements not already used in 
Pi , P2, . . . , Pw . If we can show that, for 5 = 1, 2, . . . , n — &, 

(i) «5*+* — (ak + u) > 7„ 
and 

(ii) a^+s — afc > 7s, 

we may apply our induction hypothesis to obtain D.P.T.'s Qi, Q2, . . . , Qm 

of A k+i, Ak+2 , . . . , 4W of lengths q_i, q2, . . . , qm from elements not already 
used in Pi , P2 , . . . , Pm . If 5 > n — k — t, these inequalities are obvious; for 
then 7s = ak+s — (ak + u), and clearly dk+s > c^+s, « * < « * + u. On the 
other hand, if s < n — k — t, then YS = as. In this case we observe that 
5k+s > dk + as > (a* + w) + a„ from which (i) follows. Also ak+8 > ak + a„ 
from which (ii) follows. This establishes the existence of Qi, Q2l . . . , ()m. 

Finally, P, U Qi, P2 W Q2, . . . , P m U 0m are D.P.T.'s of Al9.A*, . . . , An 

of lengths ru r2, . . . , rm, and the theorem is proved. 

The application to matrices of O's and l's, mentioned in the introduction, 
is immediate. Let n > r\ > r2 > . . . > rm > 0 and Si > s2 > . . . > sn > 0. 
The insertion of l's in an m X n matrix so that there are at least rt l 's in 
the ith row (i = 1, 2, . . . , m) and not more than Sj in the jth column (j = 1, 
2, . . . , n) is equivalent to the construction of D.P.T.'s of lengths ri, r2, . . . , rm 

of w disjoint sets containing respectively $i, s2, . . . , sn elements. Our theorem 
gives as necessary and sufficient conditions for the existence of such D.P.T.'s 
the inequalities 

n n 

Y, Sj > ak = X) rJ (k = 1, 2, . . . , »). 

(The inclusion of zeros amongst the r's affects neither the hypotheses nor the 
conclusion.) If we require exactly rt l's in the ith row and exactly s, in the 
jth column, we need only add the condition 

n m 

These are the conditions found by Ryser and Gale. 
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